Superconvergence

Kazem Safari and Wilfredo Molina

University of Houston

April 22, 2020
Outline

The Task

The Dataset

The Model

The *One Cycle Learning Rate* (OCLR)

The Results
Data
The Task: Image Classification

Dataset: Images and labels

Model: A mapping from images to labels

Train: Fit parameters of our model to training set

Test: Validate *generalizability* of the model on test set
Our Goal

Improve the test classification performance using the superconvergence technique.
Quick, Draw! Doodle Recognition Challenge
Quick, Draw! Doodle Recognition Challenge

50 million training images

112 thousand test images

340 categories (classes)
Challenges

Noisy Labels

Datapoints are not images!!! (per se)

Tensorflow: Takes more than 2TB of space.

Pytorch: Drawn on the fly as 128×128 RGB images.

Goodbye Tensorflow!!!
Challenges

(Until 2 month ago), training time ≈ 2 days

Now, training time ≈ 3.5 hours

How did you do it?!!!

Magic
Neural Network (NN)
A composition of two functions:

1) A feature map:
 Maps data points to a high-dimensional space (Kernel).

2) A classifier:
 Maps the extracted features to labels (SVM).

However, they are trained simultaneously.
Neural Network (NN)

\[\phi = \psi \circ \phi_L \circ ... \circ \phi_1 : \mathbb{R}^{n_1} \rightarrow \mathbb{R}^{n_L} \]

- \(n_1, n_L \) input and output dimensions
- \(L \) number of layers
- \(\psi \) classifier

\[\phi_{k+1} = R_k(B_k(w_k \ast \phi_k + b_k)) \]

- \(\phi_1 \in \mathbb{R}^{n_1} \)
- \(w_k : \mathbb{R}^{n_k} \rightarrow \mathbb{R}^{n_{k+1}} \), weight matrix
- \(b_k \in \mathbb{R}^{n_{k+1}} \), bias
- \(R_k : \mathbb{R} \rightarrow \mathbb{R} \), ReLU = \(\max(0, \text{id}) \)
- \(B_k : \) batch normalization
- \(\ast : \) operator
Rectified Linear Unit (ReLU)
Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1, \ldots, x_m\}$; Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma, \beta}(x_i)\}$

\[
\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean}
\]

\[
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2 \quad \text{// mini-batch variance}
\]

\[
\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \quad \text{// normalize}
\]

\[
y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma, \beta}(x_i) \quad \text{// scale and shift}
\]

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

From the original batch-norm paper
The * Operator

Convolution:

\[x \ast w[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} x[u, v] \cdot w[i - u, j - v] \]

Cross-Correlation:

\[x \ast w[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} x[u, v] \cdot w[i + u, j + v] \]

where \(k \) is the number of rows of square matrix \(x \).
An NN where the \ast operator is the convolution (cross-correlation in practice).
Residual Neural Network (ResNet)

skip connections:

Mathematically

\[
\phi_{k+1} = R_k(w_k \ast \phi_k + b_k) + \phi_{k-1}.
\]

It mitigates vanishing gradients.
Our Model: ResNet18
Our Training Objective

To minimize the average cross entropy loss:

\[
J(x, y; \theta) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{L} y_{i,j} \log(p_{i,j}),
\]

\(\theta\): Trainable parameters

\((x, y)\): (Input images, Input labels)

\(p_{i,j}\): Model’s prediction probability of input image \(x_i\) belonging to class \(j\)

\(N\): Total number of inputs

\(L\): Total number of classes (340)
Batchwise Training

Memory Divide dataset into smaller pieces.

Batch Each such piece.

Train-step Feeding a batch to the model.

Epoch Feeding the entire dataset once to the model.
Given a batch of examples \((x_i, y_i)\) \(i = 1, \ldots, m\)

Feed-forward:

\[
J = \frac{1}{m} \sum_{i=1}^{m} J(x_i, \theta)
\]

Backprop:

\[
\nabla J_\theta = \frac{1}{m} \sum_{i=1}^{m} \nabla J_\theta(x_i, \theta)
\]

Update Rule (Gradient Descent):

\[
\theta^{(j+1)} \leftarrow \theta^{(j)} - \eta \nabla_\theta J
\]
Learning Rate (η)

How can we tweak η to improve performance?
Exponential or Linear Decay

Cyclic Learning Rate (CLR) \textit{(Leslie N. Smith)}

One Cycle Learning Rate (OCLR) \textit{(Leslie N. Smith)}
I am sorry for the confusion on the 1 cycle policy. It is one cycle but I let the cycle end a little bit before the end of training (and keep the learning rate constant at the smallest value) to allow the weights to settle into the local minima.

η during training
Mean Average Precision@3 (MAP@3):

\[
MAP@3 = \frac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{3} P_i(k)
\]

\(N:\) the number of test data

\(P_i = \{P_i(k)\}_{k=1}^{3}:\) model’s top 3 predictions for test data point \(i\)
Quick, Draw!

<table>
<thead>
<tr>
<th>epoch</th>
<th>Private Score</th>
<th>Conventional</th>
<th>OCLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>.81595</td>
<td>.90641</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>.85421</td>
<td>.92928</td>
</tr>
</tbody>
</table>
References
Thank you!