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ABSTRACT

In this work, we present a new approach to image denoising derived from the general framework of wavelets
with composite dilations. This framework extends the traditional wavelet approach by allowing for waveforms
to be defined not only at various scales and locations but also according to various orthogonal transformations
such as shearing transformations. The shearlet representation is, perhaps, the most widely known example of
wavelets with composite dilations. However, many other representations are obtained within this framework,
where directionality properties are controlled by different types of orthogonal matrices, such as the newly defined
hyperbolets. In this paper, we show how to take advantage of different wavelets with composite dilations to
sparsely represent important features such as edges and texture independently, and apply these techniques to
derive improved algorithms for image denoising.
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1. INTRODUCTION

It is widely acknowledged that wavelets provide a very effective representation for a large class of signals and
images. However, a need for better directionally oriented filtering in order to improve multidimensional data
processing was early recognized.1–3 By conceiving a model of cartoon-like images as representative of piecewise-
smooth functions that are smooth away from a C2 edge, multi-scale and multi-directional representations were
developed which exhibit near optimal approximations4 and outperform traditional wavelet methods. Some of
the most notable of these representations are the curvelets,4,5 the contourlets6 and the shearlets.7,8

The theory of wavelets with composite dilations is a generalization of the classical theory from which traditional
wavelets are derived, and it provides a very flexible setting for the construction of many truly multidimensional
variants of wavelets.7,9, 10 The most prominent construction derived from this approach is the shearlet repre-
sentation. In this work, we present several new constructions of wavelets with composite dilations as well as
a general algorithm for their implementations. Not only many of these new devised transforms demonstrate
to be highly competitive in imaging applications; in addition this novel algorithmic technique, when adjusted
to implement the shearlet transform, ends up improving the performance over the original shearlet transform
implementation.11

For applications such as image denoising it is usually highly beneficial to use redundant (nonsubsampled)
representations. Thus, keeping this observation in mind, we introduce a novel filter bank construction technique
with no subsampling. This approach allows the projection of the data directly onto the desired directionally-
oriented frequency subbands. An important novel feature of this construction is the ability to generate the
decomposition atoms (frame elements) by directly applying the wavelet with composite dilations generating
structure. This generating structure is given by particular combinations of matrix multiplications. Not only do
these new implementation techniques follow very directly from the theoretical setting, they also allow for very
sophisticated composite wavelet transforms to be carried out in the finite discrete setting.

As special cases of our approach, we introduce a new class of hyperbolic composite wavelet transforms which
have potentially high impact in deconvolution and other image enhancement applications, as indicated by the
novel decompositions suggested in Ref. 12 and by the techniques for dealing with motion blur recently proposed
in Ref 13.
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2. WAVELETS WITH COMPOSITE DILATIONS

The following notation and terminology will be used through this work. For f ∈ L2(R2), the translation operator
Tτ is given by

Tτ f(x) = f(x− τ), τ ∈ R2.

Given an invertible matrix a on R2, the dilation operator Da is defined as

Da f(x) = |det a|−1/2 f(a−1x).

Given a set of generating function Ψ = {ψ1, . . . , ψL} ⊂ L2(R2) and a collection of 2 × 2 invertible matrices
A = {ai : i ∈ Z}, the wavelet systems are the collections of functions of the form

AA(Ψ) = {Da Tk ψm : a ∈ A, m = 1, . . . , L},

when they form a Parseval frame for L2(R2). That is,

∥f∥2 =
∑
a∈A

∑
k∈Z2

|⟨f,DaTkΨ⟩|2,

for all f ∈ L2(R2). Traditional wavelet systems are obtained in the special case where a = 2 I, for I being the
2× 2 identity matrix.

The wavelets with composite dilations7 differ from standard wavelet systems by including a second set of
dilations. In particular, they have the form

AAB(Ψ) = {DaDb Tk Ψ : k ∈ Zn, a ∈ A, b ∈ B},

where A, B ⊂ GL2(R) (where GL2(R) denotes the group of invertible matrices over R2) and the matrices b ∈ B
satisfy |det b| = 1.

Analogous to standard wavelet systems, Ψ ⊂ L2(R2) is chosen so that

∥f∥2 =
∑
a∈A

∑
b∈B

∑
k∈Z2

|⟨f,DaDbTkΨ⟩|2,

for any f ∈ L2(R2). The matrices a ∈ A are typically chosen to be expanding (but not necessarily isotropic,
as in the traditional wavelet case) and the matrices b ∈ B are associated with rotations and other orthogonal
transformations.

The theory of wavelets with composite dilations extends many of the standard results of wavelet theory7,9, 10

and it allows to construct wavelet-like representation systems with a much richer choice of geometrical features.

To show that there plenty of examples of such systems, we recall this simple result from Ref. 9. Let ψ be
chosen such that ψ̂ = χS , where S ⊂ R2 and χS denotes the characteristic function of S. Then there are simple
conditions for the constructions of composite wavelets:

Theorem 2.1. Let ψ = (χS)
∨ and suppose that S ⊂ E ⊂ R2. Suppose that A,B ⊂ GL2(R) satisfy

1. R̂2 =
∪

k∈Z2(E + k);

2. R̂2 =
∪

a∈A,b∈B S (ab)−1,

where the union is essentially disjoint. Then the system

AAB = {DaDb Tk ψ : k ∈ Zn, a ∈ A, b ∈ B},

is a Parseval frame for L2(R2). If, in addition, ∥ψ∥ = 1, then AAB is an orthonormal basis for L2(R2). Clearly,
the systems obtained from the theorem above are not local in space domain. To achieve well-localized wavelets
with composite dilations ad hoc constructions are needed, such as the shearlets in Ref. 14 or the constructions
described in Ref. 15. Some additional novel well-localized constructions are introduced in this paper.

2



3. EXAMPLE CONSTRUCTIONS

Before presenting our new well-localized constructions, let us illustrate how to use Theorem 2.1, to derive some
useful examples of wavelets with composite dilations for L2(R2).

3.1 Construction 1. Shearlet tiling

An important example of a wavelets with composite dilations is obtained by using dilation matrix a = ( 2 0
0 2 ) and

B as the set {bℓ : −3 ≤ ℓ ≤ 2} where b is the shear matrix ( 1 1
0 1 ). By letting R be the union of the trapezoid

with vertices ( 12 , 0), (1, 0), (
1
2 ,

1
6 ), (1,

1
3 ) and the symmetric one with vertices (−1

2 , 0), (−1, 0), (− 1
2 ,−

1
6 ), (−1,−1

3 ),

and setting ψ̂m(ξ) = χRm(ξ), where Rm = Rbm, it follows that the system

A0 = {Di
aDb Tk ψ

m : i ≥ 0, b ∈ B, k ∈ Z2,m = 1, 2, 3}

is a Parseval frame for L2(D0)
∨ = {f ∈ L2(R2) : supp f̂ ⊂ D0}, where D0 = {(ω1, ω2) : |ω2/ω1| ≤ 1, |ω1| > 1}.

To obtain a Parseval frame for the entire space L2(R2), first one can add a similar system

A1 = {Di
aDb Tk ψ̃

m : i ≥ 0, b ∈ B̃, k ∈ Z2,m = 1, 2, 3},

where B̃ = {(bT )ℓ : −3 ≤ ℓ ≤ 2}. This is a Parseval frame for L2(D1)
∨ where D1 = {(ω1, ω2) : |ω2/ω1| ≥

1, |ω2| > 1}. Finally, it easy to construct an orthonormal basis Φ = {Tk ϕ : k ∈ Z2} for L2([−1
2 ,

1
2 ]

2)∨. Hence,
A0 ∪ A1 ∪ Φ is a Parseval frame of L2(R2).

This system was originally introduced in Ref. 7 and its frequency tiling is illustrated in Figure 1.
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R b^(−1) A 
R b
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Figure 1. Tiling of the spatial-frequency domain associated with a system of wavelets with composite dilations where a = 2I
where I is the 2× 2 identity matrix and B are the shearing matrices.

3.2 Construction 2. Hyperbolic tiling

Another example of wavelets with composite dilations is obtained by using matrices B of the form

B = {bℓ =
(
λ−ℓ 0
0 λℓ

)
: ℓ ∈ Z},

where λ > 1 is a fixed parameter. This construction can be seen as a transformation of the shearlet tiling under
a nonlinear change of coordinates. In the following, we will set λ =

√
2, but the discussion below can be easily

extended to other choices for λ.

For each k > 0, the set Hk = {(ξ1, ξ2) ∈ R̂2 : ξ1ξ2 = k} consists of two branches of hyperbolas. Notice that,
for any ξ = (ξ1, ξ2) ∈ Hk, every other point ξ′ on the same branch of hyperbola has the unique representation
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ξ′ = (ξ1γ
−t, ξ2γ

t), where γ > 1 is fixed, for some t ∈ R. This means any ξ = (ξ1, ξ2) in the first quadrant can be
parametrized by

ξ(r, t) = (
√
r (

√
2)−t,

√
r (

√
2)t),

where r ≥ 0, t ∈ R. This implies that

r = ξ1 ξ2, 2t =
ξ2
ξ1
.

For any k1 < k2, a set {ξ(r, t) : k1 ≤ r < k2} is an hyperbolic strip and, for m1 < m2, a set {ξ(r, t) : k1 ≤ r <
k2,m1 ≤ 2t ≤ m2} is an hyperbolic trapezoid.

For any k ̸= 0, the action of B on the right preserves the hyperbolas Hk since

ξ bℓ = (ξ1, ξ2)

(
(
√
2)−ℓ 0

0 (
√
2)ℓ

)
= (ξ1(

√
2)−ℓ, ξ2(

√
2)ℓ) = (η1, η2),

and η1η2 = ξ1ξ2. Hence, the right action of B maps an hyperbolic strip into itself.

Figure 2. Tiling of the frequency domain associated with an hyperbolic system of wavelets with composite dilations.

Next let A = {ai : i ∈ Z}, where a =

(√
2 0

0
√
2

)
. Since a maps the hyperbola ξ1ξ2 = k to the hyperbola

ξ1ξ2 = 2k, it follows that ai maps the hyperbolic strip {ξ(r, t) : 1 ≤ r < 2} to the hyperbolic strip {ξ(r, t) : 2i ≤
r < 2i+1}. By defining a set of generators Ψ consisting of characteristic of appropriate sets in the frequency
domain, it can be established that the hyperbolic system of wavelets with composite dilations {Di

aDbℓ Tk Ψ : k ∈
Z2, ℓ ∈ Z} is a Parseval frame of L2(R2). We refer to Ref. 16 for additional detail about this construction.

Notice that, as the value ℓ increases in magnitude, the hyperbolic trapezoids become increasingly narrow
and asymptotically approach either the horizontal or the vertical axis. Hence, to realize the system in the finite
discrete setting, the indices i and ℓ can be limited to a finite range and the asymptotic regions not covered
because of this discretization can then be dealt with by partitioning up the complement with a Laplacian
Pyramid filtering. An example of the tiling of the frequency plane associated with this construction is illustrated
in Figure 2.

3.2.1 Well-localized Construction

To construct hyperbolic systems of wavelets with composite dilations (using the same matrices A and B given
above) which are well-localized, it is important to recall the following useful result from Ref. 9.

Theorem 3.1. Let ψ ∈ L2(R2) be such that supp ψ̂ ⊂ Q = [− 1
2 ,

1
2 ]

2, and∑
i,ℓ∈Z

|ψ̂(ξ ai bℓ)|2 = 1 a.e. ξ ∈ R̂2,
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where a, b ∈ GLn(R). Then the system of wavelets with composite dilations (1), where A = {ai : i ∈ Z} and
B = {bj : j ∈ Z}, is a Parseval frame of L2(R2).

Assuming ξ1ξ2 ≥ 0, ξ1 ̸= 0, let ψ̂ be defined by

ψ̂(ξ1, ξ2) = V (ξ1ξ2)W (
ξ2
ξ1

),

where V , W ∈ C∞
c (R) satisfy: ∑

i∈Z
|V (2ir)|2 = 1 for a.e. r ≥ 0

∑
ℓ∈Z

|W (2ℓ2t)|2 = 1 for a.e. t ∈ R,

with suppV ⊂ [ 1
16 ,

1
2 ] and suppW ⊂ [1, 2].

The functions V and W can be chosen to be basically Meyer wavelets that are restricted to the positive axis
in the Fourier domain.

The well-localized system described above can be made to have a frequency footprint which is essentially
given by Figure 2. The main difference is that the frequency supports of the different waveforms ψ(aibℓx) now
overlap. Thus, Figure 2 should now be interpreted as a picture of the essential frequency support.

When enforcing a parabolic scaling, the construction should be modified as follows: Let D0 = {(ξ1, ξ2) ∈ R̂2 :

|ξ1| ≥ 1
16 ,

∣∣∣ ξ2ξ1 ∣∣∣ ≤ 1} and D1 = {(ξ1, ξ2) ∈ R̂2 : |ξ2| ≥ 1
16 ,

∣∣∣ ξ1ξ2 ∣∣∣ ≤ 1}. Define Ψ̂0 to be Ψ̂ restricted to D0 so that the

collection {Ψ̂(0)(ξaibℓ)} generates a tiling for D0 when a =

(
2 0

0
√
2

)
. Similarly, define Ψ̂1 to be Ψ̂ restricted

to D1 so that the collection {Ψ̂(1)(ξaibℓ)} generates a tiling for D1 when a =

(√
2 0
0 2

)
. The union of these

collections, together with a system taking care of the low frequency region, then forms a complete tiling of R̂2.

4. COMPOSITE WAVELET IMPLEMENTATION

We now illustrate a general procedure for the numerical implementations of a large family of wavelets with
composite dilations. As will be discussed below, the main goal is to devise a method to provide the appropriate
partition of the frequency plane.

-
aibℓ

Figure 3. Illustrations of filter constructions where the number of samples used are small for the purpose of presentation.
The images on the left are the sequences of points {(ξn1 , ξn2 )}Nn=1 contained in the region S. The images on the right are
the sequences of points {(ηn

1 , η
n
2 )}Nn=1 where (ηn

1 , η
n
2 ) = ⌈(ξn1 , ξn2 )aibℓ⌉.
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Figure 4. An example of a hyperbolic filter. From left to right: Time Domain, Frequency Domain

4.1 Analysis Filter Design

In this section, we introduce an approach for the construction of filters that match the spatial frequency tiling
associated with the desired system of wavelets with composite dilations. In particular, given a system of wavelets
with composite dilations AAB(Ψ) with matrices A and B, this approach will directly apply the matrices A and
B to generate the specific spatial frequency tiling associated with the system AAB(Ψ). In this way, the discrete
implementation provides a perfect match with its theoretical counterpart and it allows one to deal even with
wavelets with composite dilations associated with very complicated geometrical decompositions in the spatial
frequency plane.

To illustrate this approach, first let us consider a wavelet ψ̂(ξ) = χS(ξ), where S corresponds to a bounded
region satisfying the conditions of Theorem 2.1. For example, S can be chosen to be a trapezoidal hyperbola
as given in Construction 2. A sequence of points {(ξn1 , ξn2 )}Nn=1 ∈ S is then generated that densely fills the set
S. We define (ξ

n

1 , ξ
n

2 ) = ⌈(ξn1 , ξn2 )⌉ where ⌈·⌉ denotes the ceiling function. The non-zero entries of our starting

filter Ĝ0,0 is to be created by the assignment Ĝ0,0(ξ
n

1 , ξ
n

2 ) = 1. Similarly, the filters {Ĝi,ℓ} are found assigning

the non-zeros entries as Ĝi,ℓ(η
n
1 , η

n
2 ) = 1 for (ηn1 , η

n
2 ) = ⌈(ξn1 , ξn2 ) aibℓ⌉. Observed that N needs to be chosen large

enough so that the points (ηn1 , η
n
2 ) are dense enough to fill out the regions Si,ℓ = Saibℓ completely in terms of

its pixelated image for all desired values of i and ℓ. An illustration of this construction is provided in Figure 3.

The well-localized version of wavelets of composite dilations can be done by keeping track of the multiple
assigned grid points. In this way, the windowing can be appropriately compensated by assigning the average
windowed value at these point locations. Examples of this construction are shown in Figure 4.

4.2 Synthesis Filter Design

We will construct the synthesis filters by using a method devised for solving a related problem known as the
Multichannel Deconvolution Problem (MDP) which can roughly be stated as follows. Given a collection {Gi}mi=1

of distributions on Rd (d ≥ 2), find a collection {G̃i}mi=1 of distributions such that

m−1∑
i=0

G̃i ∗Gi = δ,

where δ is a Dirac delta distribution.

When the distributions are assumed to be compactly supported, this equation is referred to as the analytic
Bezout equation when stated from the Fourier-Laplace domain. There is connection with the polynomial Bezout
equation which is usually solved for computing the filters associated with traditional filter banks.19
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Several methods for solving this problem in a discrete setting provide a way of constructing appropriate
synthesis filters.17–24 We will use the method given in Ref. 19 when small finite supported filters are desired.

Another solution to achieve perfect recontruction is to slightly modify the analysis filters to be

Ĝi(ξ1, ξ2) =
Ĝi(ξ1, ξ2)√∑m−1

k=0 |Ĝk(ξ1, ξ2)|2
, (1)

and to use ̂̃Gi(ξ1, ξ2) =
Ĝi(ξ1, ξ2)√∑m−1

k=0 |Ĝk(ξ1, ξ2)|2
, (2)

as the synthesis filters for i = 0, . . . ,m− 1.

Since the implementations of these composite wavelets will consists of m convolutions, the transforms will
run in O(N2 logN) operations for an N ×N image.

Notice that the implementations of these composite wavelets form a tight frame when using (1) and (2), that
they obtain perfect reconstructions, and that they are faithful in the sense that they ensure the spatial-frequency
tiling prescribed by their continuous formulation. When dealing with the improved shearlet implementation,
this new design is particularly appealing, since it removes any concern regarding the conversion between the
Cartesian and the Pseudo-Polar domain (such as its norm preservation), and all its analogous properties in the
finite discrete domain match their continuous counterparts.

5. IMAGE DENOISING

To illustrate the advantages of employing wavelets with composite dilations in imaging applications, we will
present some applications to image denosing.

Given noisy observations
y = x+ n,

where n is zero-mean white Gaussian noise with variance σ2, the objective is to estimate x. One approach
consists in estimating the image x via α by solving the following optimization problem:

α̂ = min
α

∥α∥1 subject to ∥Wα− y∥22 ≤ ϵ, (3)

where W is the composite wavelets dictionary used to represent an image. The threshold ϵ is related to the noise
power. Once the sparse coefficients that represent the desired clean image are obtained, the denoised output is
obtained by x̂ =Wα̂.

Often times an image of interest may contain textured components along with piecewise smooth components.
Hence, we can assume that x is a superposition of two components. That is, x = xp + xt, where xp and xt are
the piecewise smooth component and textured component of an image, respectively. It has been suggested that
taking a multi-representation approach to denoise may result in improved estimates. Hence, we have decided to
use a Gabor representation or a representation from a discrete cosine basis to sparsify the textured components
and wavelets with composite dilations to represent the piecewise smooth parts of an image.

The main technique for obtaining the denoised estimate of x will be to solve components of the image by
solving the following optimization problem:

x̂p, x̂t = arg min
xp,xt

λ∥W †xp∥1 + λ∥D†xt∥1 + γ TV (xp) +
1

2
∥y − xp − xt∥22, (4)

where D† denotes the Moore-Penrose pseudo inverse of D and TV is the Total Variation. Once the denoised
components are obtained, we get the final estimate as x̂ = x̂p + x̂t. One of the major advantages of using (4)
is that it requires searching lower dimensional vectors rather than longer dimensional representation coefficient
vectors.
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6. EXPERIMENTS

We can now present several numerical experiments on image denoising, based on the approach described in the
previous section, to demonstrate the effectiveness of the wavelets with composite dilations and their discrete
implementation. For brevity in presentation, we focus on using the improved implementation of the shearlet
transform using the method of Section 4. We refer the reader to Ref. 16 for an extensive evaluation of the
denoising performances of alternative composite wavelets such as the hyperbolic-based ones.

We compare the denoising performance of our technique with a recent Stein-Block thresholding method25

using curvelets. This method was shown to be nearly minimax over a large class of images in the presence of
additive bounded noise. This method requires a threshold parameter which we set to the theoretical value 4.505
as derived in Ref. 25. Notice that this method was shown to outperform the standard wavelet and curvelet-based
denoising techniques. Hence, we use it for baseline comparison in this paper. The peak signal-to-noise ratio
(PSNR) is used to measure the performance of different transforms. Given an N ×N image x and its estimate
x̃, the PSNR in decibels (dB) is defined as

PSNR = 20 log10
255N

∥x− x̃∥F
,

where ∥.∥F is the Frobenius norm.

Figure 5 and Figure 6 show the results of the denoising experiments where the new technique was generically
labeled as NSWCD for NonSubsampled Wavelets with Composite Dilations. As can be seen from these figures,
our approach to denoising which combines wavelets with composite dilations∗ and discrete cosine representations
provides results that compare favourably to the ones obtained by using the Stein-Block thresholding method.

7. CONCLUSION

In this work, we have shown the framework of wavelets with composite dilations is capable of generating extremely
useful multiscale and multidirectional decompositions. In particular, we have illustrated how to construct a
new system of hypberbolic wavelets with composite dilations. To derive numerical implementations of these
decompositions, a multichannel implementation was devised that allows the filters to be constructed directly
from the generating structure. We have demonstrated the power of these transforms by demonstrating their
ability to denoise images by using a component-based optimization formulation. The results demonstrate these
new methods are extremely competitive with respect to other state-of-the-art methods.
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11. G. Easley, D. Labate and W. Lim, Sparse Directional Image Representations using the Discrete Shearlet
Transform, Appl. Comput. Harmon. Anal. 25 pp. 25-46, (2008)

12. J. Chung, G. R. Easley, and D. P. O’Leary, Windowed Spectral Regularization of Inverse Problems, preprint,
2010.

13. K. Egan, Y-T Tseng, N. Holzschuch, F. Durand, R. Ramamorthi, Frequency Analysis and Sheared Recon-
struction for Rendering Motion Blur, to appear in ACM SIGGRAPH, 2011.

14. K. Guo and D. Labate, Optimally sparse multidimensional representation using shearlets, SIAM J. Math.
Anal., vol. 9, pp. 298–318, 2007.

15. G. Easley, D. Labate, Critically sampled wavelets with composite dilations, to appear in IEEE Trans. on
Imag. Processing, 2011.

16. G. Easley, D. Labate, V. Patel, Directional multiscale processing of images using wavelets with composite
dilations, preprint, 2011.

17. C. A. Berenstein, A. Yger, and B. A. Taylor, Sur quelques formules explicites de deconvolution, Journal of
Optics (Paris) 14, pp. 75–82, 1983.

18. C. A. Berenstein, and A. Yger, Le problème de la déconvolution, J. Funct. Anal., pp. 113–160, 1983.
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