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ABSTRACT

We introduce a novel method for full 3D Region Of Interest
(ROI) reconstruction in computed tomography (CT), called
Searchlight CT, which reduces the overall radiation exposure
when primarily the reconstruction of a specified ROI is re-
quired. To achieve this goal, the Searchlight CT approach
restricts the acquisition essentially to X-rays passing through
the ROI, yet the algorithm provides a stable and robust recon-
struction inside the ROI. The Searchlight CT approach is not
limited to a specific mode of acquisition. In fact, it is capa-
ble of converting virtually any 3D reconstruction formula into
an ROI reconstruction which uses only the radiation which is
intersecting the ROI.

1. INTRODUCTION AND PREVIOUS WORK

Starting with its introduction in the 1970s, Computed To-
mography (CT) has become an essential tool in medical di-
agnostic and preventive medicine, and its use has increased
very rapidly over the last two decades due to technological
advances which have made the procedure much more user-
friendly. In recent years, the application of CT has expanded
even further due to the introduction of new imaging technol-
ogy including 64-detector scanners for applications such as
angiography. However, CT involves exposure of the patient
to X-ray radiation with associated health risks essentially pro-
portional to the levels of radiation exposure [1]. Currently an
estimated 2% of cancers in the USA may be attributed to the
radiation from CT examinations [2].

In order to reduce radiation exposure in CT, several strate-
gies have been explored starting in the 1980’s. Most early
studies focussed on sparsifying the radiation sources while
keeping reconstruction accuracy at a satisfactory level. In
fact, since the problem of tomographic reconstruction is ill
posed, the general understanding was that incomplete data re-
construction implies some type of approximation of the object
to be reconstructed (cf. [3]). Only in 2002 [4], it was shown
that one can compute accurate partial 2D reconstructions from
incomplete data. Following this result, several methods have
been introduced aiming to provide highly accurate or exact
ROI reconstruction from partial data including the fan-beam

ROI reconstruction formula in [4] and its variants and ex-
tensions (e.g., [5, 6, 7, 8, 9]). Note that these methods are
highly specific for a single geometry of acquisition. Further-
more, they impose restrictions on the geometry of the ROI and
sometimes require some a-priori knowledge about the object
to be reconstructed. Beside this class of analytic methods,
several algebraic methods (sometimes called iterative meth-
ods) for the reconstruction from incomplete data were also
proposed, such as in [10, 11]. The main limitation of alge-
braic methods is their computational cost, especially for 3D
data.

This paper is focussed on the problem of full 3D ROI re-
construction, which has particular relevance in several clini-
cal applications and for which the need to reduce radiation is
particularly important. To address this challenge, we propose
a novel strategy for 3D ROI reconstruction from incomplete
CT data which is not based on specific formulas for specific
acquisition modes, nor is an algebraic method. Our algo-
rithmic approach, called Searchlight CT, starts with a black
box which can be any analytic formula applicable to CT re-
construction from 3D uncollimated data, and then uses this
black box to iteratively reconstruct an ROI using only the
projection data of the X-ray passing through the ROI. As a
result, our method is ‘universal’ in the sense that, unlike other
ROI reconstruction methods proposed in the literature, it is
not restricted to a specific mode of acquisition. In fact, our
reconstruction algorithm can be applied to any current CT
acquisition method with minor modifications to existing de-
vices. Using only collimated data, our strategy applies the an-
alytic (uncollimated) reconstruction formula associated with
the specific mode of acquisition within an iterative algorith-
mic procedure which includes a specially designed wavelet-
based regularization routine to compute an ROI reconstruc-
tion. To validate the efficacy and applicability of our ap-
proach, the Searchlight CT algorithm was tested for three dif-
ferent modes of acquisitions combined with their respective
uncollimated reconstruction formulas: spherical acquisition
(with the FBP reconstruction), 3D spiral acquisition (with
the Katsevich reconstruction) and circular (C-arm) acquisi-
tion (with FDK reconstruction). Our method was tested on
both synthetic and experimental data. The results presented
in this paper show that the Searchlight CT algorithm provides



Fig. 1. Setup of the Collimated 3D X-ray Tomography

a powerful and general ROI reconstruction method which is
a very competitive alternative to the best ROI reconstruction
methods recently proposed in the literature.

2. COLLIMATED X-RAY TRANSFORM

X-ray Tomography aims to reconstruct the unknown structure
of a 3D-object F by analyzing a set of projection images of
F acquired by measuring radiation attenuation along various
straight line paths. For a compactly supported density func-
tion F on R3, the X-ray Transform of F at (w, θ) is the line
integral of F over the straight line l(w, θ) through the point
w ∈ R3 with direction θ ∈ S2, defined by

XF (w, θ) =

∫ ∞
−∞

F (w + tθ) dt. (1)

In ROI tomography, one is only interested in recovering a
region C included in the support of F . The collimation set
of rays will be the set T of all rays intersecting the region C,
namely

T = {(w, θ) : l(w, θ) ∩ C 6= ∅}.

Our goal is to reconstruct the ROI C using only the image
data associated to the collimation set of rays T (see Fig. 1).
We thus define the collimated X-ray transform by

X̃F (w, θ) =

 XF (w, θ) (w, θ) ∈ T ,

0 (w, θ) /∈ T ,
(2)

In the classical case where the X-ray data are uncollimated,
one can recover F from XF by the well-known Filtered
Back-Projection (FBP) [12] which can be formally expressed
as

F (u) = X−1(XF )(u)

=

∫
R3

F2(Xθ(ξ)F )(ξ) ei((u)·ξ)dξ, (3)

where XθF (w) = XF (w, θ), F2 denotes the 2D Fourier
transform on the plane h(θ(ξ)) orthogonal to the vector θ(ξ),
and θ(ξ) is any vector orthogonal to ξ. As is well known [12],
a direct application of the Filtered Back-Projection to invert
the collimated X-ray transform typically generates multiple
undesirable artefacts and is highly inaccurate, particularly for
small ROI.

In practice, each arrangement of the source positions
around the object determines a specific acquisition geometry.
We have selected three classical examples of 3D acquisition
geometries, with sources located on a sphere, or on a spiral
curve, or on a circle. Note that each of these acquisition
geometries is associated with a specific uncollimated recon-
struction formula, such as the Katsevich formula for spiral
acquisition [13].

2.1. Collimated Reconstruction

Due to the ill-posedness of the inversion problem, the stan-
dard reconstruction formulas cannot perform acceptable ROI
reconstructions using only collimated X-ray data. Our ap-
proach can compute accurate ROI reconstructions from colli-
mated data and is applicable to any acquisition geometry for
which an uncollimated reconstruction algorithm exists. Our
new reconstruction procedure iteratively replaces successive
approximations fn of F by updating them inside the ROI C
and regularizing them outside the ROI . The design of the
regularization operator, denoted by Λ, is essential for the per-
formance of the algorithm.

Our Searchlight CT algorithm, is initialized by setting
G = X̃F = 1T .XF , where F is the unknown density func-
tion, 1T is the indicator function of the collimation set of rays
T , and the dot denotes pointwise multiplication. The initial
approximation of F is given by f0 = X−1G, where the op-
erator X−1 denotes any specific uncollimated reconstruction
algorithm such as the Katsevich’s inversion formula or the
FBP procedure. The successive approximations fn, n ≥ 1, of
F are obtained iteratively as follows.

1. Compute the regularized density function Λfn.
2. Compute the standard X-ray Transform XΛfn of Λfn.

By splitting the data into the complementary sets T and
U = T c, write

XΛfn = 1T .XΛfn + 1U .XΛfn.

3. Replace 1T .XΛfn by the known collimated data G =
1T .XF in the expression above to obtain Yn = G +
1U .XΛfn.

4. Compute fn+1 by applying the X-ray uncollimated in-
version formula (3) to Yn to obtain

fn+1 = X−1Yn = Afn + f0. (4)

where A = X−11U .XΛ, and f0 = X−1G.



The convergence of this procedure is ensured provided the
radius r(C) of the spherical ROI C is larger than a critical
radius ρ. For the three acquisition geometries studied here,
we have noted that, if r(C) > ρ, the linear operator A is a
contraction operator in some adequate Banach space, and we
conjecture that this will be the case for a large class of X-ray
acquisition geometries.

2.2. Regularization operator

The objective of the regularization operator is to control the
instability induced by the presence of singularities in the
data. We found that a highly effective regularization oper-
ator is obtained by employing the following wavelet-based
method. Specifically, we expand F ∈ L2(R3) with respect
to a wavelet basis {ψ`j,k}. Note that this expansion produces
a representation of F associated with various scales and lo-
cations and that, due to the ability of wavelets to sparsely
represent data, the wavelet expansion coefficients of small
magnitude are mostly associated with “noise-like” features
and can be discarded [14]. Hence we obtain a regularized ver-
sion of F by defining a thresholding regularization operator.
This is essentially a hard thresholding wavelet operator which
sets to zero the wavelet coefficients of F whose magnitude
falls below a certain threshold. However, the operator is de-
signed to retain all coarse scale coefficients at scales j ≤ j0.
This allows us to preserve the “global” features of F and to
apply the regularization “locally” outside the ROI C.

3. NUMERICAL EXPERIMENTS

The performance of the Searchlight CT algorithm for col-
limated reconstruction was validated on 3D Shepp-Logan
phantoms and on 3D biological data sets, where collimated
acquisition was simulated. Representative 2D slices extracted
from the reconstructed three-dimensional ROI are reported in
Fig. 2, where our reconstructions are compared with the stan-
dard FBP reconstructions. As expected, the direct application
of the standard FBP produces unacceptable inaccuracies
when applied to collimated data. In these tests, collimated
acquisition was simulated assuming that the X-ray emitting
source is located at discrete positions on a curve or surface.
Data set F considered had a size of 2573 voxels. The regions
of interestC were chosen to be spherical regions with a radius
larger than 40 voxels and arbitrary centers within the sphere
of source positions, in general. For the spherical acquisition
the source positions lie on a fixed sphere containing the sup-
port of F . For each source position, we simulated collimated
acquisition on a planar set of sensors of 452 × 370 pixels.
For spiral acquisition, the sources were positioned in a spiral
helix of radius 384 voxels and a helical pitch of 35 voxels and
16-row detectors were used. For the regularization operator,
Daubechies wavelets Daub4 were used and the threshold-
ing parameter was chosen so that approximately 10% of the

wavelet coefficients were kept.

3.1. Performance of the CT Searchlight Algorithm

We quantify performances of the Searchlight CT algorithm
by reconstruction accuracy within ROI. For any voxel u =
(x, y, z), denoting by F (u) and Frec(u) the original and re-
constructed functions at u, we define the Relative Recon-
struction Error Er by

Er =

∑
u∈C |F (u)− Frec(u)|∑

u∈C F (u)
. (5)

The Searchlight CT algorithm takes about 40 iterations to
reach an accuracy Er < 0.1, provided the radius of C is suf-
ficiently large. For our data, the radius of C must be larger
than 40 voxels.

3.2. Radiation Exposure

One main motivation for collimated X-ray acquisition is the
need to reduce the incident radiation dose. To study radiation
dose reduction, we define the radiation dose d(u) received
at a voxel u as the number of rays passing through u. Let
c =

∑
u d(u) be the sum of the radiation doses over all vox-

els in the domain, and call m be the radiation dose received
in the uncollimated case, which is clearly maximal. We then
define the Radiation Exposure RX by RX = c

m . As the ra-
dius r(C) of the ROI C increases, one naturally expects RX
to increase and the reconstruction error Er to decrease. This
is confirmed by Table 1, which reports the values of RX and
Er, for several values of r(C), in the case of collimated data
acquired from the mouse tissue sample using different modes
of acquisition (a similar behaviour was found for other data).
Note that r(C) needs to be larger than the critical radius of

Table 1. Searchlight CT performances in %
Acquisition mode Spherical Spiral Circular

r(C) RX Er RX Er RX Er
45 vox 19 10.8 21 11.4 26 11.3
60 vox 31 8.8 33 9.7 40 9.5
75 vox 44 7.9 47 8.8 55 8.9
90 vox 57 7.5 60 8.4 59 8.6

40 voxels for the algorithm to converge. Our numerical tests
also indicate that this convergence holds provided that

∫
C
F

is larger than 0.03 ×
∫
R3 F . We can thus reach exposure re-

ductions up to 75-80% with only a small decrease of recon-
struction accuracy. These performances remained stable un-
der data perturbations by white Gaussian noise. Details are
not reported here due to space constraints.



Fig. 2. Comparison of reconstruction methods on the mouse tissue data using spiral acquisition. For one typical 2D tissue slice
we display three images: (a) Standard Reconstruction, (b) Searchlight CT, (c) Ground Truth

4. CONCLUSION

We have introduced a novel algorithm for ROI reconstruc-
tion in full 3D CT which only requires data acquired through
highly collimated X-ray focused on a small ROI. This al-
gorithm converges accurately when the radius of the ROI is
larger than a critical radius ρ, independently of the actual data.
Our approach provides a promising computational method to
preserve accurate image reconstruction in 3D CT while sig-
nificantly reducing the incident radiation dose through high
X-ray collimation. Unlike recently published geometry-
specific formulas for ROI reconstruction, our method is not
limited to a specific mode of acquisition, but is ‘universal’,
yielding a framework which can be easily applied to virtually
any existing technology to convert a standard uncollimated
reconstruction algorithm into an ROI reconstruction algo-
rithm.
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