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Mathematics of Data Science



Mathematics of data science

The main motivation for the paradigm shift occurring with the
current notion of ‘data science’ is the emphasis on
multidimensional data.

While classical and modern signal analysis was mostly concerned
with 1-D (time-series), 2-D (images) and 3-D (videos) signals,
emerging applications from medical imaging, electronic
surveillance, social networks, etc, typically involve data which are
high-dimensional and non-Euclidean.

The classical formalism of Hilbert spaces and function
representations is often impractical or inadequate.



Mathematics of data science

Figure: Computational biology. DNA screening with a few observations
and huge number of variables.



Mathematics of data science

Figure: Netflix challenge (cf. Netflix Prize, 2006-2011): to predict users
ratings from a sparse incomplete database of ratings given by millions of
users on thousands of movies or TV shows.



Geometry of high dimensional
data



Geometry of high dimensional data

Two main striking phenomena when one moves from low to high
dimensions are:

1. The curse of dimensionality.

2. The concentration of measure.

Both phenomena are manifestations of our difficulty in grasping
intuitively the geometry in high dimensions.



Geometry of high dimensional data

Curse of dimensionality [R. Bellman, 1957]: the computational
effort associated to many algorithms in Rd become exponentially
more onerous as the dimension d grows.

If we want to sample the unit interval such that the distance
between adjacent points is at most 0.01, we need 100
evenly-spaced samples.

An equivalent sampling of a 3-dimensional unit hypercube with a
grid with a spacing of 0.01 between adjacent points would require
106 samples and, similarly, in dimension d , would require 102d

samples.

A modest increase in dimensions results in a dramatic increase in
required data points to cover the space at the same density.



Geometry of high dimensional data
Notion of neighborhood.

To capture a neighborhood that contains a fraction s of the unit

hypercube volume, we need the edge length to be ` = s
1
d .

I s = 0.01, d = 2, ` = (0.01)
1
2 = 0.1

I s = 0.01, d = 3, ` = (0.01)
1
3 = 0.215...

I s = 0.01, d = 10, ` = (0.01)
1

10 = 0.631...



Geometry of high dimensional data

Notion of neighborhood.
Probability is helpful to understand the geometry in high
dimensions.

Let X ,Y be independent random variables with uniform
distribution in [0, 1]d .
The mean square distance ‖X − Y ‖2 satisfies

E [‖X − Y ‖2] =
d

6
and var(‖X − Y ‖2) ≈ d

25
.

The notion of nearest neighborhood - which is used in many
numerical algorithms - vanishes in high dimensions.

On the other hand, since high-dimensional spaces are sparser, it
should be easier to separate points in high-dimensional space with
an adapted classifier.



Geometry of high dimensional data
Our geometric intuition about space is naturally based on d = 2
and d = 3.

This intuition can often be misleading in high dimensions as
properties of even very basic objects become counterintuitive.
Understanding these paradoxical properties is essential in data
analysis.

We consider:

I d-dimensional hyperball of radius R:

Bd(R) = {x ∈ Rd : x2
1 + · · ·+ x2

d ≤ R2}

I d-dimensional hypersphere of radius R:

Sd−1(R) = {x ∈ Rd : x2
1 + · · ·+ x2

d = R2}

I d-dimensional hypercube of side 2R:

Cd(R) = [−R,R]× · · · × [−R,R] (d times product)



Geometry of high dimensional data
Theorem. The volume of Bd(R) is given by

vol(Bd(R)) =
π

d
2 Rd

d
2 Γ(d2 )

where Γ(n) =
∫∞

0 rn−1e−rdr is the Gamma function.
Proof. Using polar coordinates,

vol(Bd(R)) =

∫
Sd−1(1)

dΩ

∫ R

r=0
rd−1dr =

AdR
d

d

where Ad is the surface area of the unit d-sphere Bd(1).
A direct calculation gives

I (d) =

∫
R
. . .

∫
R
e−(x2

1 +x2
2 ...+x2

d ) dx1 . . . dxd

= (

∫
R
e−u

2
du)d

= π
d
2



Geometry of high dimensional data
By computing the same integral using polar coordinates, we have

I (d) =

∫
Sd−1(1)

dΩ

∫ ∞
0

e−r
2
rd−1dr

= Ad

∫ ∞
0

e−tt
d−1

2 ( 1
2 t
− 1

2 ) dt

= Ad
1
2

∫ ∞
0

t
d
2
−1e−tdt

= Ad
1
2 Γ(d2 ).

By comparing with the above calculation of I (d), we conclude that

Ad =
π

d
2

1
2 Γ(d2 )

.

Hence

vol(Bd(R)) =
π

d
2 Rd

d
2 Γ(d2 )



Geometry of high dimensional data
For positive integers n, the have Γ(n) = (n − 1)! Hence, by
Sterling’s formula,

Γ(n) ≈
√

2π

n

(n
e

)n
.

It follows that, for large d , we have (approximately)

vol(Bd(R)) ≈ 1√
dπ

(
2πe

d

) d
2

.

The volume of the d-sphere
reaches its maximum for
d = 5.

For d > 5, the volume de-
creases rapidly to zero.



Geometry of high dimensional data

Observation: Concentration of the volume of a d-ball near its
equator

Assume we want to cut off a slab around the equator of the d-unit
ball such that 99% of its volume is contained inside the slab.

In two dimensions the width of the slab has to be almost 2, so that
99% of the volume are captured by the slab.
However, as the dimension d increases, the width of the slab gets
rapidly smaller.

Indeed, in high dimensions the thickness of the slab shrinks
asymptotically to 0, since nearly all the volume of the unit ball lies
a very small distance away from the equator.

This phenomenon is a manifestation of the concentration of
measure.



Geometry of high dimensional data

To illustrate more precisely this form of concentration of measure,
we examine the unit d-ball.

Without loss of generality, let us first choose a vector x1 to be the
north pole so that we can define the equator by the intersection
with the plane x1 = 0 : {x ∈ Rd : ‖x‖ ≤ 1, x1 = 0}.
Hence te equator is a sphere of dimension d − 1.

We define the polar cap P0 as the re-
gion of the sphere above the slab of
width 2p0 around the equator,

P0 = {x ∈ Rd : ‖x‖ ≤ 1, x1 ≥ p0}

Theorem.

2 vol(P0)

vol(Bd(1))
≤ e−

d−1
2

p2
0



Geometry of high dimensional data

Proof. To compute the volume of
the cap P0 we integrate over all slices
of the cap from p0 to 1.
Each slice is a (d − 1)-ball of radius

r(x1) =
√

1− x2
1 .

Hence, the volume of such a slice is

(1− x2
1 )

d−1
2 vol(Bd−1(1))

Thus

vol(P0) = vol(Bd−1(1))

∫ 1

p0

(1− x2
1 )

d−1
2 dx1

Using inequalities 1 + x ≤ ex and erfc(x) ≤ e−x
2
, we have

vol(P0) ≤ vol(Bd−1(1))

∫ ∞
p0

e−
(d−1)x2

1
2 dx1 ≤

vol(Bd−1(1))

d − 1
e−

(d−1)p2
0

2



Geometry of high dimensional data

From the theorem above, we have that vol(Bd(1)) = π
d
2

d
2

Γ( d
2

)
.

It follows that

vol(Bd−1(1)) =
π−

1
2 d

d − 1

Γ(d2 )

Γ(d−1
2 )

vol(Bd(1)) ≤ d − 1

2
vol(Bd(1))

Thus, from the inequality in page above, we have

vol(P0) ≤ vol(Bd(1))

2
e−

(d−1)p2
0

2

and, finally,
2 vol(P0)

vol(Bd(1))
≤ e−

d−1
2

p2
0



Geometry of high dimensional data

Observation: Concentration of the volume of a d-ball on shells

Using the formula of the volume of a ball, we obtain

vol(Bd(1− ε)
vol(Bd(1))

= (1− ε)d ≤ e−εd

Since, for any ε > 0, this quantity tends to 0 as d →∞, it follows
that the spherical shell contained between Bd(1) and Bd(1− ε)
contains most of the volume of Bd(1), for large enough d , even if
ε is very small.

Setting ε = 1
d , the estimate shows that at least (1− e−1) of the

volume is concentrated in a shell of width 1
d .

Remark. A similar property holds for d-hypercube. As d increases,
most of the volume is concentrated near the surface.



Geometry of high dimensional data

Also the hypercube exhibits an interesting volume concentration
behavior.

Proposition. The unit hypercube Cd( 1
2 ) has volume 1 and

diameter
√
d .

It follows that corners will ”stretch out” more and more as the
dimension d increases, while the rest of the cube must ”shrink” to
keep the volume constant.

For d = 2, the unit square is com-
pletely contained in the unit sphere.
The distance from the center to a
vertex (radius of the circumscribed

sphere) is
√

2
2 and the apothem (the

radius of the inscribed sphere) is 1
2 .



Geometry of high dimensional data
For d = 4, the distance from the center to a vertex is 1, so the
vertices of the cube touch the surface of the sphere. However, the
apothem is still 1

2 . The result, when projected in two dimensions
no longer appears convex even though all hypercubes are convex.

For d > 4, the distance from the center to a vertex is
√

2
2 > 1 and

thus the vertices of the hypercube extend outside the sphere.
(For large d , most of the volume is located in the corners.)

Figure: Relationship between the sphere and the cube in dimensions
d = 2, d = 4 and higher d .



Probability notes

Theorem (Integrated tail probability expectation formula) For any
integrable (i.e., finite-mean) random variable X

E [X ] =

∫ ∞
0

P(X > x) dx −
∫ 0

−∞
P(X < x) dx

Proof. We first assume that X is a non-negative random variable.
We use the ‘layer cake representation’ of a non-negative
measurable function

X =

∫ X

0
dx =

∫ ∞
0

χ{x<X} dx

By interchanging the order of expectation and integration

E [X ] =

∫ ∞
0

E [χ{X>x}] dx =

∫ ∞
0

P(X > x) dx



Probability notes

If X is a general random variable, then we consider its positive and
negative parts separately by writing X = X+ − X−, where
X+ = max(X , 0) and X− = max(−X , 0).

Using the calculation above,

E [X+]=

∫ ∞
0
P(X > x)dx ; E [X−]=

∫ ∞
0
P(X < −x)dx =

∫ 0

−∞
P(X < x)dx

Hence, by the integrability of X ,

E [X ] = E [X+]−E [X−] =

∫ ∞
0

P(X > x) dx−
∫ 0

−∞
P(X < x) dx



Probability notes

Proposition (Markov’s inequality). For any non-negative
random variable X : S → R we have

P(X ≥ t) ≤ E [X ]

t
, for all t > 0.

Proof.

E [X ] = E [X |X < t]P(X < t) + E [X |X ≥ t]P(X ≥ t)

Since X is non-negative, E [X |X < t]P(X < t) ≥ 0.
Also, E [X |X ≥ t] ≥ t.
Thus

E [X ] ≥ E [X |X ≥ t]P(X ≥ t) ≥ t P(X ≥ t).



Probability notes

Corollary: Chebyshev’s inequality). Let X be a random variable
with mean µ and variance σ2. For any t > 0,

P(|X − µ| ≥ t) ≤ σ2

t2
.

Proof. Apply Markov’s inequality to Y = (X − µ)2.

Chebyshev’s inequality is a form of concentration inequality: X
must be close to its mean whenever the variance is small.

Corollary - Chernoff bound. Let X be a random variable with a
moment generating function in a n-hood of zero. For any t > 0,

P(|X − µ| ≥ t) = P(eλ(X−µ) ≥ eλt) ≤ E [eλ(X−µ)]

eλt
.

Proof. Apply Markov’s inequality to Y = eλ(X−µ).



Probability notes

The Law of Large Numbers is a consequence of Chebychev’s
inequality.

Theorem (Law of Large Numbers). Let X1,X2, . . . ,Xn be a
sequence of i.i.d. random variables with mean µ and variance σ2.
Then

P(|1
n

n∑
i=1

Xi − µ| > ε) ≤ σ2

nε2
.

Proof. Proof follows directly from Chebychev’s inequality, after
observing that

var(
1

n

n∑
i=1

Xi ) =
1

n2

n∑
i=1

var(Xi ) =
σ2

n



Probability notes

As an application of the Law of Large Numbers, let Z be a
d-dimensional random point whose coordinates are each selected
from a zero mean, 1

2π variance Gaussian.
We set such value of the so the Gaussian probability density equals
one at the origin and is bounded below throughout the unit ball by
a constant.
By the Law of Large Numbers, the square of the distance of Z to
the origin will be of the order of d with high probability. In
particular, there is vanishingly small probability that such a random
point z would lie in the unit ball. This implies that the integral of
the probability density over the unit ball must be vanishingly small.
On the other hand, the probability density in the unit ball is
bounded below by a constant. We thus conclude that the unit ball
must have vanishingly small volume.



Probability notes
Proposition (Gaussian tail bounds). Let X ∼ N (µ, σ2). For all
t > 0, we have

P(|X − µ| ≥ t) ≤ e−
t2

2σ2 .

Proof. The moment-generating function is E [eλX ] = eλµeλ
2 σ2

2 .
In fact, for Y = X − µ, a direct calculation shows

E [eλY ] =
1√
2πσ

∫
R
eλy−

y2

2σ2 dy =
1√
2π

∫
R
eλσz−

z2

2 dz

=
e

λ2σ2

2

√
2π

∫
R
e−

(z−λσ)2

2 dz = e
λ2σ2

2

Using the Chernoff bound, we obtain

P(|X − µ| > t) ≤ E [eλ(X−µ)] e−λt = e−λteλ
2 σ2

2 .

Minimizing this expression over λ gives λ = t
σ2 and thus

P(|X − µ| > t) ≤ e−
t2

2σ2



Probability notes

Definition. A Random variable X with mean µ is called
sub-Gaussian if there exists a positive number σ such that

E [eλ(X−µ)] ≤ e
σ2λ2

2 , for all λ ∈ R.

Any Gaussian random variable with variance σ2 is also a
sub-Gaussian random variable with parameter σ.

In fact, if X ∼ N (µ, σ2), then E [eλ(X−µ)] = e
σ2λ2

2 .

An important example of non-Gaussian but sub-Gaussian random
variables are the Rademacher random variables.
A Rademacher random variable Y takes on the values ±1 with
equal probability and is sub-Gaussian with parameter σ = 1.

One can show that any bounded random variable is sub-Gaussian.



Probability notes

Proposition (Sub-Gaussian tail bounds). Let X be a
sub-Gaussian random variable with parameter σ. For all t > 0, we
have

P(|X − µ| ≥ t) ≤ e−
t2

2σ2 .

Proof. Using the Chernoff bound and the definition, we obtain

P(|X − µ| ≥ t) ≤ e−λtE [eλ(X−µ)] ≤ e−λte
σ2λ2

2

Minimizing this expression over λ gives λ = t
σ2 and thus

P(|X − µ| ≥ t) ≤ e−
t2

2σ2 .



Probability notes
Definition. A Random variable X with mean µ is called
sub-exponential if there exist numbers ν, b such that

E [eλ(X−µ)] ≤ e
ν2λ2

2 , for all λ ≤ 1

b
.

A sub-Gaussian random variable is also sub-exponential (set ν = σ
and b = 0 where 1

b is interpreted as ∞).
However, the converse is not true in general.

Let Z = X 2, where X ∼ N (0, 1). One can show that Z is
sub-exponential but is not sub-Gaussian.

Proposition (Sub-exponential tail bounds). Let X be a
sub-exponential random variable with parameters ν, b. Then

P(|X − µ| ≥ t) ≤

{
e−

t2

2ν2 if 0 ≤ t ≤ ν2

b

e−
t

2b if t > ν2

b



Probability notes

Theorem (Master Tail bound). Let X1, . . . ,Xn are independent
random variables with zero mean and variance at most σ2.
Suppose

(i) a ∈ [0,
√

2nσ2];

(ii) s is a positive integers satisfying s ∈ [ a2

4nσ2 ,
nσ2

2 ];

(iii) for all i , |E [X r
i ]| ≤ σ2r ! for r = 3, 4, . . . , s.

Then

P(|
n∑

i=1

Xi | ≥ a) ≤ 3 e−
a2

12nσ2



Probability notes

The celebrated central limit theorem shows that the limiting
distribution of a sum of i.i.d. random variables is always Gaussian.

Lindeberg-Levy Central Limit Theorem. Let X1,X2, . . . ,Xn be
a sequence of i.i.d. random variables with mean µ and variance σ2.
Denote

Sn = X1 + X2 + · · ·+ Xn

and consider the normalized random variable

Zn =
Sn − E [Sn]√

var(Sn)
=

1

σ
√
n

n∑
i=1

(Xi − µ).

Then, as n→∞,

Zn → N (0, 1) in distribution.



Probability notes
Concentration inequalities quantifies how much a sum of
independent random variables deviates around its mean.
Unlike the classical central limit theorem, the concentration
inequalities below are non-asymptotic in the sense that they hold
for all fixed n and not just as n→∞.

Hoeffding’s inequality. Let X1,X2, . . . ,Xn be a sequence of
independent random variables with mean E [Xi ] = 0 and satisfying
|Xi | ≤ ai , for i = 1, . . . , n. Then

P

(
|

n∑
i=1

Xi | > t

)
≤ 2 exp

(
− t2

2
∑n

i=1 a
2
i

)
Remark. The inequality implies that fluctuations larger than
O(
√
n) have small probability. For example, if ai = a for all i , then

setting t = a
√

2n ln n yields

P

(
|

n∑
i=1

Xi | > a
√

2n ln n

)
≤ 2

n



Probability notes

Bernstein’s inequality, uses the variance of the summands to
improve over Hoeffding’s inequality.

Bernstein’s inequality. Let X1,X2, . . . ,Xn be a sequence of
independent random variables satisfying |Xi | ≤ a and E [X 2

i ] = σ2,
for i = 1, . . . , n. Then

P

(
|

n∑
i=1

Xi | > t

)
≤ 2 exp

(
− t2

2nσ2 + 2
3at

)



Probability notes



Geometry of high dimensional data

Theorem. Almost all the volume of the high-dimensional cube is
located in its corners.

Proof. Let x = (x1, . . . , xd) ∈ Rd where each xi ∈ [−1
2 ,

1
2 ] is

chosen uniformly at random. The event that x also lies in the
sphere means

‖x‖2 =

√√√√ d∑
i=1

x2
i ≤ 1.

Let zi = x2
i and observe that

E [zi ] =

∫ 1
2

− 1
2

t2dt =
t3

3

∣∣∣ 1
2

− 1
2

=
1

12
⇒ E [‖x‖2

2] =
d∑

i=1

E [zi ] =
d

12
.



Geometry of high dimensional data

Using Hoeffding’s inequality, for sufficiently large d , we have that

P(‖x‖2 ≤ 1) = P

(
d∑

i=1

x2
i ≤ 1

)

= P

(
d∑

i=1

(zi − E [zi ]) ≤ 1− d

12

)

= P

(
d∑

i=1

(E [zi ]− zi ) ≥
d

12
− 1

)

≤ 2 exp

(
−

( d
12 − 1)2

2d ( 1
6 )2

)
≤ 2 e−

d
8

As this values goes to 0 when d →∞, this shows random points in
d-cubes are most likely outside the sphere. That is, almost all the
volume of a d-cube concentrates in its corners.



Geometry of high dimensional data

Problem: How to generate random points on a sphere?

Here is an approach when d = 2.

To generate a point (x , y), we select x and y coordinates uniformly
at random from [−1, 1]. This yields points that are distributed
uniformly at random in a square that contains the unit circle.
We next project these points onto the circle.

The resulting distribution will not be uniform on the circle since
more points fall on a line from the origin to a vertex of the square,
than fall on a line from the origin to the midpoint of an edge due
to the difference in length of the diagonal of the square to its side
length.
To remedy this problem, we discard all points outside the unit
circle and only project the remaining points onto the circle.



Geometry of high dimensional data

• The above construction fails in higher dimensions.

As we have shown above, the ratio of the volume of Sd−1(1) to the
volume of Cd(1) decreases rapidly as the dimension d increases.

As a result, for large d , almost all the generated points will be
discarded in this process as they lay outside the unit d-ball and we
end up with essentially no points inside the d-ball and thus, after
projection, with essentially no points on Sd−1(1).

• Instead we can proceed as follows.

Recall that the multivariate Gaussian distribution is symmetric
about the origin - which is exactly what we need.

Hence, we construct a vector in Rd whose entries are
independently drawn from a univariate Gaussian distribution. We
then normalize the resulting vector to lie on the sphere. This gives
a distribution of points that is uniform over the sphere.



Geometry of high dimensional data

Having a method of generating points uniformly at random on
Sd−1 at our disposal, we can now give a probabilistic proof that
points on Sd−1 concentrate near its equator.

Without loss of generality we pick an arbitrary unit vector x1 which
represents the north pole and the intersection of the sphere with
the plane x1 = 0 forms our equator.

We extend x1 to an orthonormal basis x1, . . . , xd .

Using the method presented above, we generate random points X
on Sd−1 by fist sampling (Z1, . . . ,Zn) ∈ N (0, 1), and then
normalizing X = (X1, . . . ,Xd) where Xi = 1∑d

k=1 Z
2
k

Zi .



Geometry of high dimensional data

Since X ∈ Sd−1, then
∑d

k=1〈X , xk〉2 = 1
We also have that

E [
d∑

k=1

〈X , xk〉2] = E [1] = 1

hence, by symmetry, E [〈X , x1〉2] = 1
d .

By Markov’s inequality,

P(|〈X , x1〉| > ε) = P(|〈X , x1〉|2 > ε2) ≤ E [〈X , x1〉2]

ε2
=

1

dε2
.

For fixed ε we can make this probability arbitrarily small by
increasing the dimension d .

This proves our claim that points on the high-dimensional sphere
concentrate near its equator.



Geometry of high dimensional data

Properties of random vectors in high dimensions.

Suppose we generate a vector (x1, . . . , xn) where each coordinate is
an independent random variable with zero mean and unit variance.
Then

E [‖x‖2] = E

[
n∑

i=1

x2
i

]
=

n∑
i=1

E [x2
i ] = n.

Hence we expect the length ‖x‖ of x is
√
n.

This does not imply that the typical length is about
√
n. For that,

we need to derive a concentration inequality.



Geometry of high dimensional data

We assume that the coordinates xi of the vector (x1, . . . , xn) are
xi ∼ N (0, 1).

It follows that Z =
∑n

i=1 x
2
i has a χ2 distribution with n degrees

of freedom.

It turns out that Z is sub-exponential with parameters (2
√
n, 4).

Hence, using the sub-exponential tail bounds formula, we have

P(|1
n

n∑
i=1

x2
i − 1| ≥ t) ≤

{
2e−

nt2

8 if 0 < t ≤ 1

2e−
nt
8 if t > 1

≤ 2e−
n
8

min(t,t2)



Geometry of high dimensional data

Observation: Two randomly drawn vectors in high dimensions are
almost perpendicular.

The angle θx ,y between two vectors x and y in Rd satisfies

cos θx ,y =
〈x , y〉
‖x‖‖y‖

Theorem. Let x , y ∈ Rd be two random vectors with i.i.d.
Rademacher variables (that is, the entries xi , yi take values ±1
with equal probability).
Then

P

(
| cos θx ,y | ≥

√
2 ln d

d

)
≤ 2

d



Geometry of high dimensional data

Proof. Observe that 〈x , y〉 =
∑

i xiyi is a sum of i.i.d.
Rademacher variables, hence E [〈x , y〉] =

∑
i E [xiyi ] = 0. By the

Hoeffding’s inequality

(Recall: P(|
d∑

i=1

Xi | > a
√

2d ln d) ≤ 2
d )

observing that a = |xiyi | ≤ 1 we have

P(| 〈x , y〉
‖x‖‖y‖

| >
√

2 ln d

d
) = P(|〈x , y〉| >

√
2d ln d) ≤ 2

d

Remark. A similar result holds for Gaussian random vectors in Rd

or random vectors chosen from the sphere Sd−1.



Geometry of high dimensional data

Remark. Let x1, x2, . . . , xm be random vectors whose entries are
i.i.d. Rademacher variables. By refining the argument in the proof
above, we obtain that for any pair of vector xi , xj ,

P

(
| cos θxi ,xj | ≥

√
2 ln c

d

)
≤ 2

c
,

where c > 0 is a constant.
By choosing m =

√
c/4 (using the union bound) we have that

with high probability

max
i ,j ,i 6=j

| cos θxi ,xj | ≤
√

2 ln c

d

If we choose c = ed/200, then any two vectors are almost
orthogonal in the sense that | cos θxi ,xj | ≤ 1

10 .
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Gaussians in High Dimension
A one-dimensional Gaussian has its mass close to the origin.
However, the behavior is different when the dimension d increases.

The d-dimensional spherical Gaussian with zero mean and variance
σ2 in each coordinate has density function

p(x) =
1

(2π)d/2σd
e−
|x|2

2σ2

The value of the density is maximum at the origin, but there is
very little volume there.

When σ = 1, integrating the probability density over a unit ball
centered at the origin yields almost zero mass, since the volume of
such a ball is negligible.
One needs to increase the radius of the ball to about

√
d before

there is a significant volume.
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Theorem (Gaussian Annulus Theorem) Let p(x) be a
d-dimensional spherical Gaussian with unit variance in each
direction. For any β ≤

√
d∫

√
d−β≤|x |≤

√
d+β

p(x) dx ≥ 1− 3e−cβ
2
,

where c is a fixed positive constant.

The Gaussian Annulus Theorem states that volume concentrates
about a thin annulus of radius

√
d .

More precisely, all but at most 3e−cβ
2

of the probability mass lies
within the annulus

√
d − β ≤ |x | ≤

√
d + β.

Note that E (|x |2) =
∑d

i=1 |xi |2 = d , hence the mean squared
distance of a point from the center is d .
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Proof. Let x = (x1, . . . , xd) be a point selected from a unit
variance Gaussian centered at the origin and let r = |x |.

The domain of integration can be expressed as |r −
√
d | ≤ β

We examine the complementary region |r −
√
d | > β

If |r −
√
d | > β then

|r2 − d | = |r +
√
d ||r −

√
d | ≥ (r +

√
d)β ≥ β

√
d (1)

We have
|r2 − d | ≥ β

√
d

|x2
1 + . . .+ x2

d − d | ≥ β
√
d

|(x2
1 − 1) + . . .+ (x2

d − 1)| ≥ β
√
d

|w1 + . . .+ wd | ≥ β
√
d

2

where, in the last step, we used the change of variable wi =
x2
i −1
2

Note that E [wi ] = 1
2E [x2

i − 1] = 1
2 (E [x2

i ]− 1) = 0
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In order to apply the Master Tail Bound theorem, we verify the
bound on high order moments.

Let s be a positive integer. If |xi | ≤ 1, then |x2
i − 1|s ≤ 1 and, if

|xi | > 1, then |x2
i − 1|s ≤ |xi |2s .

It follows that
|wi |s = (

|x2
i −1|
2 )s ≤ 1+x2s

i
2s .

Using the last inequality, we have

|E [w s
i ]| ≤ 2−sE (1 + x2s

i ) = 2−s
(
1 + E (x2s

i )
)

= 2−s + 2−s
√

2

π

∫ ∞
0

x2se−
x2

2 dx

≤ s! [using the Gamma integral]
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From the calculation above, we have var(wi ) = E [w2
i ] ≤ 2.

This implies:
|E [w s

i ]| ≤ 2s! := σ2s!

where σ2 = 2 is the bound on the variance of the variables wi .

We can now apply the Master Tail Bound theorem with σ2 = 2
(according to the notation of the Theorem where σ2 denotes the
bound on the variance of the random variables wi ) to obtain

P(|w1 + . . .+ wd | ≥
β
√
d

2
) ≤ 3 e−

β2

96
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Random Projections.
Nearest neighbor search routines are frequently used in
applications.

In nearest neighbor search, we are given a database of n points in
Rd where n and d are usually large. The task is to find the nearest
or approximately nearest database point to a query point.

To speed up the search, it is convenient to reduce the
dimensionality of the problem by projecting

f : Rd → Rk , k � d

This should be carried out while maintaining the geometry of the
problem. That is, if points were close in Rd then they should
remain close in Rk .

We will see, using the Gaussian Annulus Theorem, that such a
projection exists and is simple to compute.
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Let u1, . . . , uk be independent random vectors in Rd drawn from
the spherical Gaussian with unit variance.

For any v ∈ Rd , we define the projection f : Rd → Rk by

f (v) = (u1 · v , . . . , uk · v).

We will show that, with high probability, |f (v)| ≈
√
k |v |.

If this is the case, it follows that if we want to measure |v1 − v2|,
we can compute

|f (v1)− f (v2)| = |f (v1 − v2)| ≈
√
k|v1 − v2|
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Theorem (Random Projection Theorem) Let v ∈ Rd and the
projection f be defined as above. There exists c > 0 s.t., for any
ε ∈ (0, 1),

P(
∣∣∣|f (v)| −

√
k|v |

∣∣∣ ≥ ε√k |v |) ≤ 3e−ckε
2

where P is taken over the random draws of the vectors ui .

Proof. By rescaling both sides of the inequality by |v |, we can
assume |v | = 1. We observe that, for each i = 1, . . . , k ,

ui · v =
d∑

j=1

uijvj

has Gaussian density zero mean and variance 1; in particular,
follows that

var(ui · v) = var(
d∑

j=1

uijvj) =
d∑

j=1

var(uij)v
2
j =

d∑
j=1

v2
j = |v2| = 1
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Since u1 · v , . . . , uk · v are independent Gaussian random variables,
f (v) is a random vector from a k-dimensional spherical Gaussian
with unit variance in each coordinate.

The proof is completed by applying the Gaussian Annulus Theorem
with d = k and β = ε

√
k.
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Theorem (Johnson-Lindenstrauss Lemma) For any 0 < ε < 1
and any integer n, let k ≥ 3

cε2 log n, where c is as in the Random

Projection Theorem. For any set of n points in Rd , the random
projection f : Rd → Rk defined above has the property that, for
any pair vi , vj ∈ Rd , with probability at least 1− 3

2n ,

(1− ε)
√
k|vi − vj | ≤ |f (vi )− f (vj)| ≤ (1 + ε)

√
k |vi − vj |.

Proof. Observe that f (vi )− f (vj) = f (vi − vj).
Inequalities above are equivalent to

|f (vi )−f (vj)|−
√
k|vi−vj | = |f (vi−vj)|−

√
k|vi−vj | ≥ ε

√
k |vi−vj |.

By applying the Random Projection Theorem

P(|f (vi − vj)| −
√
k |vi − vj | ≥ ε

√
k|vi − vj |) ≤ 3 e−clε

2 ≤ 3

n3

Hence, for
(n

2

)
< n2

2 pairs of points, the probability that the above

inequality holds for any pair of points is less than 3
n3

n2

2 = 3
2n .
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