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Abstract The spatial organization of neurites, the thin pro-
cesses (i.e., dendrites and axons) that stem from a neuron’s
soma, conveys structural information required for proper brain
function. The alignment, direction and overall geometry of
neurites in the brain are subject to continuous remodeling
in response to healthy and noxious stimuli. In the devel-
oping brain, during neurogenesis or in neuroregeneration,
these structural changes are indicators of the ability of neu-
rons to establish axon-to-dendrite connections that can ulti-
mately develop into functional synapses. Enabling a proper
quantification of this structural remodeling would facilitate
the identification of new phenotypic criteria to classify de-
velopmental stages and further our understanding of brain
function. However, adequate algorithms to accurately and
reliably quantify neurite orientation and alignment are still
lacking. To fill this gap, we introduce a novel algorithm that
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relies on multiscale directional filters designed to measure
local neurites orientation over multiple scales. This inno-
vative approach allows us to discriminate the physical ori-
entation of neurites from finer scale phenomena associated
with local irregularities and noise. Building on this multi-
scale framework, we also introduce a notion of alignment
score that we apply to quantify the degree of spatial organi-
zation of neurites in tissue and cultured neurons. Numerical
codes were implemented in Python and released open source
and freely available to the scientific community.
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1 Introduction

Estimating neurite orientation and quantifying their spatial
organization are highly relevant in many areas of neuro-
science research associated with neuronal development, such
as neurogenesis and neuroregeneration. In the context of
enhancing nerve regeneration following nervous system in-
juries, the guidance of regenerating axons into and across a
lesion site is especially important for long-distance axon re-
generation. As directional axonal growth was shown to sig-
nificantly improve the chances of axons to cross a lesion site
and to reconnect with distal neuronal targets (Walsh et al,
2005; Mahoney et al, 2005), the accurate quantification of
axonal growth direction and alignment is essential to as-
sess the efficacy of neuroregenerative therapies at the cel-
lular scale. In the study of the development of the nervous
system, modelling changes in neuronal morphology includ-
ing local neurite orientation and tortuosity may be critical to
understand how neurons adapt in the face of a varying en-
vironment (Portera-Cailliau et al, 2005; Lledo et al, 2006).
Indeed, neurite irregularities such as tortuosity and loss of
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alignment have been associated with the insurgence of brain
disorders and neurodegeneration such as mental retardation
and Alzheimer’s disease (Debanne et al, 2011; Saxena and
Caroni, 2007) even though similar disordered neurite pat-
terns may also be found during regular brain development
(Rossi et al, 2007). Hence, developing quantitative methods
to analyze irregularities of neurites would facilitate the dis-
covery of useful phenotypic criteria.

A number of attempts were devoted to developing imag-
ing tools capable of capturing changes in the directional-
ity of neurite growth by measuring the angle of neurite seg-
ments. However, most methods to estimate such angles are
manual or semi-automated, carrying a significant burden to
the experimenter and making these procedures time-consuming
and prone to systematic errors, e.g., thicker neurites tend to
be overrepresented. Another downside is that these methods
are applicable only to small sample sizes, so that it is very
impractical or impossible to quantify characteristics of spa-
tial organization that can only emerge from a larger-scale
analysis of the data.

Automated methods of image analysis tailored to neu-
ronal imaging have gained increasingly more attention in
recent years as a way to generate high throughput unbiased
evaluation of large and complex imaging data. There are cur-
rently several academic (e.g., Hines and Carnevale (2001);
3D-Slicer (2008); Luisi et al (2011); Peng et al (2011); San-
tamaria et al (2007); Jimenez et al (2015a); Chothani et al
(2011)) and other freeware imaging suites (e.g., Scorcioni
et al (2008)) delivering morphological reconstructions of neu-
rons including centerline tracing. They offer several capa-
bilities, even though their performances vary and depend
on the data type, the level of training per dataset and the
noise that affects the data. However, none of these meth-
ods is directly applicable to measure neurite orientation. The
first algorithm specifically designed to compute neurite ori-
entation, called Neurient, was recently proposed by Mitchel
et al (2013). Its main idea consists in cross-correlating band-
passed and rotated versions of the image of interest with a
double edge-detection kernel. An alternative approach is the
recent AngleJ algorithm by Günther et al (2015), which es-
timates the orientation of a neurite in an image via convolu-
tion against the second order derivative of a Gaussian kernel.

Even though these recent algorithms provide automated
tools to compute neurite orientation and offer improved ca-
pabilities with respect to manual measurements, they have a
number of limitations that restrict their wider applicability.
For instance, they compute a global and fixed-scale measure
of orientation which is highly dependent on data type and
noise level. As a consequence, several parameters need to be
set by the user in order to compute a meaningful measure of
orientation. In addition, none of these algorithms provides a
method to quantify properties of spatial organization of neu-
rites such as co-alignment and orientation patterns.

To address these limitations, we introduce a novel method
to automatically extract the neurite centerline and compute
orientation properties at multiple scales. Such multiscale anal-
ysis allows us to separate fine scale orientation properties
of neurites from coarser scale ones. Fine scale properties
are frequently associated with measurement noise as well
as local irregularities or tortuosity of the vessel structures,
while coarser scale analysis, when applied to an appropriate
range of scales, can capture the physical orientation of ves-
sels such as neurites in tissue. In this paper, we show that the
combination of these multiscale measures provides the cor-
rect information to accurately and unambiguously quantify
the orientation properties of neurites. Our algorithm is also
designed to automatically identify the range of scales of in-
terest for a given image, based on the geometric parameters
of the data, e.g., neurite thickness and length (automatically
estimated from the data). Finally, based on this general ap-
proach, we introduce a novel measure that we call alignment
score and we use to quantify co-alignment properties of neu-
rites in images of neuronal cultures and brain tissue.

We have successfully validated our algorithms on syn-
thetic and experimental data, including fluorescent images
of spinal cord sections and brain tissue. The algorithms are
implemented in Python and released open source under the
GNU General Public Licence and freely available to the sci-
entific community. The code is completely automated and
requires no manual input from the user as the parameters
are automatically determined by the algorithm.

2 Materials and Methods

The goal of this study is to develop an automated screening
method to quantitatively evaluate alignment and spatial or-
ganization characteristics of neurites in fluorescent images
of neuronal cultures and brain tissue. In this section, we
present novel multiscale algorithms for the computation of
neurite orientation and for the evaluation of their alignment
consistency. We will only consider the setting of standard
2D images even though the methods presented extend nat-
urally to 3D (e.g., confocal image stacks), as addressed in
Section 4.

We start by examining the notion of orientation of vessel-
like structures.

2.1 Problem: What is the orientation of a neurite?

Most automated methods for the analysis of images of neu-
rons assume that neurites can be modelled as tubular struc-
tures (Al-Kofahi et al, 2002), that is, that neurites are lo-
cally tubular and can be represented as generalized cylinders
(generalized ‘rectangles’ in the 2-dimensional setting). As-
suming this model, then the orientation of a neurite is identi-
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Fig. 1 Multiscale analysis of orientation. The figure illustrates the estimation of the orientation of idealized synthetic images of neurites in
panels (A-C) using multiscale filters. Each image is 300 pixel wide. (D-F): At the finest scale (filter length L = 18), the histograms of orientation
shows the orientations associated with ’small’ spatial oscillations. (G-I): At a coarser scale (filter length L = 36), the histogram of image (A) shows
a single dominating peak corresponding to the horizontal orientation; the histograms of images (B-C) show two peaks corresponding to the two
orientations of the small segments in the images. (J-L): At the coarsest scale (filter length L = 54), the histograms of image (A-B) show a single
peak corresponding to the horizontal orientation; the histogram of image (C) shows two peaks corresponding to the orientations of the segments
in the image. Each histogram displays the percentage of estimated orientation angles counted in each bin, for orientations between −90◦ to 90◦;
angles are pooled into 10◦ bins.

fied with the orientation of the centerline curve of the corre-
sponding tubular structure. Hence, to estimate this orienta-
tion from an image, one could simply extract the centerline
of the neurite and compute its tangent vector. In practice,
however, due to the underlying structure of neurons, the non-
uniformity of the fluorescent intensity signal and the mea-
surement noise, images of neurites often appear as rather
irregular sequences of blob-like elements. Even though one
can still extract centerline curves from such structures, these
curves frequently exhibit local oscillations (induced by the
irregularities of the neurite’s boundary) so that their local
orientation would not be a reliable measure of the neurite’s
orientation.

Current algorithms for the estimation of neurite orien-
tation typically apply smoothing filters to the images, e.g.,
via Gaussian blurring in the AngleJ method (Günther et al,
2015). This type of data pre-processing, however, while ef-
fective at reducing image noise, has a limited impact on
other local irregularities. As a result, the centerline curves

extracted with this method might still exhibit a jagged or
oscillatory behavior which is reflected on the estimation of
neurite orientation. Another drawback of smoothing filters
is that they expand the supports of all objects in an image
causing neighbouring neurites to merge.

To provide highly accurate directional estimation of neu-
rites with minimal sensitivity to image irregularities and noise,
in this paper we introduce a novel approach that relies on
a collection of highly anisotropic directional filters defined
over multiple spatial scales. By tuning the scale parameter,
the spatial support of the filters dilates or shrinks becoming
more or less localized and, correspondingly, more or less
sensitive to local irregularities in the image. An example of
application of our multiscale approach for the estimation of
neurite orientation on a synthetic image is shown in Fig-
ure 1. The range of scale parameters is determined automat-
ically, based on the information extracted from the image.
The detailed description of our algorithm is given below.
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2.2 Proposed method

Our algorithm for the automated estimation of neurite ori-
entation from images of neuronal cultures or brain tissue in-
cludes the following steps: 1) image segmentation, 2) center-
line tracing, 3) multiscale directional estimation. Note that,
similar to other methods in the literature, we also extract
the centerline curve of the neurite. However, we do not use
the centerline curve to directly identify the orientation of the
neurite but only to set the center locations for the application
of our multiscale directional filters that we apply to the seg-
mented image. We describe below in details how we carry
out each one of these processing steps.

1. Segmentation. The first step of our algorithm is an
image segmentation routine which separates neurons in the
images from the background. For this task, we adapted an
algorithm recently developed by some of the authors that
is based on support vector machines (SVMs) and whose
main original contribution is the use of features generated
by a combination of multiscale isotropic Laplacian filters
(Jimenez et al, 2015b) and multiscale directional filters based
on the shearlet representation (Easley et al, 2008). As for
many algorithms of this type, the proper classification stage
of the algorithm is preceded by a training stage of the clas-
sifier. This is the most computationally-intensive part of the
algorithm but it needs to be run only once as long as the seg-
mentation algorithm is applied to images of the same type,
e.g., same cell type and microscope setting. The entire pro-
cedure, including the training stage, is fully automated and
the algorithm was shown to perform very competitively even
on challenging 2D and 3D datasets (Jimenez et al, 2013,
2015a; Ozcan et al, 2015).

2. Centerline tracing. This second step of the algorithm
generates a graph of points (i.e., the tracing) through the
mid-lines of dendrites and axons. Several methods have been
proposed in the literature to deal with this task. The method
we adopted was originally introduced by some of the au-
thors (Jimenez et al, 2013, 2015a) and requires that images
to be first segmented. From the segmented images (step 1 of
the algorithm), seed points for the tracing routine are com-
puted through an appropriately designed distance transform
and then connected. The tracing routine is computationally
very efficient and was shown to perform very competitively
even with challenging neuronal imaging data (Jimenez et al,
2013, 2015a; Ozcan et al, 2015).

3. Multiscale directional estimation. This third step is
the main routine of our algorithm and is designed to estimate
the local orientation of a neurite from a segmented image.
As indicated above, we will not use the centerline of neu-
rites to directly estimate their local orientation, since these
extracted curves are very sensitive to irregularities of the im-
age. Instead, we will apply specially designed multiscale di-
rectional filters (centered at the centerline locations) to the

segmented images obtained in step 1 of the algorithm. It is
important to note that, following image segmentation, we
can automatically isolate each disconnected component of
the segmented image by masking out the rest of the image.
This way we can apply our filtering step to one image com-
ponent at a time. The advantage of this procedure is that the
directional filtering is applied to individual neurites, hence
avoiding (in most of the cases) the presence of neighbouring
structures that could impact the filtering process and affect
the orientation estimation.

Our set of multiscale directional filters (h j,m) is obtained
by dilating and rotating the indicator function of a rectangle,
that is,

h j,m = RθmD jχB, for j = 0, . . . ,J,m = 1, . . . ,M,

where χB is the indicator function of the rectangle

B = [−L/2,L/2]× [−w/2,w/2]⊂ R2,

Rθm is the rotation operator by θm and D j is the anisotropic
dilation operator D j f (x,y) = f (2−2 jx,2− jy). The rectangle
B is selected to be ‘long and thin’, hence we choose L� w,
e.g., L > 5w. By using a dilation operator with a dilation
factor which is larger along the x axis than the y axis, we
ensure that the filters become more elongated as j increases,
hence increasing their directional sensitivity. For simplicity,
we use here dyadic dilations, but any other dilations will
work as well. The action of the filters (h j,m) on a segmented
image f produces the directional response

H f ( j,θm,k) = f ∗h j,m(k), (1)

at the scale 2 j, orientation θm and location k of the image.

Fig. 2 Directional filtering. (A): The figure illustrates the action of
directional filter h j,m on an idealized image of a segmented neurite (in
gray). The directional response of the filter (in blue) is largest when the
angle θm is as close as possible to the angle θ of the segmented neu-
rite, since this situation gives maximum overlap between the supports
of the filter and the segmented neurite. (B)-(C): In a non-ideal seg-
mented neurite, choosing appropriately the scale parameter of the filter
is useful to detect the correct neurite orientation. At finer scales, the
filter h j,m is more sensitive to local irregularities of the neurite bound-
ary (panel (B)); at a coarser scale 2 j′ > 2 j , the filter h j′,m′ can detect
the physical orientation of the neurite despite local irregularities of its
boundary (panel (C)).

We choose the locations k in (1) to be at the centerline
coordinates of the segmented neurites, as computed in step



Multiscale analysis of neurite orientation and spatial organization in neuronal images 5

2 of our algorithm. At any given location k, the directional
response H f ( j,θm,k) depends on the angle θm and is ex-
pected to be largest when the angle θm is equal to the angle
of orientation of the neurite at k. To illustrate this behav-
ior, let us consider the idealized case where the segmented
image f to be analyzed contains a single segmented neurite
which is a long rectangle of width wn and length Ln. Let k
be a point on the centerline of this rectangular neurite and
fix j so that the dilated rectangle D− jB has width compara-
ble to wn; i.e., j is such that 2 j−1w < wn ≤ 2 jw. Then the
directional response H f ( j,θm,k) attains its maximum when
the filter h j,m is oriented parallel to the rectangular neurite
since this choice maximizes the area where the supports of
f and h j,m overlap. This property is illustrated in Figure 2,
panel (A).

In practice, the rotations Rθm are not continuously de-
fined but range over a finite set only; hence, in general, it
will not be possible to orient the filter exactly parallel to the
segmented neurite. In this discrete setting, the maximal di-
rectional response H f ( j,θm,k) is achieved when the angle
θm is closest to the orientation of the rectangular neurite,
since this choice maximizes the overlap between the sup-
ports of f and h j,m. Thus, based on these observations, we
will estimate the orientation of a segmented neurite in f at
location k and scale j from the (discrete) angle θ̂( j,k) that
maximizes the directional response; that is

θ̂( j,k) = argmax{H f ( j,θm,k) : m = 1, . . . ,M}.

The description above also applies to structures that are
not ideal rectangles but are approximately rectangular, at
least locally. The scaling operator, indexed by the parameter
j, controls the support size of the filter h j,m in (1). Smaller
support sizes make filtering more local and allow one to
better capture pointwise orientation. However, smaller fil-
ters are more sensitive to local irregularities of the image.
By increasing the support size, the filter becomes less sensi-
tive to irregularities of the boundaries while it loses locality.
The multiscale behavior of the directional filter is illustrated
in Figure 2: panel (B) shows that, at finer scales, the angle
θ̂ = θm that maximizes the directional response of the filter
is sensitive to the local irregularities of the neurite bound-
aries; in panel (C), using a coarser scale, the filter is able to
capture the physical orientation of the neurite.

For a fixed scale j, at every location k along the cen-
terline of the neurite we can compute the (discrete) angle
θ̂( j,k) identifying the local orientation of the neurite at k.
We define as histogram of orientations of f at scale j, de-
noted by H j f , the probability mass function of such angles.
That is, H j f measures the distribution of local orientations
of the neurite at a fixed scale j. Here the number of bins
in the histogram is equal to the number of discretized an-
gles θm. Figure 1 shows the histograms of orientations of

the tubular structures in panels (A-C) for different values of
the scale j.

2.2.1 Automated selection of scales.

To select the appropriate range of scales of the analyzing
filters for a given image, we developed the following auto-
mated procedure. Recall that we can break up the segmented
image into disconnected components corresponding to indi-
vidual neurites. We next fit each disconnected image com-
ponent C into a rectangle whose length `C and width wC cor-
respond essentially to the maximal extension of the neurite
and the maximal amplitude of its spatial oscillations, respec-
tively, found in C. We hence set the maximum filter length
to be

LM = 1
4 max

C
{`C}

so that it will be comparable to the longest neurite found in
the image (clearly, one can choose a different multiplicative
factor, say 1

3 ). To set the minimum filter length, we impose
that it is longer than the amplitude of spatial oscillations of
a neurite found in C, so that the filter is not sensitive to im-
age irregularities. In addition, to guarantee the directional
selectivity of directional filters, we must ensure that the fil-
ter length (in pixels) is at least as long as the number of bins
Nbin in the histogram of orientation. Hence, we set the min-
imum filter length to be

Lm = max{min
C
{wC},Nbin}.

Clearly, we can then choose multiple filter lengths between
Lm and LM to examine intermediate scales. In the numerical
examples presented in this paper, we always include one in-
termediate filter length between Lm and LM . For example, in
Figure 1, we automatically found Lm = 18 (the number of
bins) and LM = 54 (1/4 of the length of the rectangle con-
taining the synthetic neurite) and selected an intermediate
filter length L = 36.

2.3 Alignment score

In addition to the orientation of individual neurites, spatial
organization, co-alignment properties and directional con-
sistency might be relevant measures in many neuronal im-
agery. To this end, we introduce a novel specific geometric
descriptor.

We consider an image of a tubular structure and denote
by f the corresponding (binary) segmented image. As above,
we denote by H j f the histogram of orientations of f . To de-
fine a measure of alignment of the tubular structures in f
we compute the distance between H j f and the histogram of
orientations associated with a reference image f0, model-
ing to the idealized situation where all vessels are perfectly
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straight and aligned, so that all but one components of H j f0
are equal to 0. Hence, we define the alignment score of f at
scale j as the quantity

ν j( f ) = min
0≤d≤n j

Dist(H j f ,(H j f0)d),

where Dist is an appropriate distance between histograms,
n j is the number of directional bands at scale j and (H j f0)d
is the d-rotated version of the histogram H j f0. That is, ν j( f )
is a rotation-invariant distance between the histograms H j f
and H j f0.

While in principle many distance formulas may be used
in the definition above, measures of statistical disparity such
as the Earth Mover’s Distance (EMD) (Rubner et al, 1998,
2000) and the Kullback-Leibler divergence (Kullback, 1997)
are preferable. In particular, EMD was found to be very ef-
fective to reliably classify complex data (Ling and Okada,
2007; Rubner et al, 2000). As explained below, in our con-
text EMD can be interpreted as measuring the cost of ‘comb-
ing’ a collection of possibly misaligned tubular sections into
a configuration where they are all perfectly aligned.

We recall that EMD measures the dissimilarity between
signatures that are compact representations of distributions
(Rubner et al, 2000). A signature of size N is a set of pairs
S = {(w j,x j}N

j=1, where x j is the position of the j-th element
and w j is its weight. An histogram {h j} is a special case of
signature {(w j,x j)}where j is mapped to the center location
x j of the j-th bin and w j = h j.

Given two histograms H = {hm} and Q= {qk}, the EMD
between them is modeled as a solution to a transportation
problem. We assume that all bins have the same size and
histograms are normalized, i.e., ∑m hm = 1, ∑k qk = 1. Ele-
ments in H are treated as ’supplies’ and elements in Q as ’de-
mands’. Then hm and q j indicate the amount of supply and
demand respectively. The EMD is defined as the minimum
normalized work required for resolving the supply-demand
transport problem

EMD(H,Q) = min
F= fm,k

∑
m

∑
k

fm,k dm,k,

where dm,k is the ground distance between bins m and k and
F = fm,k is a set of flows from bin m to bin k, satisfying
fm,k ≥ 0, ∑m fm,k = qk, ∑k fm,k = hk. A standard choice for
the ground distance is given by dm,k = |xm− xk|, where xm,
xk are the center locations of bins m and k, respectively.

In our definition of alignment score, we are concerned
with measuring a distance between the histogram H j f (that
we assume to be normalized) and the histogram of H j f0
containing a single non-zero bin which is equal to one. As
above, we want to ensure that the distance we measure is
rotation-invariant since we care about alignment rather than
absolute orientation. Hence, we define our EMD version of
the alignment score as:

ν
(EMD)
j ( f ) = min

0≤d≤n j
EMD(H j f ,(H j f0)d) .

It is easy to verify that, if H j f has a single non-zero bin,
then ν

(EMD)
j ( f ) = 0 independently of the bin location. The

maximum value of EMD depends on the bin size of the his-
tograms. In the following, we will normalize this maximum
value to 1. Hence the EMD-base alignment score ranges be-
tween 0 and 1, where 0 indicates that all vessels in the image
f are perfectly straight and aligned, and the value 1 corre-
sponds to the case of maximum misalignment with respect
to the EMD distance.

To illustrate the properties of the alignment score ν
(EMD)
j ,

we consider in Figure 3 several images of synthetic tubular
structures with sections of various orientations. For each of
the images in Figure 3, we computed the histograms of ori-
entations according to our algorithm described above and
then we computed the alignment score ν

(EMD)
j which are

reported in the caption. As expected, the numerical results
show that images containing tubular structures with the same
orientation (panels (A-B)) have a much smaller alignment
score than those with tubular structures exhibiting multiple
orientations (panels (C-D)). Note that the alignment scores
of the images in panels (A) and (B) is expected to be the
same, due to the rotation-invariance of this measure. The
very small difference found between the two measured quan-
tities is due to discretization errors. The application of the
alignment score to experimental data will be considered in
Section 3.

Fig. 3 Alignment score. The figure shows four synthetic images of
tubular structures, with tubular sections of various orientations. The
size of each image is 512× 512 pixels. The values of the alignment
score ν(EMD) computed using filter length L = 55 are as follows:
(A) ν(EMD) = 0.021; (B) ν(EMD) = 0.025; (C) ν(EMD) = 0.780; (D)
ν(EMD) = 0.967.

2.4 Specimen preparation and image acquisition

To develop and validate our algorithms, we used several im-
ages of brain sections including images generated in the lab-
oratory of one of the authors. The preparation of the biolog-
ical material and the image acquisition are described below.

Animals. Male C57/BL6J mice (4-6 months of age) used
in this study were bred in the UTMB animal care facility.
Mice were housed, n≤ 5 per cage, kept under a 12h light/12h
dark cycle with sterile food and water ad libitum.

Immunohistochemistry. Mice were first deeply anesthetized
with 2,2,2-tribromoethanol (250 mg/kg i.p.; Sigma-Aldrich,
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Saint Louis, MO) and then perfused intracardially with 1%
phosphate buffer (PBS), followed by 1% or 4% paraformalde-
hyde (MasterTech Scientific, Lodi, CA; Sigma-Aldrich) so-
lution freshly prepared. To ensure complete tissue fixation,
the brains were removed carefully and transferred into either
1% paraformaldehyde for 30min to 1hr, or 4% paraformalde-
hyde 24h-48hr at 4 ◦C and then cryopreserved in 30% su-
crose/PBS in preparation for sectioning.

Immunofluorescence of brain sections. The immunohis-
tochemistry protocol used for this study was slightly modi-
fied from previous reports (Shavkunov et al, 2013). Briefly,
brains were sectioned sagittally into 20-25 µm slices us-
ing a Leica CM1850 cryostat (Leica Microsystems, Buffalo
Grove, IL) and slices stored in a cryoprotectant solution at
−20 ◦C. Free floating sections were washed with 1% PBS
and 1% TBS, respectively, then incubated with a permeabi-
lizing agent and washed 5 times with 1% PBS. Sections
were then incubated with a blocking buffer (10% normal
goat serum NGS (Sigma-Aldrich) in 1% TBS containing
0.3% Triton X-100 for 1 hr and incubated overnight at 40◦C
on an orbital rotator with primary antibodies in 3% bovine
serum albumins BSA (Sigma-Aldrich) in 1% PBS contain-
ing 0.1% Tween 20. Primary antibodies used in this study
were: mouse antibody against Ankyrin-G (1:1000, NeuroMabs,
catalog number 75-146); goat antibody against DCX (1:400,
Santa Cruz Biotechnology, catalog number sc-8066); guinea
pig antibody against NeuN (1:250, Synaptic System, catalog
number 266 004). Following overnight primary antibody in-
cubation, sections were washed five times with 1% PBS or
TBS buffer solution, incubated with the appropriate Alexa
secondary antibodies at a 1:250 dilution in 3% BSA/PBST,
then washed five more times with buffer solution. Prior to
mounting on Superfrost glass microscope slides (Fisher Sci-
entific, Waltham, MA) with ProLong Gold anti-fade slices
were rinsed with water and counter stained using the nuclear
marker Topro-3 (1-3000, Life Technologies, Carlsbad, CA).

Confocal microscopy. Confocal images were acquired
using the Zeiss LSM-510 META confocal microscope with
a Fluar (5× /0.25) objective, a Plan-Apochromat (20×/0.75na)
objective, a C-Apochromat (40×/1.2 W Corr) objective, and
Plan-Apochromat (63×/1.46 Oil) objective, with consistent
gain and offset settings, as well as a number of confocal im-
age z-stacks across experimental sets. Multitrack acquisition
was performed with excitation lines at 488 nm for Alexa
488, 543 nm for Alexa 568, and 633 nm for Alexa 647. z-
series stack confocal images were taken at fixed intervals: 1
µm for 20x, 0.6 µm for 40x, and 0.4 µm for 63x with the
same pinhole setting for all three channels; frame size was
either 1024×1024 or 512×512 pixels.

IACUC approved protocols. All the animal procedures
were performed in compliance with the United States De-
partment of Agriculture Animal Welfare Act, the Guide for
the Care and Use of Laboratory Animals, and Institutional

Animal Care and Use Committee (IACUC) approved proto-
cols.

3 Results

We applied our algorithms to multiple experimental data
consisting of images of neurons in culture and brain tissue.
As a validation step, we also run several numerical experi-
ment on synthetic data.

3.1 Algorithm validation on synthetic data

To assess the accuracy of our algorithms, we numerically
created an image of a circular tubular structure defined as a
thin circular corona (see Figure 4, panel (A)). The centerline
of such region is a circle and, hence, it contains points with
all possible orientations in the interval [0,π]. This property
is useful to verify that our directional filters have no direc-
tional bias, that is, that they handle consistently all possible
orientations.

We tested the orientation-estimation algorithm using dif-
ferent numbers of directional bands to illustrate the depen-
dence of the accuracy of estimation from this number. Fig-
ure 4 shows the results of our algorithm comparing the esti-
mated orientations at uniformly distributed locations along
the centerline of the circular structure against the ground
truth which can be computed analytically in this case. Fig-
ure 4, panel (B), compares the estimated orientation versus
the ground truth using 18 and 36 directional bands. The plots
show that the estimated values lie on a staircase graph and
this is due to the quantization introduced by the finite num-
ber of directional bands. Figure 4, panel (C), shows the es-
timation errors of the algorithm using 18 and 36 directional
bands. In both cases, the maximum error is always less than
6 degrees. As expected, the average estimation error is lower
when the number of directional bands is larger. Results show
that our orientation-estimation algorithm performs consis-
tently for all possible orientations since the error we find
has no significant directional bias.

3.2 Analysis of experimental data

We tested our algorithm for the estimation of neurite orien-
tation on several experimental data.

Data we considered include multichannel confocal Z-
stacks images of the CA1 hippocampal region in the mouse
brain, generated by the laboratory of Dr. Laezza at Uni-
versity of Texas Medical Branch (cf. preparation described
above). In these images, somas and axons of CA1 neurons
were labeled with anti-NeuN and anti-Ankyrin-G antibodies
and visualized with species specific Alexa 488 and Alexa
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Fig. 4 Algorithm validation. (A) Circular tubular structure. The algorithm is used to estimate local orientations, in angles, for 600 sample
locations along the centerline between θ = 0 and θ = 180 degrees. (B) Comparison of estimated orientations (black) versus true orientations (red)
using either 18 directional bands (top) or 36 directional bands (bottom). In the abscissa is the sample point along the centerline. (C) Estimation
error, in angles, corresponding to the plots in (B). The maximum error is always less than 6 degrees. Using 18 directional bands the average error
is 2.52 degrees; using 36 directional bands the average error is 1.76 degrees.

568-conjugated secondary antibodies respectively. Fig. 5 il-
lustrates the various steps of our algorithm. After separat-
ing the spectral channel associated with the axons (panel
(B)), the image was segmented (panel (C)), centerline traces
were extracted (panel (D)) and histograms of estimated ori-
entations were automatically computed at three scales cor-
responding to directional filters of length L = 36, 54 and
72. Note that, as expected, the circular variance of the his-
tograms becomes smaller when the filter length increases.
Fig. 5 also illustrates the ability of our algorithm to analyze
selected subregions within an image. Two rectangular region
of interests (ROIs) are manually selected in panel (D) and
the corresponding histograms of estimated orientations are
shown in panels (F-G). Visual inspection suggests that axons
in the left box are mostly aligned along angle 135◦, while
axons in the right box do not exhibit a clearly dominating
direction. This observation is confirmed by the histograms
of estimated orientations in panels (F-G). Also note that the
values of the circular variance σ of the histograms in panel
(F) are much lower than those in panel (G). To quantify the
difference in the spatial organization of axons between the
two ROIs, we computed the alignment score. Using filters
of length L = 36,54,72, for the subimage in the left ROI we
found: ν(EMD) = 0.322, 0.279, 0.239 (resp.); for the subim-
age in the right ROI we found: ν(EMD) = 0.833, 0.799, 0.794
(resp.). Even replacing EMD with the ‘less geometrical’ `2-
norm in the definition of alignment score, this difference is
detected. Using the same three filter settings, in the left ROI
we found: ν(`2) = 0.524, 0.471, 0.420 (resp.); in the right
ROI we found: ν(`2) = 0.401, 0.415, 0.404 (resp.).

Additional data we considered include immunofluores-
cent images of spinal cord tissue where axons were labelled

with β III-tubulin. This set of data was kindly provided by
the lab of Dr. Blesch from the Spinal Cord Injury Center at
the Heidelberg University and are part of the images ana-
lyzed in the AngleJ paper (Günther et al, 2015). A represen-
tative example is shown in Fig. 6 where an image containing
β III-tubulin labeled neurites is segmented (panel (B)) and
traced to generate the histograms of orientations at multi-
ple scales (panel (C)). For comparison, we also include the
histograms of orientations computed using the AngleJ al-
gorithm for different values of the smoothing parameter s
(panel (D)). Even though AngleJ does not provide a proper
multiscale framework, by changing the parameter s one can
essentially change the ‘scale’ of the filtering process multi-
scale (larger s corresponds to more blurring). The compu-
tation of the EMD-alignment score for the image using fil-
ters of length L = 36, 54, 72 yields ν(EMD) = 0.174, 0.142,
0.140, respectively.

To illustrate the ability of the alignment score to discrim-
inate images of vessel-like structures based on their orienta-
tion pattern, we run our algorithm for the extraction of neu-
rite orientation on fluorescence images coming from multi-
ple experiments and computed their EMD-alignment score.
Results are shown in Fig. 7. That second through fifth im-
ages in Fig. 7 show β III-tubulin labeled axons from the An-
gleJ paper (Günther et al, 2015), as in Fig. 6, and exhibit
comparable values of EMD-alignment score. Similarly the
sixth through eight images show axons of CA1 neurons as in
Fig. 5 and also exhibit comparable values of EMD-alignment
score. The same observation holds for the first three images
in the second row Fig. 7, which show axons from the den-
tate gyrus. To generate all these results we used filter length
L = 54.
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Fig. 5 Orientation estimation. Multiscale estimation of orientation of axons of CA1 neurons. (A): Multichannel confocal image of CA1 hip-
pocampal region in Maximum Projection view. Image size: 512× 512. (B): Blue channel from panel (A) showing the axons, (C) corresponding
segmented image and (D) centerline traces. Two ROIs are manually selected in panel (D) to process directional information. (E) Histograms of the
orientations of the segmented axons in panel (C) for orientation angles between 0◦ and 180◦ at multiple scales, where L denotes the length of the
filter in pixels. The vertical axis indicates the percentage of measures counted in each bin. Panels (F) and (G) show the histograms of orientations,
at multiple scales, for the for the ROIs selected in panel (D), with matching blue and green colors. The value of σ reported next to each histogram
is the circular variance for the measured angles. Angles are pooled into 5◦ bins from 0◦ to 180◦ in (E); angles are pooled into 10◦ bins from 0◦ to
180◦ in (F-G). In (A-C), scale bar: 20 µm.

3.3 Computational cost, hardware and software

We implemented the numerical codes for the algorithms pre-
sented above using Python. The numerical tests were per-
formed using a LENOVO ThinkPad X220 Tablet, with OS
Ubuntu 14.04 TLS, 64 bit CPU, Intel(R) Core(TM) i5-2520M
CPU at 2.50GHz and 4 GB RAM. Since the algorithms are
highly parallelizable, the code would run significantly faster
using multi-CPU architecture. However, even with our single-
CPU system, computation times were very reasonable.

As mentioned above, our segmentation routine is based
on an SVM approach which requires a training stage to com-
pute a classifier model. This stage needs to be run only once
for a given type of data (same cell type and microscopy set-
ting). Its computation is automated and takes about 8 hours
on our system. After this stage, the segmentation of a 512×
512 image takes about 2 sec.

On the synthetic images from Fig. 3, where each image
has size 512×512 pixels, the extraction of centerline curves

takes between 0.09116 and 2.1081 sec; the computation of
local orientation angles (using 16 directional bands) takes
between 0.4103 and 6.5219 sec; the computation of the `2-
based alignment score takes between 0.0005 and 0.0011 sec;
the computation of the EMD-based alignment score takes
between 0.0029 and 0.0057 sec. The difference in computa-
tion time depends on the complexity of the image. In fact,
as noted above, each disconnected component of the seg-
mented is processed separately.

On the experimental image in Fig. 5, of size 512× 512
pixels, the extraction of centerline curves takes 1.0006 sec;
the computation of local orientation angles (using 16 direc-
tional bands) takes 5.8714 sec; the computation of the `2-
based alignment score takes 1.5944 sec; the computation of
the EMD-based alignment score takes 0.0065 sec.

The Python code used to generate our results, as well as
our data, are publicly available at
https://github.com/psnegi/NeuriteOrientation.
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Fig. 6 Orientation estimation: our approach vs. AngleJ. (A) Image of β III-tubulin labeled neurites (image size is 1028×760 pixels) and (B)
its segmented binary image. (C) Corresponding histograms of orientations, for orientation angles between −90◦ and 90◦, computed using our
algorithm at different scales; here L denotes the length of the filter in pixels. (D) Histograms of orientations computed using the AngleJ algorithm
using different parameters s for the Gaussian blurring preprocessing filter. In (C-D) angles are pooled into 5◦ bins from −90◦ to 90◦. The vertical
axis indicates the percentage of measures counted in each bin. In (A-B), scale bar: 50 µm.

Fig. 7 Alignment score. The figure shows 16 images, both synthetic and experimental ones, ordered according to their computed EMD-based
alignment score which is reported below the corresponding image.

Our implementation of the EMD distance follows the al-
gorithm by Pele and Werman (Pele and Werman, 2009).

4 Discussion and conclusion

We have introduced an algorithm for the automated com-
putation of the orientation of neurites in images of neurons

in culture and tissue, and successfully validated its perfor-
mance on both synthetic and experimental data.

Similar to other image analysis algorithms for neuronal
data, our method relies on a segmentation routine to ex-
tract neurons from background. The overall performance of
our orientation estimation algorithm depends on the perfor-
mance of the segmentation routine since orientation estima-
tion is only applied to segmented structures. Even though, as
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Fig. 8 Multiscale analysis of orientation. The figure illustrates the histograms of the orientations of synthetic models of neurites (panels A-C),
for orientation angles between −90◦ and 90◦ using Gaussian smoothing filters (from AngleJ) with different smoothing parameter s. Angles are
pooled into 10◦ bins and the vertical axis of the histogram indicates the percentage of orientation angles counted in each bin. At the finest scale
(s = 1), the histograms of orientation are similar and show two dominant orientations for all images. At coarser scales (s = 3,6), the histograms
show a different behavior for each image.

discussed above, our segmentation routine is very reliable,
it is still possible that, due to nonuniformities of the fluo-
rescent signal intensity, some neurite sections are lost with
the result that corresponding neurites appear broken. Fortu-
nately, this is not a significant problem for our algorithm, as
it is designed to compute local orientation for all segmented
vessel-like structures even if limited to sections of neurites.
We recall that our directional filters are centered along the
coordinates of the centerline of segmented neurites. Possi-
ble errors in the location of the centerline, e.g., a shift by
one or two pixels, have very low impact on the estimation
of local orientation, since directional filters remain sensitive
to the geometry of a vessel-like structure even if they are
not located exactly on the centerline. In practice, errors in
the extraction of the centerline only occur in the presence of
crossing neurites or branching points. Those points are rare
in our data.

With respect to existing algorithms targeted to the anal-
ysis of neurite orientation (e.g., AngleJ and Neurient), one
major novelty of our approach is the application of a set of
multiscale directional filters designed to assess the physi-

cal orientation of neurites and distinguish this property from
small scale oscillations due to noise and irregularities in the
image, e.g., non-uniformity in the fluorescent signal. Our
method automatically selects the range of scales of interest
based on geometric parameters computed from the images.
In addition, the algorithm is designed to processes one neu-
rite at a time so that directional filtering is not affected by
the presence of neighbouring neurites.

Even though existing algorithms for the automated com-
putation of neurites orientation do not explicitly carry over
a multiscale estimation, they often apply a smoothing oper-
ator to images producing an effect similar to dilation. For
instance, the AngleJ algorithm (Günther et al, 2015) applies
Gaussian blurring, dependent on a blurring parameter s > 0,
before the actual estimation of neurite orientation, acting es-
sentially as isotropic dilation. When combined with direc-
tional estimation, by varying the s parameter one obtains re-
sults comparable to a multiscale directional filtering. This
effect is shown in Figure 8 illustrating the application of the
AngleJ algorithm to the same set of synthetic images consid-
ered in Figure 1 for several values of the blurring parameter
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s. Similar to our multiscale approach (in Figure 1), results in
Figure 8 show that the algorithm becomes less sensitive to
local oscillations of the synthetic neurite when s increases.
However, the estimate of orientation is not very accurate as
multiple peaks appear around the angle θ = 0. For example,
in panel C, as the parameter s increases, multiple signifi-
cant directional components appear in the histogram unlike
our result in Figure 1 where our method provides accurate
angle estimation selectivity even at coarser scales. The supe-
rior performance of our approach is due to the properties of
our directional filters, which are associated with anisotropic
(rather than isotropic) dilations to ensure high directional se-
lectivity at all scales.

Another major novel contribution of this paper is the no-
tion of alignment score, proposed as a practical measure of
the degree of co-alignment and spatial organization of neu-
rites. This concept is quite novel and conceptually different
from other geometric descriptors proposed in the literature
for the analysis of vessel-like structures, such as the Sholl
(Langhammer et al, 2010; Sholl, 1953) and fractal analy-
sis (Milošević et al, 2005), which were designed to measure
the branching density and ramification richness of neurons
rather than their alignment properties.

Even though we illustrated the application of our algo-
rithm on standard 2D images, the method we presented ex-
tends naturally to the 3D setting. In fact, the segmentation
and centerline tracing steps of the algorithm, which are adapted
from our previous work in Jimenez et al (2013, 2015a) and
Ozcan et al (2015), is already available both in the 2D and
3D settings. The extension of directional filtering to 3D is
conceptually straightforward. In fact, rectangular steerable
filters can be defined in 3D similar to the construction above.
The main difference is that 3D rotations will be controlled
by two angles, the polar angle ϕ and the azimuthal angle
θ , so that the new directional response H f ( j,θm,φn,k), de-
fined as in equation (1), will depend on two angular param-
eters rather than a single one. An example of application of
our method to compute a histogram of orientations in the 3D
setting using a simple synthetic image is shown in Figure 9.

The computational cost of directional filtering, which is
not a concern in 2D, requires much more care in the 3D
setting. In fact, even when selecting only 10 samples per
angular direction as in the simple example in Figure 9, this
choice already produces 100 discretized directions. Hence,
for each voxel located on the centerline of the neurite, we
need to compute 100 3D convolutions.

Recall that, in 2D, directional filtering for an image of
size N×N requires (using FFT to implement convolution)
about N2 logN operations. Using M directions, this brings
the total of operation to MN2 logN. Using the same approach
in 3D, with the same density of directions, the computa-
tional cost would be M2N3 logN operations, which would
make data processing very time-consuming. To reduce com-

putational cost, it is possible to produce directional filtering
based on anisotropic Gaussian filters rather than rectangu-
lar ones. A number of papers have shown that it is possible
to derive separable implementations of such filters bringing
down the computational cost to about 2MN logN operations
in the 2D case and about 3M2N logN operations in the 3D
case (Geusebroek et al, 2003; Lampert and Wirjadi, 2006;
Yiu Man Lam and Shi, 2007).

The algorithms presented in this paper apply to a wide
range of images containing vessel-like structures going be-
yond the types of data considered in this paper. In case im-
ages contain additional structures such as somas or other
blob-like objects, our algorithms can be applied after first
removing such blob-like structures from the segmented im-
ages. This task can be addressed, for instance, by using a
method for automated soma detection and segmentation re-
cently developed by some of the authors (Ozcan et al, 2015).
This method uses a geometric descriptor called ‘directional-
ity ratio’ to automatically separate vessel-like structure from
more isotropic ones and was successfully applied to auto-
matically separate somas from neurites in confocal images
of neuronal cultures and brain tissue.

In conclusion, the method and ideas presented in this pa-
per offer an innovative automated tool for image analysis
applicable to a wide range of problems where it is impor-
tant to extract directionality and quantify spatial distribution
of vessel-like structures. We expect that this method will
provide a very valuable tool for the analysis of large-scale
data sets from problems in neuroregeneration, the study of
the connectome and other neuroscience research projects.
The application of the quantitative methods presented for
the analysis of long-range neurite growth and the study of
vessel-like structures in healthy and diseased conditions will
be pursued in future studies.
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