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ABSTRACT

This paper introduces a numerical implementation of the 3D shearlet transform, a directional transform which is
derived from the theory of shearlets. The shearlet approach belongs to a class of directional multiscale methods
emerged during the last 10 years to overcome the limitations of traditional multiscale systems, which also include
curvelets and contourlets. Unlike other methods, shearlets are derived from the theory of affine systems, which
allows a very flexible mathematical structure and a natural transition from the continuous to the digital setting.
Following the recent proof of the optimality of the 3D shearlet representation, in this paper we develop an
algorithmic implementation of the 3D shearlet transform that follows closely the spatial-frequency pattern of
the corresponding continuous transform. The performance of the algorithm is illustrated on problems of video
denoising and successfully compared against other state-of-the-art multiscale techniques, including curvelets and
surfacelets.

Keywords: Affine systems, curvelets, shearlets, sparsity, wavelets.

1. INTRODUCTION

The shearlet representation, originally introduced in Ref. 13, 17, has emerged in recent years as one of the
most effective frameworks for the analysis and processing of multidimensional data. This approach is part of a
number of multiscale methods introduced during the last 10 years with the goal to overcome the limitations of
traditional wavelets by combining the standard multiscale decomposition with the ability to efficiently capture
directional features. Other notable such methods include the curvelets4 and the contourlets.7 Both the shearlet
and the curvelet representations, in particular, form a Parseval frame of L2(R2) which is (nearly) optimally
sparse in the class of cartoon-like image, a standard model for images with edges.4,14 Specifically, if fM is the
M term approximation obtained by selecting the M largest coefficients in the shearlet or curvelet expansion of
a cartoon-like image f , then the approximation error satisfies the asymptotic estimate

||f − fSM ||22 ≍M−2(logM)3, as M → ∞.

Up to the log-like factor, this is the optimal approximation rate, in the sense that no other orthonormal system
or even frame can achieve a rate better than O(M−2). By contrast, wavelet approximations can only achieve a
rate O(M−1).

Notice that, despite their similar approximations properties, shearlets and curvelets rely on a rather different
mathematical structure. In fact, the shearlet approach is derived from the framework of affine systems, which
provides a more flexible mathematical setting. In addition, the directionality of the shearlet systems is achieved
through the use of shearing matrices rather than rotations, which are used in curvelets. This offers the advantage
of preserving the discrete integer lattice and it enables a natural transition from the continuous to the discrete
setting. We refer to Ref. 6, 11, 12, 20, 23 for additional observations about the numerical implementation of
shearlet-based decompositions and their imaging applications.

While the theory of shearlets and curvelets has been well established in dimension 2, only very recently
serious effort were made to extend this approach to higher dimensions. More precisely, the formal extension of
the construction of multiscale directional systems from 2D to 3D is not a major challenge. In fact, 3D curvelets
have been introduced in Ref. 3 and 3D versions of the contourlets, called surfacelets, in Ref. 21, with the focus in
both cases being on their discrete implementations. However, the analysis of the sparsity properties of curvelets
and shearlets in the 3D setting does not follow directly from the 2D argument and only very recently the sparsity
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properties of 3D shearlets have been rigorously analyzed. Specifically, it was proved in Ref. 15 (cf. also a similar
recent result announced in Ref. 19) that, for 3D functions f which are smooth away from discontinuities along
C2 surfaces, the M term approximation fSM obtained by selecting the N largest coefficients in the 3D Parseval
frame shearlet expansion of f satisfies the asymptotic estimate

||f − fSM ||22 ≍M−1(logM)2, as M → ∞. (1)

Up to the logarithmic factor, this is the optimal decay rate for functions in this class and significantly outperforms
wavelet approximations, which only yield a M−1/2 rate.

The objective of the paper is to present a numerical implementation of the 3D Discrete Shearlet Transform
which follows closely the spatial-frequency decomposition associated with the corresponding continuous transform
so that it can take advantage of its sparsity properties. The performance of this numerical algorithm will be
illustrated on problems of video denoising.

2. SHEARLET REPRESENTATIONS

The shearlet approach is derived from the framework of wavelets with composite dilations,17,18 which are the
collections of functions in L2(Rn) of the form

{ψj,ℓ,k(x) = | detA|j/2 ψ(BℓA
jx− k) : j ∈ Z, ℓ ∈ Λ, k ∈ Zn}, (2)

where ψ ∈ L2(Rn), A is an expanding invertible n × n matrix, B is matrix for which | detB| = 1 and Λ is a
countable indexing set.
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Figure 1. Frequency support of a representative shearlet function ψj,ℓ,k, inside the pyramidal region DC . The orientation
of the support region is controlled by ℓ = (ℓ1, ℓ2); its shape is becoming more elongated as j increases (j = 4 in this plot).

In the case of shearlets, the matrices {Bℓ} in (2) are shearing matrices and they control the orientation of
the elements of the representation function system. Specifically, the 3D shearlet systems have the form:{

ψ
(d)
j,ℓ,k = |detA(d)|

j
2 ψ(d)(B

(d)
ℓ (A(d))jx− k): j ∈ Z, ℓ = (ℓ1, ℓ2) ∈ Λj , k ∈ Z3, d = 1, 2, 3

}
,

2



where ψ(d) ∈ L2(R3), Λj ⊂ Z2 is the set {(ℓ1, ℓ2) : −2j ≤ ℓ1, ℓ2 ≤ 2j} and the matrices A(d), B
(d)
ℓ are given by

A(1) =

4 0 0
0 2 0
0 0 2

, A(2) =

2 0 0
0 4 0
0 0 2

, A(3) =

2 0 0
0 2 0
0 0 4

,
B

(1)
ℓ =

1 ℓ1 ℓ2
0 1 0
0 0 1

, B(2)
ℓ =

 1 0 0
ℓ1 1 ℓ2
0 0 1

, B(3)
ℓ =

 1 0 0
0 1 0
ℓ1 ℓ2 1

.
The generators ψ(d) of the shearlet system are chosen to be the smooth band-limited function defined by

ψ̂(1)(ξ1, ξ2, ξ3) = ψ̂1(ξ1) ψ̂2

(ξ2
ξ1

)
ψ̂2

(ξ3
ξ1

)
, ψ̂(2)(ξ1, ξ2, ξ3) = ψ̂1(ξ2) ψ̂2

(ξ1
ξ2

)
ψ̂2

(ξ3
ξ2

)
,

and ψ̂(3)(ξ1, ξ2, ξ3) = ψ̂1(ξ3) ψ̂2

(ξ1
ξ3

)
ψ̂2

(ξ1
ξ3

)
,

where ψ1 and ψ2 satisfy the following assumptions:

(i) ψ̂1 ∈ C∞(R̂), supp ψ̂1 ⊂ [− 1
2 ,−

1
16 ] ∪ [ 1

16 ,
1
2 ] and∑

j≥0

|ψ̂1(2
−2jω)|2 = 1 for |ω| ≥ 1

8
; (3)

(ii) ψ̂2 ∈ C∞(R̂), supp ψ̂2 ⊂ [−1, 1] and

|ψ̂2(ω − 1)|2 + |ψ̂2(ω)|2 + |ψ̂2(ω + 1)|2 = 1 for |ω| ≤ 1. (4)

It was shown in Ref. 14 that there are several examples of functions satisfying these properties. Hence, the

shearlet elements ψ
(d)
j,ℓ,k form a collection of well-localized waveforms, at various scales dependent on j ∈ Z, with

orientations controlled by the two–dimensional index ℓ = (ℓ1, ℓ2) ∈ Z2 and spatial location k ∈ Z3. As illustrated
in Fig. 1, the shearlet supports become increasingly more elongated at finer scales.

Using the assumptions above, a direct computations shows that

∑
j≥0

2j∑
ℓ1=−2j

2j∑
ℓ2=−2j

|ψ̂(1)(ξ A−jB−ℓ)|2 =
∑
j≥0

2j∑
ℓ1=−2j

2j∑
ℓ2=−2j

|ψ̂1(2
−2j ξ1)|2 |ψ̂2(2

j ξ2
ξ1

− ℓ1)|2 |ψ̂2(2
j ξ3
ξ1

− ℓ2)|2 = 1,

for (ξ1, ξ2, ξ3) ∈ DC1 , where DC1 = {(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ1| ≥ 1
8 , |

ξ2
ξ1
| ≤ 1, | ξ3ξ1 | ≤ 1}. That is, the 3D shearlet

system associated with the index d = 1 is a Parseval frame for the subspace of L2(R3) of functions whose
frequency support is contained in pyramidal region DC1 . A similar property holds for the shearlet systems
associated with d = 2, 3, which will generate Parseval frames for the subspaces of L2(R3) of functions whose

frequency support is contained in pyramidal regions DC2 = {(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ2| ≥ 1
8 , |

ξ1
ξ2
| ≤ 1, | ξ3ξ2 | ≤ 1} and

DC3 = {(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ3| ≥ 1
8 , |

ξ1
ξ3
| ≤ 1, | ξ2ξ3 | ≤ 1}, respectively. The pyramidal regions DCd

, d = 1, 2, 3, in
the Fourier domain, are illustrates in Fig. 2.

To obtain a Parseval frame for the whole space L2(R3), it will be sufficient to combine the shearlet system
described above with a Parseval frame {ϕk : k ∈ Z3} for the subspace of L2(R3) of functions whose frequency

support is contained in the low frequency region V = {(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ1|, |ξ2|, |ξ3| ≤ 1
8}. Notice that, in order

to avoid the overlap of the elements of the shearlet system associated with the various pyramidal regions, they
are projected into the corresponding pyramidal regions. Namely, for d = 1, 2, 3 we define

ψ̃j,ℓ1,ℓ2,k,d =

{
ψ
(d)
j,ℓ1,ℓ2,k

if |ℓ1|& |ℓ2| < 2j

PCd
ψ
(d)
j,ℓ1,ℓ2,k

if ℓ1 = ±2j or ℓ2 = ±2j ,
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Figure 2. From left to right, the figure illustrates the pyramidal regions DC1 , DC2 and DC3 in the frequency space R̂3.

where PCd
is the orthogonal projection into the subspaces of L2(R3) of functions whose frequency support is

contained in pyramidal regions DCd
. This shows that the elements of the shearlet system whose frequency

support overlap the boundary of the pyramidal regions get truncated. For convenience of notation, we denote
the coarse scale system as {ψ̃−1,k = PV ϕk : k ∈ Z3}. Thus, we have the following result

Theorem 2.1. Let M = Mf ∪Mc be the indices associated with the fine-scale and the coarse scale shearlets,
respectively, given by

• Mf = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ 0, |ℓ1|, |ℓ2| ≤ 2j , k ∈ Z3, d = 1, 2, 3} (fine-scale shearlets)

• Mc = {µ = (j, k) : j = −1, k ∈ Z3} (coarse-scale shearlets).

The 3D system of shearlets {ψ̃µ, µ ∈ M} is a Parseval frame of L2(R3); that is, for any f ∈ L2(R3),∑
µ∈M

|⟨f, ψ̃µ⟩|2 = ∥f∥2.

The mapping from f ∈ L2(R3) into the elements ⟨f, ψ̃µ⟩, µ ∈ M, is called the 3D shearlet transform.

As mentioned above, by a result in Ref. 15, 16, the 3D Parseval frame of shearlets {ψ̃µ, µ ∈ M} achieves
the essentially optimal approximation rate (1) for functions of 3 variables which are C2 regular away from
discontinuities along C2 surfaces.

3. 3D DISCRETE SHEARLET TRANSFORM

We now derive a digital implementation of the 3D shearlet transform introduced above. Our approach follows
essentially the same architecture as the algorithm of the 2D Discrete Shearlet Transform in Ref. 12, which consists
of the cascade of a multiscale decomposition with a stage of directional filtering, based on the use of Pseudopolar
FFT. The main novelty of the 3D approach is the design of a new directional filtering stage.

As a first step, we will express the elements of the shearlet system in a form that is more convenient to derive
an algorithmic implementation of the shearlet transform. For ξ = (ξ1, ξ2, ξ3) in R̂3, j ≥ 0, and −2j ≤ ℓ1, ℓ2 ≤ 2j ,
let the directional windowing function for the pyramidal region DC1 be defined by

Ŵ
(1)
j,ℓ (ξ) =



ψ̂2(2j
ξ2
ξ1

− ℓ1)ψ̂2(2j
ξ3
ξ1

− ℓ2)XDC1
(ξ) + ψ̂2(2j

ξ1
ξ2

− ℓ1)ψ̂2(2j
ξ3
ξ2

− ℓ2)XDC2
(ξ)

+ ψ̂2(2j
ξ1
ξ3

− ℓ1)ψ̂2(2j
ξ2
ξ3

− ℓ2)XDC3
(ξ) if (ℓ1, ℓ2) = ±(2j , 2j);

ψ̂2(2j
ξ2
ξ1

− ℓ1)ψ̂2(2j
ξ3
ξ1

− ℓ2)XDC1
(ξ) + ψ̂2(2j

ξ1
ξ2

− ℓ1)ψ̂2(2j
ξ3
ξ2

− ℓ2)XDC2
(ξ) if ℓ1 = ±2j , |ℓ2| < 2j ;

ψ̂2(2j
ξ2
ξ1

− ℓ1)ψ̂2(2j
ξ3
ξ1

− ℓ2)XDC1
(ξ) + ψ̂2(2j

ξ1
ξ3

− ℓ1)ψ̂2(2j
ξ2
ξ3

− ℓ2)XDC3
(ξ) if ℓ2 = ±2j , |ℓ1| < 2j ;

ψ̂2(2j
ξ2
ξ1

− ℓ1)ψ̂2(2j
ξ3
ξ1

− ℓ2) otherwise.
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Similarly, we define the functions Ŵ
(2)
j,ℓ and Ŵ

(3)
j,ℓ for pyramidal region DC2 and DC3 by swapping (ξ1, ξ2, ξ3) ↔

(ξ2, ξ1, ξ3) and (ξ1, ξ2, ξ3) ↔ (ξ3, ξ2, ξ1), respectively. Notice that it follows from the properties of the shearlet
construction that

3∑
d=1

∑
j≥0

2j∑
ℓ1=−2j

2j∑
ℓ2=−2j

Ŵ
(d)
j,ℓ (ξ) = 1, for |ξ1|, |ξ2|, |ξ3| ≥ 1

8 . (5)

Using this notation, we can write the elements of the 3D shearlet system as

ψ̂
(d)
j,ℓ,k = 2−2j V (2−2jξ) Ŵ

(d)
j,ℓ (ξ) e

−2πiξA−j
d B−ℓ

d k,

where V̂ (ξ) = ψ̂1(ξ1)XDC1
(ξ) + ψ̂1(ξ2)XDC2

(ξ) + ψ̂1(ξ3)XDC3
(ξ). Hence, the (fine scale) 3D shearlet transform of

f ∈ L(R3) is the mapping

f → ⟨f, ψ(d)
j,ℓ,k⟩ =

∫
R3

f̂(ξ) V̂ (2−2jξ) Ŵ
(d)
j,ℓ (ξ)e

2πiξA−j
d B−ℓ

d k dξ, (6)

where j ≥ 0, ℓ = (ℓ1, ℓ2) with |ℓ1|, |ℓ2| ≤ 2j , k ∈ Z3 and d = 1, 2, 3. This expression shows that, for j, ℓ, k and d
fixed, the shearlet transform of f can be computed using the following steps:

1. In the frequency domain, compute the j-th subband decomposition of f as f̂j(ξ) = f̂(ξ) V̂ (2−2jξ).

2. Compute the (j, ℓ, d)-th directional subband decomposition of f as f̂j,ℓ,d(ξ) = f̂j(ξ) Ŵ
(d)
j,ℓ (ξ).

3. Compute the inverse Fourier transform. This step can be represented as a convolution of the j-th subband

decomposition of f and the directional filter W
(d)
j,ℓ , that is, ⟨f, ψ

(d)
j,ℓ,k⟩ = fj ∗W (d)

j,ℓ (A
−j
d B−ℓ

d k).

Hence, the shearlet transform of f can be described as a cascade of subband decomposition and directional
filtering, as illustrated in Fig. 3.

Figure 3. The figure shows one stage of the 3D Discrete Shearlet Transform algorithm. Input data are decomposed into a
low pass and high pass components. Next, the high pass component is decomposed into several directional subbands, whose
number increases quadratically at finer resolution levels.
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3.1 3D DST Algorithm

Our new numerical algorithm for computing the digital values of the 3D shearlet transform, which is called 3D
DST algorithm, follows closely the 3 steps indicated above.

Before describing the numerical algorithm, let us recall that a digital 3D function f is an element of ℓ2(Z3
N ),

where N ∈ N, that is, it consists of a finite array of values {f [n1, n2, n3] : n1, n2, n2 = 0, 2, . . . , N − 1}. Here and
in the following, we adopt the convention that a bracket [·, ·, ·] denotes an array of indices whereas the standard
parenthesis (·, ·, ·) denotes a function evaluation. Given a 3D digital function f ∈ ℓ2(Z3

N ), its Discrete Fourier
Transform is given by:

f̂ [k1, k2, k3] =
1

N3/2

N−1∑
n1,n2,n3=0

f [n1, n2, n3] e
−2πi(

n1
N k1+

n2
N k2+

n3
N k3), −N

2
≤ k1, k2, k3 <

N

2
.

We shall interpret the numbers f̂ [k1, k2, k3] as samples f̂ [k1, k2, k3] = f̂(k1, k2, k3) from the trigonometric poly-
nomial

f̂(ξ1, ξ2, ξ3) =
1

N3/2

N−1∑
n1,n2,n3=0

f [n1, n2, n3] e
(−2πi(

n1
N ξ1+

n2
N ξ2+

n3
N ξ3)).

We can now proceed with the description of the implementation of the 3D DST algorithm.

First, to calculate f̂j(ξ) in the digital domain, we perform the computation in the DFT domain as the product

of the DFT of f and the DFT of the filters vj corresponding to V̂ (2−2j ·). This step can be implemented using the
Laplacian pyramid algorithm,2 which results in the decomposition the input signal f ∈ ℓ2(Z3

N ) into a low-pass
and high-pass components, as shown in Fig. 3.

Next, to compute the directional components f̂j,ℓ,d of f̂ , the j-th subband component of f is resampled onto
a psedospherical grid and a two-dimensional band-pass filter is applied. The pseudospherical grid is the 3D
extension of the 2D pseudopolar grid and is parametrized by planes going through the origin and their slopes.
That is, the pseudo-spherical coordinates (u, v, w) ∈ R3 are given by

(u, v, w) =


(ξ1,

ξ2
ξ1
, ξ3ξ1 ) if (ξ1, ξ2, ξ3) ∈ DC1 ,

(ξ2,
ξ2
ξ1
, ξ3ξ1 ) if (ξ1, ξ2, ξ3) ∈ DC2

,

(ξ3,
ξ1
ξ3
, ξ2ξ3 ) if (ξ1, ξ2, ξ3) ∈ DC3 .

Using this change of variables, we have that

f̂j,ℓ,d(ξ) = ĝj(u, v, w) Ŵ
(d)(2jv − ℓ1) Ŵ

(d)(2jw − ℓ2), (7)

where ĝj(u, v, w) is the function f̂j(ξ), after the change of variables, and Ŵ (d) = Ŵ
(d)
0,0 . This expression

shows that the different directional subbands are obtained by simply translating the window function Ŵ in
the pseudo-spherical domain. Thus, the discrete samples gj [n1, n2, n3] = gj(n1, n2, n3) are the values of the DFT
of fj [n1, n2, n3] on the pseudo-spherical grid. This can be computed by direct reassignment or adapting the
Pseudo-polar DFT algorithm.1

Let {w(d)
j,ℓ1,ℓ2

[n2, n3] : n2, n3 ∈ Z} be the sequence whose DFT gives the discrete samples of the window

function Ŵ (d)(2jv− ℓ1) Ŵ (d)(2jw− ℓ2); that is, ŵ(d)
j,ℓ1,ℓ2

[k2, k3] = Ŵ (d)(2jk2− ℓ1) Ŵ (d)(2jk3− ℓ2). Then, for fixed
k1 ∈ Z, we have

F2

(
F−1

2 (ĝj) ∗ w(d)
j,ℓ1,ℓ2

)
[k1, k2, k3] = ĝj [k1, k2, k3] ŵ

(d)
j,ℓ1,ℓ2

[k2, k3], (8)

where F2 is two dimensional DFT, defined as

F2(f)[k2, k3] =
1

N

N−1∑
n2,n3=0

f [n2, n3] e
(−2πi(

n2
N k2+

n3
N k3)), −N

2
≤ k2, k3 <

N

2
.
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Thus, equation (8) gives the algorithmic procedure for computing the discrete samples of the right hand side of
(7). That is, the 3D shearlet coefficients (6) can be calculated from equation (8) by computing the inverse psedo-
spherical DFT of by directly re-assembling the Cartesian sampled values and applying the inverse 3-dimensional
DFT.

An alternative approach consists in mapping the filters back in Cartesian domain and then perform a convo-
lution with band-passed data. Specifically if ϕP is the mapping from Cartesian domain into the pseudo-spherical
domain then the 3D shearlet coefficients in the Fourier domain can be expressed as

ϕ−1
P

(
ĝj [k1, k2, k3] ŵ

(d)
j,ℓ1,ℓ2

[k2, k3]
)
.

Following the approach in Ref. 12, this can be expressed as

ϕ−1
P (ĝj [k1, k2, k3]) ϕ

−1
P

(
δ̂P [k1, k2, k3]ŵ

(d)
j,ℓ1,ℓ2

[k2, k3]
)
,

where δ̂P is the DFT of the (discrete) delta distribution in the pseudo-spherical grid. Thus the 3D shearlet
coefficients in the Fourier domain can be expressed as

f̂j [k1, k2, k3] ĥ
(d)
j,ℓ1,ℓ2

[k1, k2, k3],

where ĥ
(d)
j,ℓ1,ℓ2

= ϕ−1
P

(
δ̂P [k1, k2, k3]ŵ

(d)
j,ℓ1,ℓ2

[k2, k3]
)
. Notice that the new filters h

(d)
j,ℓ1,ℓ2

are not obtained by a

simple change of variables, but by applying a resampling which converts the pseudo-spherical grid to a Cartesian
grid. Although these filters are not compactly supported, they can be implemented with a matrix representation
that is smaller than the size of the data f , hence allowing to implement the computation of the 3D DST using
a convolution in space domain.

The 3D DST algorithm runs in O(N3 log(N)) operations.

3.2 Implementation issues.

There are many possible choices for the directional filters W
(d)
j,ℓ which satisfy the required condition (5). For this

paper, we designed Meyer-like filters by adapting the approach used in Ref. 12 for the 2D setting. As mentioned
above, by taking the inverse DFT, it is possible to implement these filters using matrix representations of size
L3 with L ≪ N , where N3 is the data size. In the the numerical experiment considered below, we have chosen
L = 24, which appears to be a good compromise between localization and computation times. Finally, for the
number of directional bands, our algorithm allows us to choose different number of directional bands in each
pyramidal region.

4. NUMERICAL EXPERIMENTS

The ability of the 3D shearlet transform to deal with geometric information efficiently and its sparsity properties
have the potential to produce significant improvement in many 3D data processing applications. As an example
of these applications, we have developed an algorithm for video denoising.

In our model, we only considered the situation of zero-mean additive white Gaussian noise, which offers a
good model for many practical situations. Hence, we will suppose that, for a given video f , we observe

y = f + n,

where n is Gaussian white noise with zero mean and standard deviation σ.

It is well known that the ability to sparsely represent data is very useful in decorrelating the signal from
the noise. This notion has been precisely formalized in the classical wavelet shrinkage approach by Donoho and
Johnstone,8–10 which has lead to many successful denoising algorithms. In the following, we apply a simple video
denoising strategy based on hard thresholding. Although this is a rather crude form of thresholding and more
sophisticated methods are available, still hard thresholding is a good indication of the potential of a transform
in denoising. Hence, we attempt to recover the video f from the observed data y as follows.

7



1. We compute the 3D shearlet decomposition of y as y =
∑

µ⟨y, ψ̃µ⟩ ψ̃µ.

2. We set to zero the coefficients cµ(y) = ⟨y, ψ̃µ⟩ such that |cµ(y)| < Tµ, where Tµ depends on the noise level.

3. We obtain an approximation f̃ of f as

f̃ =
∑
µ

c∗µ(y) ψ̃µ, where c∗µ(y) = cµ(y) if |cµ(y)| ≥ Tµ; c
∗
µ(y) = 0 otherwise.

For the choice of the threshold parameter, we adopt the classical BayesShrink method,5 consisting in choosing

Tj,ℓ =
σ2

σj,ℓ
,

where σj,ℓ is the standard deviation of the shearlet coefficients in the (j, ℓ)-th subband. For the 3D discrete
shearlet decomposition, in all our tests we have applied a 3-level decomposition according to the algorithm
described above. For the number of directional bands, we have chosen n = 16, 16, 64 (from the coarsest to
the fines level) in each of the pyramidal region. Even though this does not exactly respect the rule canonical
choice (n = 4, 16, 64) prescribed by the continuous model, we found that increasing the number of directional
subbands at the coarser level produces some improvement in the denoising performance. Notice that, in our
numerical implementation, downsampling occurs only at the bandpass level, and there is no anisotropic down-
sampling. Thus, the numerical implementation of the 3D DST which we found most effective in the denoising
algorithm is highly redundant. Specifically, for data set of size N3, a 3-level 3D DST decomposition produces
3 ∗

(
64 ∗N3 + 16 ∗ ( 23N)3 + 16 ∗ ( 26N)3

)
+ ( 26N)3 ≈ 208 ∗N3 coefficients.

The 3D shearlet-based thresholding algorithm was tested on 3 video sequences, called mobile, coastguard and
tempete, for various values of the standard deviation of the noise. All these video sequences, which have been
resized to 192× 192× 192, can be downloaded from the website http://www.cipr.rpi.edu.

For a baseline comparison, we tested the performance of the shearlet-based denoising algorithm (denoted by
3DSHEAR) against the following state-of-the-art algorithms: 3D Curvelets (denoted by 3DCURV, cf. Ref. 3),
Undecimated Discrete Wavelet Transform (denoted by UDWT, based on symlet of length 16), Dual Tree Wavelet
Transform (denoted by DTWT, cf. Ref. 22) and Surfacelets (denoted by SURF, cf. Ref. 21). We also compared
against the 2D discrete shearlet transform (denoted by 2DSHEAR), which was applied frame by frame, in order
to illustrate the benefit of using a 3D transform, rather than a 2D transform acting on each frame.

As a performance measure, we used the standard peak signal-to-noise ratio (PSNR), measure in decibel(dB),
which is defined by

PSNR = 20 log10
255N

∥f − f̃∥F

,

where ∥·∥F is the Frobenius norm and f is an array of size N ×N ×N.

The performance of the shearlet-based denoising algorithm 3DSHEAR relative to the other algorithms is
shown Table I, which illustrates the denoising performance, measured in PSNR, for various video sequences and
noise levels. The noise standard deviation is taken at values 30, 40 and 50, corresponding to 18.62 dB, 16.12 dB
and 14.18 dB, respectively, in PSNR. Only the PSNR values are shown in the table. Notice that performance
values for the algorithms 3DCURV, UDWT and DTWT are taken from Ref. 21.

The data in Table I (with the numbers in bold indicating the best performance) show that the 3D Discrete
Shearlet Denoising Algorithm 3DSHEAR is highly competitive against both traditional and other state-of-the-
art video denoising algorithm. In particular, 3DSHEAR consistently outperforms the curvelet-based routine
3DCURV, the wavelet-based routines UDWT and DTWT and the 2D shearlet-based algorithm. 3DSHEAR also
outperforms or is essentially equivalent to the surfacelets-based denoising algorithm in all cases we tested, except
for one case, namely the mobile video sequence when the noise level has PSNR = 14.18 dB (corresponding to
noise with standard deviation equal to 50).
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Table I: Video denoising performance using different video sequences.
PSNR (dB) Mobile Coastguard Tempete

Noise 18.62 16.12 14.18 18.62 16.12 14.18 18.62 16.12 14.18
3DCURV 23.54 23.19 22.86 25.05 24.64 24.29
UDWT 24.02 22.99 22.23 25.95 24.95 24.2
DTWT 24.56 23.43 22.58 26.06 25.01 24.22
SURF 28.39 27.18 26.27 26.82 25.87 25.15 24.2 23.26 22.61

3DSHEAR 28.68 27.15 25.97 27.36 26.10 25.12 25.24 23.97 22.81
2DSHEAR 25.97 24.40 23.20 25.20 23.82 22.74 22.89 21.63 20.75

DWT 24.93 23.94 23.03 24.34 23.44 22.57 22.09 21.5 20.92

In Fig. 4 and 5, we compare the performance of the various video denoising routines on a typical frame
extracted from the denoised video sequence. Although more subjective in nature, the figures shows that the
visual quality of the shearlet-denoised frame is also superior.

The different algorithms we have compared are based on different design and computational strategies, which
play an essential in their differences in performance. One of the relevant factors is the redundancy of the
transform, which accounts for the worse performance of 3DSHEAR in terms of running times. This is illustrated
in the Table II, which compares the running times for different 3D transforms, applied to a data set of size 1933;
all routines were run using the same system which is based on an Intel CPU 2.93GHz.

Table II: Comparison of running times for different 3D transforms.
Algorithm Running time (data size: 1923)

SURF 34 sec
3DSHEAR 263 sec
2DSHEAR 154 sec
3D DWT 7.5 sec
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