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ABSTRACT

Sparse representations of multidimensional data have gained more and more prominence in recent years, in
response to the need to process large and multi-dimensional data sets arising from a variety of applications in
a timely and effective manner. This is especially important in applications such as remote sensing, satellite
imagery, scientific simulations and electronic surveillance. Directional multiscale systems such as shearlets are
able to provide sparse representations thanks to their ability to approximate anisotropic features much more
efficiently than traditional multiscale representations. In this paper, we show that the shearlet approach is
essentially optimal in representing a large class of 3D containing discontinuities along surfaces. This is the first
nonadaptive approach to achieve provably optimal sparsity properties in the 3D setting.
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1. INTRODUCTION

During the last five years, starting with the introduction of curvelets2 and shearlets,14 a new class of 2-dimensional
representations have emerged which combine multiscale analysis with the ability to efficiently capture anisotropic
and directional information. These new representations go far beyond traditional wavelets with respect to their
approximation properties, since they can deal much more effectively with edges and other distributed singularities
which are dominant features in typical images. Indeed, even though curvelets and shearlets are based on very
different mathematical constructions, both systems form a tight frame of well localized waveforms defined not only
at various scales and locations, like wavelets, but also at various orientations, and with highly anisotropic shapes.
Thanks to their properties, both methods were found to provide essentially optimally sparse representations for
a large class of 2-dimensional data,2,9 hence outperforming standard wavelet approximations.

Specifically, consider the class E of cartoon-like images, defined as the collection of bounded functions on
[0, 1]2 which are C2 regular, up to discontinuities along C2 curves (see Ref.[9] for the precise definition). For any
f ∈ E, let fSN be the corresponding N -term approximation obtained by taking the N largest coefficients in the
shearlet (or curvelet) expansion. Then the approximation error satisfies the asymptotic decay rate

∥f − fSN∥22 ≍ N−2(logN)3, as N → ∞, (1)

which is essentially the optimal error rate. Indeed, one can prove4 that no orthonormal bases or tight frames can
yield approximation error rates that are better than N−2. In particular, this shows that shearlet and curvelet
approximations greatly improve wavelet approximations whose error rate is only O(N−1).

Due to their excellent approximation properties, shearlets and curvelets have been successfully employed in
a number of signal and image processing applications including image denoising, edge detection and geometric
separation.3,5, 7, 8, 18,22 However, all this research was so far focused essentially on the 2-dimensional setting.
While it has been suggested in several papers that the general ideas of this approach can be extended to higher
dimensions, and even 3-dimensional versions of the corresponding numerical codes have been introduced,1 no
proper 3D theory was developed until very recently. In particular, no results about the approximation properties
of 3D shearlets or curvelets systems were known so far. It is important to notice that the extension of the
approximation estimate (1) to the 3D setting is highly nontrivial, since the arguments used in the 2D case do not
extend directly to higher dimensions. In addition, it must be recalled that there is not a unique way to extend
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the construction of shearlets or curvelets to dimensions larger than 2, due to the increasing complexity of the
geometry in higher dimensions.

In this paper, we describe a number of very recent results, illustrating the extension of the shearlet approach
to 3D. Specifically, we show that the shearlet construction extends naturally to the 3-dimensional setting and this
approach yields optimally sparse nonadaptive representations of 3D data. In fact, we will construct a Parseval
frame of shearlets to represent 3-dimensional functions f which are smooth away from discontinuities along C2

boundaries, and show that the N -term approximation fSN , obtained from the N largest coefficients of its shearlet
representation, satisfies the estimate:

∥f − fSN∥22 ≍ N−1(logN)2, as N → ∞. (2)

Similar to the corresponding 2D estimate, this is essentially the optimal approximation rate for this type of
functions,4 in the sense that no orthonormal bases or Parseval frames can yield approximation rates that are better
than N−1. In contrast, more traditional methods based on wavelet and Fourier approximations are significantly
less efficient since their asymptotic approximation rate only decays as N−1/2 and N−1/3, respectively.6,19 This
result was first announced by the authors in Ref.[11] and is the first and, at present, the only nonadaptive
construction which is provably optimal (up to a loglike factor) for a large class of 3D data.

Remark. Very recently, a similar (essentially) optimal sparsity result was announced by Kutyniok, Lemvig
and Lim, which is based on a new construction of compactly supported shearlet frames17 (see also [16] for the
construction of compactly supported shearlet frames in the 2D case). No proof of this result is available at
the moment. Notice that the structure of this new system of shearlets is very different from the one which is
discussed in this paper.

2. SHEARLETS IN 3D

The shearlet approach is derived from the framework of wavelets with composite dilations, originally introduced
by the authors and their collaborators,14,15 which defines collections of functions in L2(Rn) of the form

{ψj,ℓ,k(x) = | detA|j/2 ψ(BℓA
jx− k) : j ∈ Z, ℓ ∈ L, k ∈ Zn}, (3)

where ψ ∈ L2(Rn), A is an expanding invertible n × n matrix, B is matrix for which | detB| = 1 and L
is a countable indexing set. This setting provides a general method for the construction of function systems
made up of functions ranging not only at various scales (associated with the powers of the dilation matrix A)
and locations, but also according to various orthogonal transformations controlled by the matrices {Bℓ}. For
example, the matrices {Bℓ} can be associated with discrete rotations, or with shearing transformations, as in
the case of shearlets. One major feature of this approach is that all the elements of the function systems are
obtained from the action of a countable collection of unitary operators on a single (or possibly finite) generator
function, and this offers several advantages in terms of mathematical flexibility, ability to naturally generalize
to higher dimensions and close connection with the classical theory of affine systems. This is a major difference
with respect to the curvelet approach, which is not of this type.

2.1 Shearlet Systems in 3D

In dimension n = 2, a shearlet system∗ is obtained from (3) by choosing A = ( 4 0
0 2 ) and Bℓ = ( 1 ℓ

0 1 ), ℓ ∈ Z.
Notice that the matrices Aj , j ∈ Z, produce parabolic scaling, that is, the dilation factor along one coordinate
axis is quadratic with respect to the orthogonal direction. The matrices Bℓ, ℓ ∈ Z, on the other hand, are non-
expanding and are called shearing matrices due to the particular orthogonal geometric action to which they are
associated.15 As mentioned above and proved by the authors in a previous work,9 for an appropriate generating
function ψ ∈ L2(R2), the corresponding 2D shearlet system forms a Parseval frame of L2(R2) which provides
nearly optimal approximation properties for cartoon-like images as in the estimate (1). Notice that the parabolic
scaling plays a critical role in the proof of this result.

∗We are referring here to the shearlet system on the horizontal cone, that is, one with frequency support in the region
{(ξ1, ξ2) : | ξ2ξ1 | ≤ 1}. The complementary shearlet system on the vertical cone is defined in a similar way9 with A = ( 2 0

0 4 )

and Bℓ = ( 1 0
ℓ 1 ).



To extend the shearlet systems to n = 3, there is more than one options which is consistent with the 2D
construction. In particular, it was already observed in an early paper15 that 3 × 3 shearlet matrices can be
defined as

Bℓ =

1 ℓ1 ℓ2
0 1 ℓ3
0 0 1

 , ℓ = (ℓ1, ℓ2, ℓ3) ∈ Z3,

or as

B
(1)
ℓ =

1 ℓ1 ℓ2
0 1 0
0 0 1

 , ℓ = (ℓ1, ℓ2) ∈ Z2. (4)

In the following, we will consider the second choice, since it simplifies the construction of the generator function.
For the dilation matrix, there are two ways to extend the parabolic scaling matrix to 3D, namely, one can choose

A =

4 0 0
0 4 0
0 0 2

 or A(1) =

4 0 0
0 2 0
0 0 2

 . (5)

As will be shown below, the choice of dilation matrix A(1) leads to a system of wafer-like waveforms, which is
well suited to approximate surface singularities. On the other hand, the second choice of dilation matrices leads
to a system of needle-like waveforms, which appears to be better suited to capture curvilinear singularities. It
turns out that the first choice is the correct one if one wants to achieve essentially optimal approximations of
piecewise smooth 3D data. Hence, for a fixed shearlet generator function ψ ∈ L2(R3), we define a 3D shearlet
system as a collection of functions of the form

{ψj,ℓ,k(x) = | detA(1)|j/2 ψ(B
(1)
ℓ Aj

(1)x− k) : j ∈ Z, ℓ ∈ L ⊂ Z2, k ∈ Z3}, (6)

where the shear matrices B
(1)
ℓ are given by (4) and the matrix A(1) is given by (5).

Let us now show how to construct a shearlet generator ψ such that the corresponding 3D shearlet system is
a well localized Parseval frame of shearlets. As usual, it is convenient to construct the system of shearlets in the
Fourier domain. In the following, we will adopt the following definition of the Fourier transform of a function
f ∈ L2(R3):

f̂(ξ) =

∫
R3

f(x) e−2πiξx dx,

where we assume that the vectors x ∈ R3 (the space domain) are column vectors, whereas the vectors ξ ∈ R̂3

(the Fourier domain) are row vectors. It follows that, if M is a 3 × 3 invertible matrix and j ∈ Z, the Fourier
transform of

fj(x) = | detM |j/2f(M jx)

is the function
f̂j(ξ) = | detM |−j/2f(ξM−j).

We can now state and prove the following useful result.

Theorem 2.1. For ξ = (ξ1, ξ2, ξ3) ∈ R̂3, let ψ(1) be defined by

ψ̂(1)(ξ) = ψ̂1(ξ1) ψ̂2

(ξ2
ξ1

)
ψ̂2

(ξ3
ξ1

)
,

where ψ1 and ψ2 satisfy the following assumptions:

(i) ψ̂1 ∈ C∞(R̂), supp ψ̂1 ⊂ [− 1
2 ,−

1
16 ] ∪ [ 1

16 ,
1
2 ] and∑

j≥0

|ψ̂1(2
−2jω)|2 = 1 for |ω| ≥ 1

8
; (7)
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Figure 1. The figure illustrates the frequency support of a typical element of the shearlet system (6). Notice that these
elements are contained inside the pyramidal region DC1 defined in Theorem 2.1.

(ii) ψ̂2 ∈ C∞(R̂), supp ψ̂2 ⊂ [−1, 1] and

|ψ̂2(ω − 1)|2 + |ψ̂2(ω)|2 + |ψ̂2(ω + 1)|2 = 1 for |ω| ≤ 1. (8)

Then the 3D shearlet system (6), where ψ = ψ(1) and L = {(ℓ1, ℓ2) : |ℓ1|, |ℓ2| ≤ 2j}, is a Parseval frame for

L2(DC1)
∨ = {f ∈ L2(R3) : supp f̂ ⊂ DC1}, where DC1 = {(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ1| ≥ 1

8 , |
ξ2
ξ1
| ≤ 1, | ξ3ξ1 | ≤ 1}.

Proof. It follows from equation (8) that, for any j ≥ 0,

2j∑
m=−2j

|ψ̂2(2
j ω +m)|2 = 1, for |ω| ≤ 1. (9)

By direct computation, in the frequency domain, the elements of the shearlet system (6) have the form

ψ̂
(1)
j,ℓ,k(ξ) = | detA(1)|−j/2 ψ(1)(ξA−j

(1)B
(1)
−ℓ ) e

2πiξA−j
(1)

B
(1)
−ℓk.

Hence, using equations (7), (9) and the observation that

(ξ1, ξ2, ξ3)A
−j
(1)B

(1)
−ℓ = (2−2jξ1,−ℓ12−2jξ1 + 2−jξ2,−ℓ22−2jξ1 + 2−jξ3),

a direct computation gives that:

∑
j≥0

2j∑
ℓ1=−2j

2j∑
ℓ2=−2j

|ψ̂(1)(ξ A−j
(1)B

(1)
−ℓ )|

2 =
∑
j≥0

2j∑
ℓ1=−2j

2j∑
ℓ2=−2j

|ψ̂1(2
−2j ξ1)|2 |ψ̂2(2

j ξ2
ξ1

− ℓ1)|2 |ψ̂2(2
j ξ3
ξ1

− ℓ2)|2

=
∑
j≥0

|ψ̂1(2
−2j ξ1)|2

2j∑
ℓ1=−2j

|ψ̂2(2
j ξ2
ξ1

− ℓ1)|2
2j∑

ℓ2=−2j

|ψ̂2(2
j ξ3
ξ1

− ℓ2)|2 = 1,

for all (ξ1, ξ2, ξ3) ∈ DC1 . This equality, together with the fact that ψ̂(1) is supported inside [−1
2 ,

1
2 ]

3, implies that

the shearlet system (6), where ψ = ψ(1) and L = {(ℓ1, ℓ2) : |ℓ1|, |ℓ2| ≤ 2j}, is a Parseval frame for L2(DC1)
∨.
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Figure 2. From left to right, the figure illustrates the pyramidal regions DC1 , DC2 and DC3 in the frequency space R̂3.

As shown in Ref.[9], there are several examples of functions ψ1, ψ2 satisfying the assumptions of Theorem 2.1.

Similar to the corresponding 2D construction,9 the result shows that the shearlet elements {ψ(1)
j,ℓ,k} are well-

localized waveforms since each ψ̂
(1)
j,ℓ,k ∈ C∞

0 (R̂3). The functions {ψ(1)
j,ℓ,k} are ranging over countably many scales

(associated with j ∈ Z), countably many orientations (associated with the two–dimensional indices ℓ = (ℓ1, ℓ2) ∈
Z2) and countably many spatial locations (associated k ∈ Z3). Notice that, for each fixed j ∈ Z, the frequency

support of each ψ
(1)
j,ℓ,k is contained inside a parallelepiped of approximate size 22j × 2j × 2j . Hence these support

regions become increasingly more elongated at finer scales (See Figure 1).

The construction presented above provides a Parseval frame only for the subspace L2(DC1)
∨ of functions in

L2 whose frequency support is contained in the pyramidal region DC1 . To obtain a Parseval frame for the larger
space L2(R3), one can similarly construct a second Parseval frame of shearlets with frequency support in the

pyramidal region DC2 = {(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ2| ≥ 1
8 , |

ξ1
ξ2
| ≤ 1, | ξ3ξ2 | ≤ 1}, and a third Parseval frame of shearlets

with frequency support in the pyramidal region DC3 = {(ξ1, ξ2, ξ3) ∈ R̂3 : |ξ3| ≥ 1
8 , |

ξ1
ξ3
| ≤ 1, | ξ2ξ3 | ≤ 1} (see

Figure 2). Specifically, for ξ = (ξ1, ξ2, ξ3) ∈ R̂3, let ψ(2), ψ(3) be defined by

ψ̂(2)(ξ) = ψ̂1(ξ2) ψ̂2

(ξ1
ξ2

)
ψ̂2

(ξ3
ξ2

)
, ψ̂(3)(ξ) = ψ̂1(ξ3) ψ̂2

(ξ1
ξ3

)
ψ̂2

(ξ2
ξ3

)
,

where ψ1 and ψ2 are defined as above. Also, let

A(2) =

2 0 0
0 4 0
0 0 2

 , A(3) =

2 0 0
0 2 0
0 0 4

 , B
(2)
ℓ =

 1 0 0
ℓ1 1 ℓ2
0 0 1

 , B
(3)
ℓ =

 1 0 0
0 1 0
ℓ1 ℓ2 1

 ,

where ℓ = (ℓ1, ℓ2, ℓ3) ∈ Z3. Then, by repeating the argument of Theorem 2.1, one shows that, for i = 2, 3, the
systems

{ψ(i)
j,ℓ,k(x) = | detA(i)|j/2 ψ(i)(B

(i)
ℓ Aj

(i)x− k) : j ∈ Z, ℓ ∈ L ⊂ Z2, k ∈ Z3}, (10)

where L = {(ℓ1, ℓ2) : |ℓ1|, |ℓ2| ≤ 2j}, are Parseval frames for L2(DCi)
∨, i = 2, 3. Finally, one can easily construct

a Parseval frame of translates {ϕ(·−k) : k ∈ Z3} for V0 = L2([−1
8 ,

1
8 ]

3)∨. Specifically, we will choose ϕ such that

|ϕ̂(ξ)|2 +
∑
j≥0

2j∑
ℓ1,ℓ2=−2j

|ψ̂(ξ A−jB−ℓ)|2χDC1
(ξ) +

∑
j≥0

2j∑
ℓ1,ℓ2=−2j

|ψ̂(2)(ξ A−j
(2)B

(2)
−ℓ )|

2χDC2
(ξ)

+
∑
j≥0

2j∑
ℓ1,ℓ2=−2j

|ψ̂(3)(ξ A−j
(3)B

(3)
−ℓ )|

2χDC3
(ξ) = 1 for a.e. ξ ∈ R̂3.

Thus, using the notation introduced above, we define the pyramid-adapted 3D shearlet system

S(ψ(1), ψ(2), ψ(3), ϕ) = Ψ(ψ(1)) ∪ Ψ̃(ψ(2)) ∪ ˜̃
Ψ(ψ(3)) ∪ Φ(ϕ), (11)



where

Ψ(ψ(1)) = {PC1 ψ
(1)
j,ℓ,k : ψ

(1)
j,ℓ,k(x) = | detA(1)|j/2 ψ(1)(B

(1)
ℓ Aj

(1)x− k) : j ∈ Z, ℓ ∈ L ⊂ Z2, k ∈ Z3},

Ψ̃(ψ(2)) = {PC2 ψ
(2)
j,ℓ,k : ψ

(2)
j,ℓ,k(x) = | detA(2)|j/2 ψ(2)(B

(2)
ℓ Aj

(2)x− k) : j ∈ Z, ℓ ∈ L ⊂ Z2, k ∈ Z3},˜̃
Ψ(ψ(3)) = {PC3 ψ

(3)
j,ℓ,k : ψ

(3)
j,ℓ,k(x) = | detA(3)|j/2 ψ(3)(B

(3)
ℓ Aj

(3)x− k) : j ∈ Z, ℓ ∈ L ⊂ Z2, k ∈ Z3},

Φ(ϕ) = {ϕ(x− k)) : , k ∈ Z3},

L = {(ℓ1, ℓ2) : |ℓ1|, |ℓ2| ≤ 2j} and PCi , i = 1, 2, 3, is the projection operator defined by (PCig)
∧(ξ) = ĝ(ξ)χDCi

(ξ).
Notice that the projection operators PCi

do not affect the elements of the shearlet systems inside each pyramidal
region Ci, but only the elements which lie at the boundaries of those pyramidal regions. Specifically, the
projection operators have the effect of truncating (in the frequency domain) the “boundary” elements of each
pyramidal region so that the four systems which have been used to define S(ψ(1), ψ(2), ψ(3), ϕ) merge nicely (up
to negligible sets) to form a Parseval frame of L2(R3). Indeed, from the observations above, an argument very
similar to Theorem 2.2 shows that:

Theorem 2.2. The pyramid-adapted 3D shearlet system S(ψ(1), ψ(2), ψ(3), ϕ) is a Parseval frame of L2(R3).

2.2 Optimally Sparse Shearlet Approximations

Our main motivation for the introduction of the well localized system of 3D shearlets described above is to
overcome the limitations of wavelets with respect to their ability to approximate 3D data with discontinuities
along surfaces.

To state our result precisely, let us consider the class E ⊂ L2(R3) of functions which are C2 away from a C2

surface as the collection of functions of the form

f = f0 + f1 χB,

where f0, f1 ∈ C2
0 ([0, 1]

3), B is a simple C2 surface and ∥f∥C2 =
∑

|α|≤2∥Dαf∥∞ ≤ 1. These functions are the

3D analogue of the cartoon-like images in 2D and provide a simplified model of typical 3D data sets (e.g., videos
of natural scenes).

It is quite known that wavelet approximations are not very efficient in dealing with this type of data since
wavelets are unable to approximate the discontinuous surface efficiently. This can be illustrated using the
following heuristic argument. Namely, let f be a function in E containing a discontinuity along a C2 surface,
and consider the wavelet expansion of f using an orthonormal smooth wavelet basis {ϕj,k(x) = 23jϕ(22jx− k) :
j ∈ Z, k ∈ Z3} (we choose dilation factors 22j rather than 2j for consistency with the shearlet system which will
be considered next). At scale 2−2j , a wavelet ϕj,k(x) is essentially supported on a box of size 2−2j × 2−2j × 2−2j .
Hence, since the surface of discontinuity has finite area, there are approximately 24j wavelet coefficients Cj,k(f) =
⟨f, ϕj,k⟩ associated with the surface, while the remaining coefficients are negligible at fine scales. Since∫

R3

|ϕj,k(x)| dx = 23j
∫

|ψ(22jx− k)| dx = 2−3j

∫
R3

|ϕ(y)| dy,

a direct computation shows that, at scale 2−2j , all these wavelet coefficients are controlled by

|Cj,k(f)| ≤ ∥f∥∞ ∥ϕj,k∥L1 ≤ C 2−3j .

If follows that the N -th largest wavelet coefficient |CN (f)| is bounded by O(N−3/4) and, thus, if fWN is the
approximation of f obtained by taking the N largest coefficients of its wavelet expansion, the L2–error obeys
the estimate:

∥f − fWN ∥2L2 ≤
∑
ℓ>N

|Cℓ(f)|2 ≤ C N−1/2.

Let us now examine, using a similar heuristic argument, the approximation properties of the 3D shearlet
system. As we observed above, at scale 2−2j , the elements of the shearlet system ψj,ℓ,k are essentially supported
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Figure 3. At scale 2−2j, each shearlet element ψj,ℓ,k is essentially supported inside a box of size 2j × 2j × 2−2j . The figure
illustrates that, at scale 2−2j, there are approximately 2j × 2j = 22j shearlet elements which are tangent to a surface (of
finite area).

on a parallelepiped of size 2−2j × 2−j × 2−j . At fine scales, due to the properties of the shearlet functions,
only the shearlet elements which are tangent to the surface of discontinuity of f will produce significant shearlet
coefficients ⟨f, ψj,ℓ,k,⟩, and there are about are 22j coefficients of this type (see illustration in Figure 3). Again,
a direct computation shows that ∫

R3

|ψj,ℓ,k(x)| dx = 2−2j

∫
R3

|ψ(y)| dy,

so that, at scale 2−2j , all these shearlet coefficients Sj,ℓ,k(f) = ⟨f, ψj,ℓ,k,⟩ are controlled by

|Sj,ℓ,k(f)| ≤ ∥f∥∞ ∥ψj,ℓ,k∥L1 ≤ C 2−2j .

It follows that the N -th largest shearlet coefficient |SN (f)| is bounded by O(N−1) and this implies that, if fN
is the approximation of f computed by taking the N largest coefficients of its shearlets expansion, the L2–error
approximately obeys the estimate:

∥f − fSN∥2L2 ≤
∑
ℓ>N

|Sℓ(f)|2 ≤ C N−1.

It can be proved that this is the optimal approximation rate for this type of functions,4 in the sense that no
orthonormal bases or Parseval frames can yield approximation rates that are better than N−1.

Despite being based on a simple heuristic argument, it turns out that the estimates we have just presented
are essentially correct. In fact, we have the following precise result, that was first announced by the authors in
Ref.[11].

Theorem 2.3. Let {ψµ}µ∈M , where M is a countable index set, be the Parseval frame of shearlets given by
(11). For f ∈ E2, let

fSN =
∑
µ∈IN

⟨f, ψµ⟩ψµ,

where IN ⊂ M is the set of indices corresponding to the N largest entries of the sequence {|⟨f, ψµ⟩|2 : µ ∈ M}.
Then

∥f − fSN∥22 ≤ C N−1 (logN)2.

Hence the result shows that the shearlet approximations of f ∈ E2 is optimal up to a log-like factor.

The proof of Theorem 2.3 is rather involved and its detailed description goes beyond the scope of this paper.
However, it is important to remark that the proof relies on the regularity and localization properties of the



sharlet system and the choice of the parabolic scaling. With respect to the 2D argument, the main technical
novelty in the proof consists in the use of the Ray Transform (see Ref.[20]) to prove a fundamental estimate for
the decay of the shearlet coefficients corresponding to the surfaces of discontinuity. Specifically, let us assume
that, at a sufficiently fine scale, the surface of discontinuity is parametrized as:

x1 = E(x2, x3), −2−j ≤ x2, x3 ≤ 2−j .

Define a surface fragment as the following localized version of f :

floc(x) = w0(2
jx) g(x)χ[x1>E(x2,x3)](x), x ∈ [−2−j , 2−j ]3, (12)

where w0 is a nonnegative C∞ window function with support in [−1, 1]3. Then we obtain the following funda-
mental estimate valid for the shearlet system (6) defined on the pyramidal region DC1

(a similar result holds on
the other pyramidal regions).

Theorem 2.4. Let floc be the surface fragment given by expression (12) and {ψj,ℓ,k} be the Parseval frame of
shearlets for L2(DC1)

∨ given by (6). Then, for −2j ≤ ℓ2 ≤ 2j, the following estimate holds:∫
R̂3

|f̂(ξ)|2 |ψ̂j,ℓ,k(ξ)|2 dξ ≤ C 2−9j(1 + |ℓ2|)−5. (13)

We refer to Ref.[13] for the proof of Theorem 2.4 and the complete proof of Theorem 2.3.

3. CONCLUSION

We have shown that the shearlet approach extends naturally from the 2D to the 3D setting. In fact, we have
constructed a Parseval frame of 3D shearlets for L2(R3) whose elements are well localized and form a collection
of highly anisotropic waveforms ranging over various scales, directions and locations. Thanks to their properties,
the Parseval frames of 3D shearlets provide nearly optimally sparse approximations for a large class of piecewise
smooth 3D data. This is the first and, so far, the only result of this type, and it is a significant improvement
over wavelets and other traditional (nonadaptive) representations, which are very inefficient at approximating
distributed discontinuities in multidimensional data.

As we have discussed above, the excellent approximation properties of 3D shearlets are a direct consequence
of to their ability to sparsely approximate anisotropic features. In fact, in a related investigation, the authors
have proved that 3D shearlets can be used to precisely characterize the surface of discontinuities of 3D data
through the asymptotic decay of the shearlet transform at fine scales.12 This result is consistent with similar
observations made by the authors and other collaborators10,22 in dimension 2 and which have been applied to
develop very competitive algorithms for edge analysis and detection.

In fact, it is expected that the theoretical results presented in this work will lead to innovative algorithms for
the efficient analysis and processing of 3D data sets, including applications to denoising and feature extraction.
In particular, a numerical implementation of the 3D shearlet transform was recently presented by one of the
authors with another collaborator, and its application to video denoising was found very competitive.21
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