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Abstract Centerline tracing in dendritic structures acquired
from confocal images of neurons is an essential tool for the
construction of geometrical representations of a neuronal
network from its coarse scale up to its fine scale structures.
In this paper, we propose a novel algorithm for centerline
extraction that is both highly accurate and computationally
efficient. The main novelties of the proposed method are (1)
the use of a small set of Multiscale Isotropic Laplacian fil-
ters, acting as self-steerable filters, for a quick and efficient
binary segmentation of dendritic arbors and axons; (2) an
automated centerline seed points detection method based on
the application of a simple 3D finite-length filter. The per-
formance of this algorithm, which is validated on data from
the DIADEM set appears to be very competitive when com-
pared with other state-of-the-art algorithms.
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1 Introduction and Previous Work

Recent advances in high resolution fluorescent microscopy
have opened up tremendous opportunities to study neuronal
morphology, including the dynamic changes by which neu-
rons respond to external stimuli. It is well known that these
morphological changes have fundamental implications in learn-
ing and memory formation. To this goal, it is essential to de-
velop accurate and efficient tools to segment neuronal struc-
tures and quantify their associated morphological character-
istics. Deriving the graph connectivity of the centerline of a
dendritic arbor or a bundle of axons and using this graph as
the backbone for representing the geometry of that type of
tubular structure is essential to building a geometrical rep-
resentation of a neuron. Clearly, this imaging problem is
present in other types of applications such as retinal imaging
and the extraction of vasculature in cardiac CT-angiography.

In this paper, we propose an algorithmic suite for the
binary segmentation of 3D-tubular structures and the semi-
automatic extraction of their centerlines. The proposed meth-
ods are competitive in terms of accuracy and computational
efficiency. Unlike with most centerline extraction methods,
our approach is based on an accurate binary segmentation
of the tubular volume of interest from the background. We
apply the proposed centerline extraction algorithm to derive
the graph connectivity of a neuron. Our methods are fairly
general and can be applied for the binary segmentation of
tubular structures from the background in images acquired
with other modalities, such as X-ray CT or MRI. However,
at this point we cannot back this claim with experimental
evidence, although the mathematical analysis of the princi-
ples governing our method suggest that this claim is true.
The main novelty of the proposed method is the combined
use of a small set of Isotropic Laplacian filters acting as self-
steerable filters for a quick and efficient binarization of the
axonal or of the dendritic structure together with the applica-
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tion of a simple 3D finite-length filter which automatically
detects the seed points for the centerline extraction. We also
contribute a thorough theoretical analysis of why those nov-
elties work to the extent that the readability of this paper by
its natural audience is not compromised.

Although the problem of accurately extracting the graph
connectivity of axons or dendritic structures still requires a
significant amount of human intervention, methods for the
computation of the graph connectivity of tubular structures
have been extensively studied, including methods for tracing
dendritic or axonal centerlines and identifying their branch-
ing and terminal points.

A commonly used strategy to determine the centerline
in binarized images is skeletonization (Bas and Erdogmus
(2011); Koh (2001); Zhou and Toga (1999)), where the bi-
nary volume undergoes an iterative thinning process. How-
ever, skeletonization is not particularly robust to noise, and
outputs of these algorithms often contain spurious gaps, bran-
ches and crossings (Meijering (2010)). Although several strate-
gies have been developed to address these weaknesses in a
post-process step (Wearne et al (2005); Yuan et al (2009)).
Other variants of this approach include the work of Morri-
son and Zou (2006), who effectively mitigate errors due to
noise. Unfortunately, the computational overhead of these
algorithms is rather significant.

Some methods propose to achieve the morphological re-
construction by relying on geometric properties native to
the dimensionality of these types of images; e.g., by fit-
ting cylindrical structures to segments of a binarized 3D im-
age as first explored in Al-Kofahi et al (2002) and more re-
cently Zhao et al (2011). As explained by Donohue and As-
coli (2010), most of these methods require the processing
of the entire image, thus increasing the computational cost
and making the performance sensitive to difference in stain-
ing intensity over the image, which may result in producing
gaps in the detected structures. This last drawback has been
partially addressed in several papers, such as in Xiong et al
(2006), where a global post-process analysis of the image is
used to detects and remove these gaps.

Other methods for centerline extraction require the se-
lection of a point source (Turetken et al (2011)), also called
a seed point, that may be automatically detected (Wang et al
(2011)), randomly selected (Chothani et al (2011)), or user-
provided, (Santamaria-Pang et al (2007)). The point source
initializes a process of wave propagation as in Hassouna and
Farag (2005) or of a fast marching algorithm as in Santamaria-
Pang et al (2007) which trawls the centerline until it reaches
some terminal points, and then it re-traces the centerline
with back propagation until the source point is reached. While
this approach is numerically efficient, its main drawback is
that its performance tends to be quite sensitive to the choice
of the point source, leading to the risk of potentially miss-
ing entire branches of the segmented volume. Other inter-

esting seed-based approaches are the probabilistic extrac-
tion of centerlines proposed by Turetken et al (2011) and by
Breitenreicher et al (2013), which also use Dijkstra’s algo-
rithm but in a very different way than the one adopted in this
work (see also Turetken et al (2012, 2013)). Their approach
is the construction of a minimum path tree based on the con-
ditional maximum likelihood information derived from the
image given certain prior models learned during training. By
contrast, we use Dijkstra’s algorithm in an exclusively deter-
ministic setting, relying on the accurate segmentation of the
volume of the tubular structure from the background.

Another interesting approach was recently proposed by
Rodriguez et al (2009), where a process of voxel scooping
is iteratively performed starting from the point source. Ro-
driguez et al. assume that object voxels are readily distin-
guishable from the background in the image volume. A user-
provided point source initializes an iterative algorithm that
divides the solid into transversal layers, where a local analy-
sis identifies seed nodes of the centerline graph, whose pro-
visional parent node is the closest node generated on the im-
mediately previous iteration. A post-process is subsequently
performed to prune short, potentially false, branches.

There are currently several academic (e.g., Hines and
Carnevale (2001); 3D-Slicer (2008); Luisi et al (2011); Peng
et al (2011); Santamaria-Pang et al (2007)) and other free-
ware imaging suites (e.g., Scorcioni R. (2008)) delivering
morphological reconstructions of neurons including center-
line tracing. Their performances vary and depend on the
level of training per dataset, the noise that affects the data
and the level of post-analysis manual intervention. It is also
is worth to note that significant work on the tracing and
morphological reconstruction of dendritic arbors emerged
as a result of the DIADEM Challenge (Brown et al (2011))
among them FARSIGHT (Luisi et al (2011)). This algorith-
mic suite provides centerline extraction and morphological
reconstructions of neuronal dendrites and axons.

Although the strategy of our approach bears some sim-
ilarity to the strategy recently proposed by Xie et al (2010,
2011), our method is different. The first step of the algorithm
by Xie et al. segments the solid by applying a global thresh-
old. This thresholding strategy is commonly used due to
speed and simplicity. Nevertheless, this binarization method
is not robust (Meijering (2010)). In contrast, as we will show
below, our approach provides a more reliable and accurate
binarization by means of the use of a special collection of
band pass, self-steerable filters and Support Vector Machine
classifiers. Moreover, the seeding and tracing algorithms we
propose have a rigorous and simple mathematical justifica-
tion and a more streamlined implementation, which avoids
the forward and backward propagation algorithms used in
ORION (Kakadiaris and Colbert (2007)) and FARSIGHT
(Wang et al (2011)), reducing the overall computational over-
head.
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2 Methods

In this paper, we propose a semi-automated centerline ex-
traction algorithm consisting of four main steps: (i) segmen-
tation, the process of classifying the volume’s voxels into
foreground and background; (ii) seed generation for center-
line extraction the binarized tubular structure; (iii) Tracing;
(iv) automatic post-process, the search for spurious branches
and other artifacts, and their correction. The workflow of our
approach is shown in Fig. 1. We refer to the process of seed
generation and tracing as centerline extraction.

Our algorithm performs the segmentation of the solid of
interest by means of an SVM classifier (Cortes and Vap-
nik (1995)) which uses features generated by a novel set
of band pass and self-steerable filters. In theory, these fea-
tures are exclusively applicable to tubular structures as the
study of the mathematical properties of these filters indicates
(Jimenez et al (2014)). This classifier is generated using only
a part of the volume. If such a classifier has already been
generated, the segmentation process is automatic and fol-
lows the last three steps (marked as purple boxes) within the
segmentation block of the workflow diagram illustrated in
Figure 1. Nevertheless, a classifier may lead to good seg-
mentations on datasets similar to those used to generate it
but perform poorly on sets acquired under significantly dif-
ferent circumstances (e.g. different cell type, different mi-
croscope settings). Thus, we have included in the first part of
the segmentation process an optional SVM classifier train-
ing that does require user intervention and follows the work-
flow illustrated in the first three steps of the segmentation
box of Figure 1. Below, in Sec. 2.1, we will devote part of
our discussion to the feature generation and training of this
SVM classifier.

Following the segmentation, to extract the centerline we
perform two subprocesses: first, we identifying seed points,
i.e., voxels belonging to the centerline of the tubular struc-
ture with high probability; next, we trace the centerline by
essentially connecting the seed voxels using our own varia-
tion of Dijkstra’s algorithm (Dijkstra (1959)).

2.1 Feature generation for the segmentation of tubular
structures

The binarization (or binary segmentation) of various neu-
ronal structures of interest, such as somas, dendritic arbors
and axons, from the background is carried out with a stan-
dard SVM classifier. As illustrated in the workflow of Fig. 1,
the training of the classifier consists of three stages: feature
generation, training sample generation and parameter refine-
ment (or optimization). Our main contribution in this seg-
mentation process is feature generation. Features are gen-
erated using the following set filters F1, . . . ,FN that are de-

Segmentation

Seed Generation

Tracing

Post-process

Feature Generation

Training Sample Generation

Parameter Refinement
User Visual Inspection

Near Optimal SVM
Parameter Grid Search

Classifier Generation

Binarization

Generation of Seed Candidates

Candidate Decimation

Compensatory Seed Generation

Iterative joining of
seeds to current path

Branch Pruning

Fig. 1 Workflow of the proposed automatic centerline tracing algorith-
mic suite.

signed following to the theoretical requirements of Theorem
1 that we will state below.

1. Low pass filters of the form1:

F̂(ξ ) = Pn
(
Cn,σ‖ξ‖2)e−Cn,σ ‖ξ‖2 ,

1 The roof over the symbol of the filter denotes its Fourier transform.
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Fig. 2 Values of the Fourier transform of the Isotropic low pass filters
F used for feature extraction. Notice how their transition band changes
as n increases.

with σ > 0, defined to capture low scale shape charac-
teristics (see Fig. 2). Here Pn is the Taylor polynomial
of degree n associated with the exponential function ex,
and

cn,σ =
2n+1

2(Kσ)2 ,

where K is a positive integer (K = 3 in our experiments).
The filters are called Hermite Distributed Approximat-
ing Functionals and were first proposed in Hoffman et al
(1991) (see also Hoffman et al (1996); Bodmann et al
(2007); Hoffman et al (2002); Chandler and Gibson (1999)).
The properties of these filters are discussed after the state-
ment of Theorem 1 below.

2. Isotropic high pass band filters:

F̂(ξ ) = Pn
(
cn,σ1‖ξ‖

2)e−cn,σ1‖ξ‖
2

−Pn
(
cn,σ2‖ξ‖

2)e−cn,σ2‖ξ‖
2
,

with σ1 > σ2, defined to capture higher scale shape de-
tails.

3. Isotropic Laplacian bandpass filters:

F̂(ξ ) = ‖ξ‖2Pn
(
cn,σ‖ξ‖2)e−cn,σ ‖ξ‖2 ,

to capture transitions in the image (see Fig 6).

We will discuss the properties of these filters that are
relevant to the work presented here while keeping the dis-
cussion at a non-technical level in order to make the presen-
tation more accessible. The mathematical properties of these
isotropic filters on tubular structures are described in detail
by Theorem 2.2 and Proposition 2.3 in Ozcan et al (2013),
where we theoretically predict the outcomes of the inter-
action of these filters with the tubular structure. The main
property of these filters is the ability to act as self-steering
directional filters (see item 4 of Theorem 1 below), that is

the ability to discover the dominant orientation of a tubular
structure.

The tubular structure I can be modeled or approximated
as a finite sum of the form

I =
n

∑
i=1

K

∑
k=1

J1

∑
j1=1

J2

∑
j2=1

TxiRkai,k, j1, j2 fσ j1 ,σ j2
(1)

where fσ1,σ2(x,y,z) = e
− x2

2σ2
1 e
− y2+z2

2σ2
2 , x,y,z,∈R, Rk ∈ SO(3)

are 3-D rotations, Txig(x) = g(x− xi), and ai,k, j1, j2 > 0. The
use of 2D-radial Gaussians to model cross sections of tubu-
lar structures has been adopted by several authors, among
them Sato et al (1998); Frangi et al (1998); Sato et al (2000);
Krissian et al (2000), who actually use this model to justify
why the eigenvalues of the Hessian matrix at each pixel can
be used for the binarization of the tubular structure. In par-
ticular, Krissian et al (2000) attempt an in-depth mathemat-
ical analysis of this problem.

We give below a simpler statement of our theorem. We
refer the reader to Jimenez et al (2014) for a generalization
of this theorem, where we remove the assumption of radial
symmetry on the intensity function in a cross-section of the
tubular structure. This generalization is useful to deal with
other ‘less tubular’ structures such as somas and spines. We
use the notation v to indicate a point in the physical 3-D
space. However, for all practical purposes we can think of it
as a voxel, although the model prescribed by Theorem 1 is
valid only in the physical 3-D domain.

Theorem 1 (Ozcan et al, 2013, Theorem 2.2) Suppose
that φ is a radial filter, whose partial derivatives up to second
order Dα φ are continuous and satisfy ||x||4|Dα φ(x)| < A,
where A > 0, for all2 multi-indices |α| ≤ 2 and x∈R3. Then
the following statements hold.

1. Filtering the tubular structure I (Eq. (1)) with the 3D
radial filter φ amounts to filtering the cross section of
the tubular structure at each point with a 2D radial filter
ω(y,z) :=

∫
R φ(x,y,z)dx. More precisely we have:

I ∗φ(v)≈ gσ j2
∗ω(p(v)) ,

where, p(v) is the projection in the 3-D space of v on the
plane containing v and perpendicular to the centerline
of the tubular structure,

gσ (y,z) = e−
y2+z2

2σ2

and j2 corresponds to the component of I which is most
proximal to v.

2 These properties imply that the filter φ and all of its derivatives
up to second order are well-localized in space. This means that, for
practical purposes, the spatial support of φ and of its derivatives up to
second order is small.
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2. Filtering the tubular structure with the 3D Isotropic Lapla-
cian filter ∆φ practically amounts to applying the 2-D
Laplacian of ω on the cross section of the tubular struc-
ture I: Specifically, for every v as in the previous item we
have

I ∗ (∆φ)(v)≈ gσ j2
∗ (∆y,zω)(p(v)) ,

where, ∆y,z =
∂ 2

∂y2 +
∂ 2

∂ z2 .
3. The outcome of the filtering process of I with both φ and

∆φ depends only on the relative position of the point v
with respect to the cross section of I with the plane con-
taining v and on the properties of this cross section and
not by the local 3D-orientation of the tubular structure.

4. At every grid point (voxel) inside I or proximal to it, the
filtering of I with the 3D isotropic filters φ and ∆φ is
equivalent to the filtering of I with directional filters, au-
tomatically aligning themselves with the axis of the most
proximal segment of I to the voxel. Moreover, the cross
sections of these directional filters at their center of sym-
metry are equal to ω and ∆y,zω respectively.

To extract features for the detection of I we compute the
filter outputs Fi ∗ I. The use of an SVM classifier requires the
use of normalizing constants αi satisfying

max
v∈I

αi{|(Fi ∗ I)(v)|}= 1.

For each voxel v, we define the feature vector corresponding
to v as (α1(F1 ∗ I)(v), . . . ,αN(FN ∗ I)(v)). Note that filters Fi
are radial and satisfy the assumptions of Theorem 1.

Remark: Items 2, 3 and 4 of Theorem 1 precisely de-
scribe how isotropic filters act as self-steerable filters in the
presence of a tubular structure. We have observed, though,
that self-steerability works for other types of structures. Fig-
ures 3-4 show the filter φ . As item 3 of Theorem 1 suggests,
feature extraction does not practically depend on the local
orientation and position of the tubular structure in the 3D
space. For each voxel, a single feature from the ones we use
exclusively depends on the geometric properties of the tubu-
lar structure and on the local intrinsic coordinates of the
voxel with respect to the structure.

Now, let ω(y,z) :=
∫
R h(x,y,z)dx, where h in the inverse

Fourier transform (impulse response) of

ĥ(ξ ) = Pn
(
Cn,σ‖ξ‖2)e−Cn,σ ‖ξ‖2 , ξ ∈ R3,

which is the generic form of the low-pass isotropic filters
we use for feature extraction. We will now mathematically
predict the action of the isotropic Laplacian filters we use.

The previous remark, item 2 of Theorem 1 and the rapid
decay in the spatial domain of the Gaussian dominated fil-
ter h (this property is also inherited by ω) imply that if I
is filtered with the Laplacian 3D-isotropic filters F̂(ξ ) =

Fig. 3 Volume rendering (isosurface) of the directional, self-steerable
filter derived from φ which automatically aligns itself locally with the
axis of the tubular structure.

Fig. 4 Cross section at the center of symmetry of the self-steerable,
directional filter shown in Fig. 3. This cross section is equal to a spe-
cific example of the Fourier transform of ω . Here, black indicates zero
values while white shows the set where ω̂ takes the value 1. The white
area in the cross-section indicates the cylindrical bandwidth of those
tubular structures whose boundaries this filter can adequately detect
from the background, as predicted by Theorem 1.

‖ξ‖2ĥ(ξ ), at the grid point (voxel) v, then the output of the
filtering is

(∆y,zgσ j2
)∗ω(p(v)) = gσ j2

∗ (∆y,zω)(p(v)) . (2)

Implicitly, we assume that v is not proximal to any other
part of the tubular structure I, so the effect of the filtering
of I with F is restricted to the part of the tubular structure
closest to v, whose cross section is modeled by gσ j2

.
The choice of the constant Cn,σ places the inflection point

of the radial profile of ĥ firmly at radius Kσ from the origin,
regardless of the value of n. As n increases to ∞ (Bodmann
et al, 2007, Remark 3.4) the width of the radial profile of the
transition band of ĥ is proportional to 1

n . This transition band
also contains the inflection point of the radial profile of ĥ, for
every n. Moreover, as n grows, the values of ĥ tend to 1 at
every point in the ball centered at the origin with radius Kσ

(Bodmann et al, 2007, Th. 3.7). In a nutshell, the low pass
filter ĥ asymptotically behaves like a radial ideal filter with
pass-band being the ball centered at the origin and radius
equal to Kσ . Since σ is a measure of the bandwidth corre-
sponding to a segment of interest of the tubular structure, the
bandwidth of the isotropic filter h applied at this segment for
feature extraction has bandwidth Kσ .

Using Eq. (2) and following the mathematical analysis
of Proposition 2.3 in Ozcan et al (2013), which states that
if K is selected big enough (in practice K ≥ 3) σ = 1

σ j2
and



6 D. Jiménez et al

n is also sufficiently big (e.g., n = 60), then the values of
I ∗F faithfully approximate the values of ∆y,zgσ j2

, we infer
that, up to a certain radius sufficiently away from I’s cen-
terline and always perpendicularly to it (this is precisely the
effect of the self-steerability of the proposed filtering pro-
cess), the sign of the values of I ∗F will be the same as the
sign of the values of the cross-sectional Laplacian ∆y,zgσ j2

.
The same analysis shows that further away, but at distances
that do not seem to influence the SVM classifier, the sign of
the values of I ∗F is no longer exclusively positive, as the er-
rors of the approximation of ∆y,zgσ j2

dominate the outcome.
Since the diameters of the tubular structure of interest vary,
we use several filters to account for different ranges of val-
ues of gσ j2

. Laplacian Filters with a high bandwidth act as
singularity detectors and, thus, they are not suitable for the
thicker parts of the structure since in the interior of the tubu-
lar structure they are unable to sense the difference from the
exterior due to the scale difference between the structure and
the filter. In other words, filter and structure should live at
the same scale in order for the filter to sense that the tubular
geometry.

Using now the formula of the 2D Laplacian in polar co-
ordinates we obtain

∆y,zgσ j2
(r) =

1
r

∂

∂ r

r

∂

e
− r2

2σ2
j2


∂ r

=
e
− r2

2σ2
j2

σ2
j2

(
r2

σ2
j2

−1

)

This calculation implies that the “sign-change point” of gσ j2
in the radial direction is located at radius σ j2 from the origin.
This radius coincides with the distance from the origin of the
circle of all points of the cross-sectional plane at which the
sign of ∆y,zgσ j2

changes to positive. On the other hand, in
the annulus [σ j2 ,2σ j2 ], the intensity values of gσ j2

decrease
smoothly and become small, thus corresponding to a region
which can be considered to be the “skin” of the dendritic
branch or of the axon. This model suggests that indeed the
set of positive values of ∆y,zgσ j2

in a cross-sectional plane of
I belongs to the exterior of the tubular structure. This sign
change is precisely the property that our feature extraction
with the self-steerable filtering exploits in order to detect the
skin of the tubular structure and segment them via an SVM-
classifier from the background. Our analysis above aims to
justify this observation and to determine the proper filter pa-
rameter selection for the optimal performance of feature ex-
traction.

Note that salt and pepper noise present in the data can
potentially corrupt the outputs of self-steerable filters. Since
noise has mostly high frequency content, the use of the low
pass filter h mitigates its effects. Nevertheless, voxels where
the Laplacian filtering assigns relatively small values are

Fig. 5 Maximum intensity projections of the segmented datasets and
superimposed reconstruction for the Neocortical Layer 1 Axon DIA-
DEM set: White indicates the volume ORION Santamaria-Pang et al
(2007) segmented in this data set. Red marks the volume which the pro-
posed method segmented in addition to the part segmented by ORION.

more likely to be associated with noise. Therefore, voxels
assigned positive or negative values with magnitude exceed-
ing a certain threshold have a higher likelihood of being as-
sociated with the background or to belong to the tubular
structure, respectively. This threshold is determined in the
training process by the expert user and it may change on
each data set.

This SVM training procedure was inspired in part by
ORION (Santamaria-Pang et al (2007)), with the main dif-
ference being that here we use a very different class of fil-
ters and propose a novel method of determining the training
ROIs inside and outside of the tubular structure. Namely, a
human operator chooses the training ROIs Ri and the param-
eters pi and ni corresponding to the percentages of the total
number of positive and negative samples, respectively, that
will be used as training examples. The sample voxels for the
training are randomly selected among voxels from the train-
ing ROIs at rates pi and ni. Typically pi and ni range be-
tween 0.5% and 2%. The operator can visually inspect the
sample sets and approve them or adjust the parameters pi
and ni accordingly; the operator can also fine-tune the train-
ing ROIs by plain intensity thresholding in order to generate
sample sets as representative and accurate as possible. Once
the training samples and their respective feature vectors are
obtained, a grid search for the SVM parameter determina-
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Fig. 6 Color representation of the Laplacian of a 2D Gaussian bell.
Notice that the values with higher magnitude are negative, so the terri-
tory of red indicates values close to zero.

tion is performed via a four-fold validation process. Upon
completion of the search, the classifier is generated.

2.2 Binarization

Often, in a neuronal volume, it is expected that the number
of object voxels will be considerably smaller than the num-
ber of the background voxels. Moreover, background voxels
typically have lower intensity values than voxels belonging
to the tubular structure. Thus, if we compute µ , the average
intensity of I, the voxels with intensity values lower than µ

can safely be considered to belong to the background. This
preliminary crude segmentation step reduces the computa-
tional overhead of the binarization process.

To segment the remaining voxels, we use the previously
generated SVM classifier. This classifier has been stored in
memory together with the specifications of the filters F1, . . . ,FN
and normalizing constants α1, . . . ,αN used to generate it.
The use of these constants is typical for SVMs since all fea-
tures need to have same range of values to ensure that the
training process is not biased.

For each test voxel v, we generate the feature vector

(α1(F1 ∗ I)(v), . . . ,αN(FN ∗ I)(v))

which is used as an input in the classifier derived with train-
ing. The output of this process is the binary 3-D segmenta-
tion of the original input image stack. In Figs. 5 and 15 we
show MIPs of some segmented volumes from the DIADEM
datasets.

2.3 Selection of Seed Points

The selection of seed points from the binary volume is per-
formed in three steps: filter seeding, where points with a
high probability of belonging to the centerline are extracted;
seed decimation, where the seed candidates are evaluated
with respect to a set of criteria, and a large portion of them
are eliminated; and compensatory seeding, where certain re-
gions of the solid are re-examined due to inadequate seed
selection. The approximation of the segmented volume with
voxels (binarization) allows geometric inaccuracies to creep
in. More precisely, both the centerline and the tubular struc-
ture are defined not on the continuous 3D space but on a
discrete grid (more precisely on a sampling grid) and it is,
thus, not possible in general to obtain cross sections of the
tubular structures precisely perpendicular to the centerline.
This limitation motivates us to find a necessary condition to
identify candidate centerline voxels via an averaging process
which we next describe.

The first step of this process is called filter seeding. Let
B be the set of voxels in the segmented solid after binariza-
tion. More precisely, we define B to be the set of all voxels
in the segmented 3-D image whose value is equal to 1. Each
voxel v is identified by the integer coordinates (x,y,z) of its
center. We call

d(v) = min{‖v−p‖ : p /∈ B},

where ‖·‖ is the Euclidean norm, the distance of v. Through-
out the analysis that follows, we assume that v and the orien-
tation and diameter of the tubular structure remain constant
in a small neighborhood of v. The fact that filter seeding is a
process that is taking place in the interior of a tubular struc-
ture leads us to the simplifying modeling assumption that
any cross section of the tubular structure is symmetric with
respect to the centerline voxel belonging to it. Moreover, the
voxel v in the interior of the tubular structure belongs to the
centerline if and only if v maximizes d in a small neighbor-
hood of v.

Now, suppose that v belongs to the centerline of the tubu-
lar structure and that it shares no vertex with any voxel out-
side of the tubular structure. This assumption disallows, for
example, cross-shaped sections of the tubular structure per-
pendicular to its centerline. In fact, it implies that v and its
27-connected neighborhood N(v) are contained in the inte-
rior of the tubular structure. Then, under this and the previ-
ous hypotheses for the geometry of the tubular structure, we
have

d(v)2 ≥ d(w)2 +1,

where w is in N(v) and is not a centerline voxel. This implies
that

d(v)−d(w)≥ 1
d(v)+d(w)
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and, thus,

d(v)−d(w)≥ 1
2d(v)

(3)

Notice that N(v) contains exactly two other centerline vox-
els besides v. We exploit these elementary observations to
identify candidate centerline voxels of the tubular structure.
First, we compute the distance map d(I) of I. Subsequently,
we convolve d(I) with A, where A is a 3× 3× 3 filter with
A0,0,0 = 1, and Ai, j,k =−1/26 for all (i, j,k) 6=(0,0,0). Now,
let N0(v) consist of all voxels of N(v) but v. The quantity
that we obtain

(A∗d(I))(v) =
26
26

d(v)− 1
26 ∑

w∈N0(v)
d(w)

is the difference between the distance of v from the bound-
ary of I and the average distance of all its neighboring voxels
again from the boundary of I. Finally, we normalize the val-
ues of A∗d(I) by dividing it with the maximum of its values.

Next, in order to justify the previously described averag-
ing method for the identification of voxels in the centerline
(seeds), recall the assumption that the orientation and the di-
ameter of the tubular structure remain locally constant. Let
v be a centerline point which shares no common vertex with
any exterior voxel. Since exactly two other voxels in N(v)
are on the centerline and all of the geometric properties of
the tubular structure remain constant in the vicinity of N(v),
we conclude that d(v) is the value of the distance function
for the other two centerline voxels in N(v). So,

(A∗d(I))(v) =
24
26

d(v)− 1
26 ∑

w∈N0(v)
d(w),

where the factor 24/26 accounts for the all three centerline
voxels in N(v). Using (3), we conclude

24
26

d(v)− ∑
w∈N0(v)

d(w)≥ 12
26d(v)

.

Now assume that v is not on the centerline. Then, if w1
and w2 are immediate neighbours of v, diametrically op-
posite to each other with respect to v, they should satisfy
d(w1)+d(w2)≈ 2d(v), because one of w1 and w2 is closer
to the boundary of the tubular structure than the other. Con-
sequently, (A∗d(I))(v)≈ 0.

The above discussion implies that, after normalization
with the maximum value of d on N(v), the set of the sought
seed points is contained in{

v :
(A∗d(I))(v)

maxw∈N(v) d(w)
≥ τ

}
,

where τ = 6
13 . A graphical illustration of this filtering pro-

cedure is shown in Fig. 7.

Fig. 7 Detection of seed points. Panel (a): Cross section of a repre-
sentative segmented tubular structure. Panel (b): The color-coded plot
shows the values of the distance d computed at each point of the cross-
section in panel (a). Panel (c): The figure shows the result of the con-
volution of d with A, where d is given in panel (a). As expected, A∗d
attains its maximum at the center point of the cross-section.

As mentioned above, this analysis is accurate when the
center of N(v) is on the centerline and all of N(v) is con-
tained in the tubular structure. If this is not true, then it is
not hard to find examples where (A ∗ d(I))(v) is less than
0.5. One such example would be a cube with one of its
sides parallel to the x-axis and cross-shaped cross section
with the center of the “cross” belonging to the centerline.
In this case (A∗d(I))(v) = 0.42. Therefore, for all practical
purposes, we can set τ = 0.5 to obtain a first set of center-
line candidates. We have obtained this threshold using the
guidance offered by the previous analysis and painstaking
experimentation. As one can see from Figure 8, although τ

is marginally lower than the theoretically predicted τ = 6
13 ,

it is still low enough to yield a large number of false posi-
tives. The lower τ is, the higher rate of false seed candidates
detections it becomes. But as τ increases, so does the like-
lihood that no seed candidate is generated in certain regions
of the segmented solid, with the consequence that these re-
gions may be missed by the tracing routine, especially if
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their diameters are small. To mitigate these two problems
we proceed as follows.

Fig. 8 Process of seed generation. Panel (a): Depiction of seed can-
didates obtained from the filtering process, prior to decimation. The
green surface is an isosurface of the volume containing the detected
seed candidates after the filtering A ∗ d and thresholding with τ . Not
all voxels in the interior of the isosurface are used as seed candidates.
Panel (b): Seeds remaining after decimation.

The next step in the centerline seed point selection is a
decimation processes, aimed at eliminating false seed point
detections (see Fig. 8-9). This pruning process is performed
by Algorithm 1 under the guiding principle that, if v is a
centerline point then d(v) should be the maximum value of
d on the 27-connected neighborhood N(v) of v.

Suppose that v is a seed candidate that is on the center-
line and let wM ∈ N(v) maximizing d constrained on N(v).
Then, either wM = v or both voxels are on the centerline.
Recall, that if v is on the centerline, then two other voxels
in N(v) must be on the centerline as well, but all three must
return the same distance value which should be equal to the
maximum value of d|N(v) provided that the geometric prop-
erties of the tubular structure remain locally constant.

On the other hand, if d(v) < d(wM) and N(v) contains
an exterior voxel, then clearly v cannot be on the centerline
since one of its immediate neighbors belongs to the exterior
of the structure and another voxel in N(v) maximizes d. If
N(v) contains no exterior points and√

d(v)2 +1 < d(wM) = max{d(w)|w ∈ N(v)},

then v is not a centerline voxel, for it were then, according
to the previous discussion on the derivation of τ , we must
have that d constrained in N(v) attains its maximum in v
and d(v) < d(wM) clearly contradicts that. This argument
justifies the criterion of Algorithm 1 used for pruning the
false centerline seed candidates. Does this mean that after
running Algorithm 1 all remaining seed points are on the
centerline? Theoretically, the answer to this question is still
negative, but detections of seed points are now very safely

Fig. 9 Seed Decimation. Panel (a): The green surface is an isosurface
of the volume containing the detected seed candidates in the Olfactory
Projection fibers, image stack OP 1, from the DIADEM data set. Panel
(b): After our seed decimation process, only a small number of seeds
remains to be used for the centerline tracing.

on or close to the centerline. It is not easy to argue about
accuracy because the tolerance level is reduced to one co-
planar voxel as the previous argument indicates. The lack
of cylindrical symmetry due to the physical shape of the
structure and the binarization due to the digital acquisition
may render the pursue of any higher accuracy rather futile.
After all, the accuracy of the centerline detection can only
be measured after the tracing step is completed. The sought
seed points only serve as guiding landmarks for the trac-
ing algorithm. In fact, we have observed that our centerline
extraction method does not significantly suffer from false
negatives obtained after Algorithm 1 has been applied, as
these would, in most cases, be automatically corrected dur-
ing tracing as we have already previously noted. Neverthe-
less, false positives that are significantly off the centerline
are more likely to be left after Algorithm 1 has been applied
only in thick tubular structures and those may indeed neg-
atively affect the performance centerline extraction, as they
may produce, in such cases, spurious branches or lead to the
tracing of short, incorrect sections of the centerline. Our ex-
periments indicate that this phenomenon is rather infrequent
(see Fig. 10).

It is also possible that no seeds were generated in some
regions of the solid, creating the potential to miss part of
the solid or even entire branches during tracing. To miti-
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Fig. 10 Centerline tracing in a thick tubular structure. The image
shows the MIP projection of a segmented volume from the Olfactory
Projection Fiber, Image Stack 3 (see the MIP of the entire segmented
volume in Fig. 15, panel (d)). In this detail, we see an example of small
spurious branches being traced in the “bowtie” shaped mid part of the
volume. Note: the red line appears thicker because it represents the
projection of the 3-D centerline on the MIP-plane which is 2-D.

Algorithm 1 Seed Decimation
Require:

Voxel v and set N(v).
Ensure:

Decision S: v is not a seed
1: Set dM(v) = max{d(w)|w ∈ N(v)}
2: Set dm(v) = min{d(w)|w ∈ N(v)}
3: if dm(v) = 0 and d(v)< dM(v) then
4: S = true
5: else if

√
d(v)2 +1 < dM(v) then

6: S = true
7: else
8: S = false
9: end if

gate this effect, we identify these portions as the comple-
ment in the solid of the set {v|∃s ∈S ,‖v− s‖ ≤ C · d(s)}
where C is twice the z−smear factor3 of the input and S
is the current set of seeds. The new seeds are computed by
iteratively computing the maximum value d(v) of the vox-
els in such regions, marking the voxel v in question as a
seed, and removing from such regions the voxels w such
that ‖v−w‖ ≤C ·d(v). This process is significantly slower
than the first seed selection step and, therefore, it is not used
to generate seeds on the entire solid but only for a few small
portions of the solid.

2.4 Tracing and extraction of the graph structure of the
dendritic arbor

Once the seeds are generated, the centerline is traced by iter-
atively identifying and connecting seeds to the current path,
according to Algorithm 2.

Let S be the set of centerline seed points identified by
Algorithm 1. The tracing algorithm (Algorithm 2) uses an
inductive step described below to extract the centerline P

3 This quantity represents that ratio of the length in the z-direction of
a voxel relative to its length in the x,y directions. Therefore, it charac-
terizes the sampling grid and thus it shows the anisotropy of the point-
spread function in the z-direction.

Fig. 11 Depiction of the tracing process. Following an iteration of the
Algorithm 2, panel (a) shows in red a path Pk−1 and the next seed sk
in green. In panel (b), the region Rk, where the path search will be
performed, is marked with yellow. This is the region inside which the
subpath from the new seed to the current path will be identified. Panel
(c) depicts in blue the subpath of Pk generated between Pk−1 and sk.

of the tubular structure. First, we enumerate the seed points
in S. The enumeration order does not matter. Suppose that
the centerline path, Pk−1, connecting k− 1 seed points has
been extracted and that the next seed point to be connected
to Pk−1 is sk. Let Rk be a portion of the binarized structure
containing sk in its interior starting from the closest point
of the centerline that has been traced in the previous k− 1
steps. Implicitly, we assume that Rk is in the same connected
component with some part of the volume that has already
been traced and it contains at least one point of Pk−1. To
compute the new centerline subpath in Rk from this seed
to Pk−1, we propose Algorithm 2, for the identification of
the minimum length path between sk and the most proximal
voxel to sk in Pk−1∩Rk. This algorithm is a simple variation
of Dijkstra’s algorithm (Dijkstra (1959)). As we see next,
from the description of the algorithm the sought path may
not be the straight line connecting sk to the already traced
centerline, because such a path may not be inside Pk−1∩Rk.

Our implementation differs from the standard Dijkstra’s
algorithm, in that Algorithm 2 uses an ordered pair of weights
W (e) = (W1(e),W2(e)) for the directed edge e = (v,w) be-
tween neighbouring voxels v and w, instead of a single weight
used in the traditional Dijkstra’s algorithm.

The first of these two weights is defined by

W1(e) = (d(v))−1 +(d(w))−1,

and it is introduced to maximize the distance from the path
elements to the background. The progression step of the al-
gorithm searches to identify the next voxel in the centerline
starting from a given voxel v in the following way: Between
two choices u and w satisfying d(w) > d(u), then, by def-
inition, w is more likely to be a centerline voxel than u is.
In this case, it also follows that W1(v,w) < W1(v,u), and
thus, the algorithm prefers w over u. Nevertheless, the ef-
fect of W1 is compromised if the cross section of the tubu-
lar structure is locally significantly anisotropic (this includes
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the case where the entire image has a significant z-smear).
This necessitates the introduction of the second weight de-
fined by

W2(e) = 1−max
{
〈v−w,w−p〉
‖v−w‖ · ‖w−p‖

∣∣∣∣p ∈ Pk−1∩Rk

}
,

that is designed to ameliorate the effects of the anisotropy
of the sampling grid by placing higher relevance to the path
with lower directional variation. Weight W2 maximizes the
cosine of the angle between v−w and w−p, minimizing,
therefore, the angle between the edges connecting the inter-
mediate point w and the starting point v, on one hand, and w
with the candidate point p ∈ Pk−1∩Rk on the other. We ap-
ply the two weights conditionally with the second of them
used only if we have cases where W1(v,w) =W1(v,u).

This process generates the minimum length subpath Pk
connecting a voxel in Pk−1 ∩Rk with sk. The newly identi-
fied subpath Pk is added to the main path P, along with the
information of the parent of each node. The seed sk, and any
other seed contained in the new subpath Pk, are now labeled
as visited.

Occasionally, some seeds that are not on the centerline
remain after the decimation process, because they may have
been associated with false branches. These falsely detected
seeds are close to the real centerline, thus it is reasonable to
expect that erroneously detected branches associated with
these seeds are fairly short. To address this potential source
of errors, we identify from the graph structure of the cen-
terline, the terminal and branching points. We compute the
length of the branch from the terminal point u to its clos-
est branching point v. If this length is smaller than d(v), we
eliminate all the voxels in this branch but v.

Algorithm 2 gives the centerline output in the form of
a graph by encoding information about the coordinates of
centerline voxels and of their connectivity. Each node in the
graph of the centerline corresponds to a branching, initial, or

Algorithm 2 Tracing
Require:

Seed set S and solid voxels B.
Ensure:

Centerline path voxel set P.
1: Select seed s1 so that d(s1) = max{d(s)|s ∈ S}.
2: P←{s1}.
3: k← 1.
4: while S\P 6= /0 do
5: k← k+1.
6: Select seed sk so that d(sk) = max{d(s)|s ∈ S\P}.
7: Set Rk = {sk}.
8: while Rk ∩P = /0 do
9: Rk← (Rk ∪N(Rk))∩B.

10: end while
11: Pk← DijkstraVariation(sk,Rk,P∪Rk).
12: P← P∪Pk.
13: end while

terminal voxel and is annotated accordingly. An edge in this
graph describes a segment of the centerline which connects
a node to its immediate parent node (the last neighboring
voxel to be added to the path before the voxel in question
was added). The centerline tracing process is illustrated in
Figure 11.

3 Experiments and Results

To evaluate the accuracy of the proposed method, we used
the six image stacks of the Olfactory Projection Fibers (these
are axons) datasets (only six sets were available at the time
of paper submission), the first set of Neocortical Layer 1
Axons (see Fig. 5) and the first set of Neuromuscular Pro-
jection Fibers datasets from the DIADEM challenge Brown
et al (2011). To compare our results, we relied on the Gold
Standard Reconstructions provided by DIADEM. For each
of these data sets, a single classifier was trained in one solid
only. Our results on these sets are reported in Tables 1, 2
and Figures 13, 14. Some visual examples are given in Fig-
ures 15.

We also used a set of fluorescent images of pyramidal
neuron cells that we indicate as Cells A, B and C. Cells A
and B were acquired using a multiphoton microscope (the
raw image of Cell A is shown in Fig. 12). The image quality
of Cells A and B were ranked as good and fair, respectively.
The image of Cell C was acquired with a confocal micro-
scope and its quality was ranked as poor. Our results on this
set are reported in Table 3.

Some of the Gold Standard Reconstructions provided
for the Neuromuscular Projection Fibers by the DIADEM
project do not have gold standard reconstructions for the en-
tire volume appearing visually in the raw data. Hence, an
estimate of the percentage of the solid traced was computed
for each of the 152 stacks in this dataset by linearly inter-
polating first the expertly identified centerline points and by
constructing a synthetic solid from the resulting piecewise
linear approximations of the centerline. To construct these
synthetic solids we used the radii of the tubular structure
prescribed by the expert annotator at each of the manually
identified centerline points. To avoid an inappropriate dupli-
cate use of our segmentation algorithm at the stage where we
identified the suitable stacks for benchmarking our center-
line tracing algorithm, we compared the overlap of the crude
synthetic solids with the solids segmented from the raw data
by means of an ad hoc, user-selected intensity threshold.
This simple test revealed that for only thirty solids out of
the 152 stacks the manually identified centerline via straight
line segments connecting manually traced centerline points
overlap with at least 99% of the binary solid. Consequently,
we limited our analysis to these stacks only.

For our binarization step, we considered nine features:
three Laplacian filters, with σ ∈ {0.25,0.5,0.75}, three low
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Fig. 12 MIPs of fluorescent images of a pyramidal cell. This image is
used in our experiments whose results are shown in Tables 3 and 4 and
labeled as Cell A. Panel (a): MIP on the XY-plane; panel (b): MIP on
the XZ-plane; panel (c): MIP on the YZ-plane (Courtesy of Professor
P. Saggau of Baylor College of Medicine)

Table 1 Performance metrics results for Olfactory Projection fiber
stacks. In the ADE column we give sample averages and sample stan-
dard deviations of ADE for each stack measured in voxels.

Stack Precision Recall MES ADE (σ ) VRS
OP 1 1.00 1.00 1.00 0.71 (0.66) 0.97
OP 2 1.00 0.98 0.98 0.89 (1.02) 1.00
OP 3 0.85 0.88 0.82 1.31 (0.89) 0.85
OP 4 0.99 1.00 0.99 0.95 (1.07) 0.99
OP 5 0.79 0.94 0.81 1.37 (0.97) 0.88
OP 6 0.95 1.00 0.96 0.76 (1.08) 0.98

Average 0.93 0.97 0.93 1.0 (0.95) 0.87

pass band filters, with σ ∈ {0.3,0.5,0.7} and three high pass
filters with (σ1,σ2)∈ {(0.4,0.1), (0.6,0.3), (0.8,0.5)}. We
set n = 60, where n is the degree of the Taylor polynomial
Pn.

To validate the performance of our algorithm, we used
the metrics employed in Wang et al (2011) and Xie et al
(2010). These include Precision, Recall, and the Miss-Extra-

Score (MES) defined as

Precision =
SC

ST
,

Recall =
SC

SC +Smissed
,

MES =
SG−Smiss

SG +Sextra
,

where SC is the total length of the correctly traced segments,
ST is the total length of the traced centerline, SG is the to-
tal length of all segments in the ground-truth trace, Smiss and
Sextra are the total lengths of missing and extra segments in
the computed trace, respectively. The second metric is the
Average-Displacement-Error (ADE), which is defined as the
average displacement of the matched components. The third
and last metric to be computed is Volume-Reached-Score
(VRS), defined as the ratio of the cardinalities of the set
{v ∈ B|∃c ∈C s.t ‖v− c‖ ≤ d(c)}, and of B, where B is the
set of voxels in the binarized solid, and C is the set of voxels
in the extracted centerline.

It is important to note that, for the reasons we previously
explained, the traced and the gold standard centerlines may
not match each other precisely at significant segments of the
volume. The two centerlines may run parallel or be interwo-
ven with one another. Nevertheless, they physically differ
by a distance of a few voxels only. This error is reasonable
because the traced paths are marked manually and automat-
ically in a discretized volume and the manually produced
centerline is a polygonal approximation of the true one. The
degree to which this systematic error appears varies with ac-
quisition resolution and the physical thickness of the den-

Table 2 Performance metrics results for Neocortical Layer 1 Axon
stacks (see Fig. 5).

Stack Precision Recall MES ADE (σ ) VRS
1 0.90 0.81 0.78 0.79 (0.74) 0.89
2 0.92 0.60 0.61 1.14 (1.03) 0.88
3 0.74 0.60 0.56 1.28 (1.26) 0.76
4 0.62 0.75 0.52 1.00 (0.90) 0.86
5 0.82 0.92 0.77 0.96 (0.98) 0.93
6 0.79 0.86 0.71 0.91 (0.86) 0.92

Average 0.80 0.76 0.66 1.00 (0.97) 0.87

Fig. 13 Boxplot of the values of performance metrics for the thirty
Neuromuscular Projection Fibers.
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Table 3 Performance metrics results for Pyramidal Cells.

Cell Precision Recall MES ADE (σ ) VRS
A 0.92 0.85 0.92 1.96 (1.31) 0.99
B 0.91 0.85 0.89 2.94 (1.87) 0.97
C 0.75 0.89 0.61 2.88 (1.91) 0.95

Table 4 Performance metrics results for Pyramidal Cells, from
ORION reconstructions

Cell Precision Recall MES ADE (σ )
A 0.88 0.85 0.78 2.29 (1.07)
B 0.87 0.77 0.71 3.40 (1.89)
C 0.77 0.58 0.57 2.75 (1.67)

Fig. 14 Displacement-Error boxplots for the processed thirty Neuro-
muscular Projection Fibers. Dots indicate Average DE, while the ends
of the thick blue bar show the first and third quartiles of DE. The entire
range of DE for each of the thirty stacks is marked by thin blue bars
overlayed on the thick blue bars.

Table 5 Comparative Performance results of APP2, Neuronstudio,
ORION and our Algorithm on the OP Dataset. All values are sam-
ple averages of each algorithm’s performance on eight of the nine OP
volumes of the OP dataset. One of these volumes was not considered
at all since ground truth was obtained for only one of the two dendrites
present in this particular volume.

Method Precision Recall MES
Neuronstudio 0.97 0.81 0.79

APP2 0.73 0.88 0.71
ORION 0.93 0.92 0.86

Our algorithm 0.93 0.97 0.93

drite. In fact, it is easier to manually mark with high ac-
curacy the centerline of a thin branch rather than that of a
thicker branch. To deal with this systematic error we con-
sider a voxel v ∈ PT to have been correctly traced if there
is a voxel w ∈ PG such that ‖v−w‖ ≤ L, where PG the set
of voxels in the centerline path in the gold standard annota-
tions and PT to be the set of voxels on the traced centerline
and L is an operator determined tolerance constant. For the
Olfactory Projection Fiber, the Neocortical Layer 1 Axons
and the Pyramidal cells datasets, that include solids with
mostly thin dendritic and axonal structures, we use L = 3.
For the data sets of the Neuromuscular Projection Fibers
where most branches were significantly thicker than those
in the former datasets we use L = 7.

Our results compare very favourably with the published
literature. Specifically, Xie et al (2011) reported an average
MES of 0.86 for a subset of five out of the six solids in Ta-
ble 1. Our algorithm’s average MES is 0.93 in the entire

collection, and no less than 0.91 on any subcollection of five
of these solids. Compared with the FARSIGHT algorithm
(Wang et al (2011)), on a subset of 26 solids from the Neu-
romuscular Projection Fibers datasets the paper reports an
average Precision of 0.98 and Recall of 0.95, after manual
editing. From the subset analyzed in this paper, we obtain an
average Precision of 0.98 and Recall of 0.94, with unedited
traces and without additional training.

From the comparison of ORION’s performance with the
performance of Neuronstudio by Neurolucida, (Neurolucida
(2013)) and APP2 (Xiao and Peng (2013)) on the Olfactory
datasets we can indirectly make a baseline comparison of
the herein proposed algorithm with APP2, Neuronstudio and
ORION. This comparison is reported in Table 5.

Processing times are reported in Table 6. All experiments
were performed using a PC with a 2.79 GHz i5 quad-core
processor and 16 GB of RAM memory, using MATLAB
R2011b. We used the LIBSVM library as our Support Vector
Machine engine.

4 Discussion

We have introduced a new algorithmic suite for the binary
segmentation and centerline extraction of tubular structures
(such as dendrites and axons of neurons). The proposed suite
is competitive in terms of accuracy and computational ef-
ficiency. This excellent performance is achieved thanks to
the integration of an effective filtering stage to provide bi-
narization and a simple and computationally efficient filter
for point source detection. Although all of the applications
of the proposed methods have been tested using laser mi-
croscopy images only, our methods are fairly generic and
can be applied to images of tubular structures acquired with
other modalities such as x-ray CT, MRI or Electron Mi-
croscopy both for segmentation and centerline tracing. De-
spite the fact that this claim cannot be supported with hard
experimental evidence, the mathematical analysis we present
in the methods section adequately justifies this claim, be-
cause the novel self-steerable filters require an image of a
tubular structure, regardless of the acquisition modality, and
the seed identification and centerline tracing are applied on
the segmented volume of interest.

Table 6 Execution times in seconds for Binary Segmentation of vol-
ume of interest (B), Tracing (R) and Total (T).

Stack B R T
OP1 54 17 71
OP2 77 26 103
OP3 61 9 70
OP4 60 18 78
OP5 76 8 84
OP6 88 13 101

Neocortical 314 3825 4139
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Fig. 15 Centerline tracing superimposed on MIPs of binary segmentations of representative volumes from the DIADEM set processed with the
proposed algorithm. Panel (a): Olfactory Projection Fibers (axons), Image stack 2; panel (b): Olfactory Projection Fibers (axons), Image stack 4;
panel (c): Olfactory Projection Fibers (axons), Image stack 1; panel (d): Olfactory Projection Fibers (axons), Image stack 3.

As shown in Tables 4 and 5, our algorithm consistently
performs either better or equally well with its competitors,
APP2, Neuronstudio and ORION, with respect to all three
metrics, i.e., precision, recall and MES on the Olfactory Fiber
Projection data sets. One of the advantages of the proposed
centerline tracing algorithm is the automatic initialization
from multiple seed points, each selected for just one con-

nected component. The proposed algorithm extracts center-
lines in multiple connected components of the same bina-
rized volume, which frequently have more than one con-
nected component. In contrast to other approaches assuming
only a single connected component present in an image, our
method automatically identifies the seed points in the en-
tire volume, regardless of the number of the connected com-
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ponents in the entire data volume. The proposed method is
easily implementable and does not require, yet it does not
preclude, parallel processing. Last but not least, we wish to
highlight the fact that the first part of our algorithm, which
segments the dendritic arbor or axons from the background,
works with high accuracy, as the VRS metric indicates. In
this often difficult task, this kind of performance is essential
for the success of our centerline detection method, hence
we consider it to be one of the main contributions of this
work. We want to emphasize that this part our algorithm has
broad applicability. Although, the mathematical proofs in-
dicate that the self-steerable filters are applicable to tubular
structures, we have verified in practice that the Laplacian
filters retain their self-steerability properties even when they
are applied on images with more isotropic structures, like
somas. Fig. 16 shows an example of application of our seg-
mentation algorithm to a confocal image of a neuronal cul-
ture. Although we have not systematically studied this be-
havior of our filters beyond tubular structures, the accuracy
of our segmentation results indicates that there the Lapla-
cian filters are effective to detect structure that are not nec-
essarily vessel-like. This is an indirect indication that they
retain their self-steerability property. It is this property that
makes the Laplacian filters act as singularity detectors at
the direction of the image intensity gradient, hence to act
as omnidirectional boundary detectors. We attribute to this
property the fact that Laplacian filters are able to success-
fully segment both somas and dendritic arbors in images
of neuronal cultures. Note that these images are essentially
2-dimensional because of the small extension of the z-axis
(typically only about 20 pixels are available along the z co-
ordinate). We found that, in this situation, to compensate for
this limitation it can be useful to include a set 2D-shearlet
filters, a class of directional multiscale filters (Easley et al
(2008)), to derive additional features.

We would like to close with a comment with regards to
the need of automatic or semi automatic image analysis tools
for neuroscience imaging. Everyone who has worked with
fluorescent or electron microscopy images of neurons has
observed that often manual annotations lack accuracy and
consistency. One such example is the neuromuscular fibers
of the DIADEM competition data sets. A good number of
the image stacks of this data set are under-traced. From this
and many other examples is apparent that there is a need of
improved tools for image segmentation and image analysis
that are capable to handle this type of data. We hope that our
work will be a humble contribution to this challenging field
of investigation.

Information Sharing Statement: Matlab source code
of all binary segmentation, seeding and tracing routines are
publicly available for download at

http://www.math.uh.edu/~mpapadak/centerline

A manual is included in the same folder together with the
source code. The code works for 3-D data sets, but it can be
modified for use with 2-D sets. Please cite the above web ad-
dress if you use our code for any publication or commercial
purpose. All data sets used in our experiments are publicly
available at the DIADEM competition website.
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