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Abstract

Shearlets have emerged in recent years as one of of the most successful methods
for the multiscale analysis of multidimensional signals. Unlike wavelets, shearlets
form a pyramid of well-localized functions defined not only over a range of scales
and locations, but also over a range of orientations and with highly anisotropic
supports. As a result, shearlets are much more effective than traditional wavelets
in handling the geometry of multidimensional data and this was exploited in a
wide range of applications from image and signal processing. However, despite
their desirable properties, the wider applicability of shearlets is limited by its
computational complexity. For example, denoising a single 512× 512 image using
a current implementation of the shearlet-based shrinkage algorithm can take
between 10 seconds and 2 minutes, depending on the number of CPU cores, and
much longer processing times are required for video denoising. However, due to
the parallel nature of the shearlet transform, it is possible to use Graphical
Processing Units (GPU) to accelerate it. We provide an open source standalone
implementation of the 2D shearlet using CUDA C++ as well as GPU-accelerated
MATLAB implementations of the 2D and 3D shearlet transforms. We have
instrumented the code so that we can analyze the running time of each kernel
under different GPU hardware. In addition to denoising, we describe a novel
application of shearlets for detecting anomalies on textured images. In this
application, computation times can be reduced by a factor of 50 or more,
compared to multi-core CPU implementations.
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1 Introduction
During the last decade, a new generation of multiscale systems has emerged which

combines the power of the classical multiresolution analysis with the ability to

process directional information with very high efficiency. Some of the most notable

examples of such systems include the curvelets [1], the contourlets [2] and the shear-

lets [3]. Unlike classical wavelets, the elements of such systems form a pyramid of

well localized waveforms ranging not only across various scales and locations, but

also across various orientations and with highly anisotropic shapes. Thanks to their

richer structure, these more sophisticated multiscale systems are able to overcome

the poor directional sensitivity of traditional multiscale systems and have been

used to derive several state-of-the-art algorithms in image and signal processing

(cf. [4, 5]).

Shearlets, in particular, offer a unique combination of very remarkable features:

they have a simple and well understood mathematical structure derived from the

theory of affine systems [6, 3], they provide optimally sparse representations, in a
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precise sense, for a large class of images and other multidimensional data where

wavelets are suboptimal [7, 8] and the directionality is controlled by shear matrices

rather than rotations. This last property, in particular, enables a unified framework

for continuum and discrete setting since shear transformations preserve the rectan-

gular lattice and is an advantage in deriving faithful digital implementations [9, 10].

The shearlet decomposition has been successfully employed in many problems

from applied mathematics and signal processing, including decomposition of opera-

tors [11], inverse problems [12, 13], edge detection [14, 15, 16], image separation [17]

and image restoration [18, 19, 20]. However, one major bottleneck to the wider ap-

plicability of the shearlet transform is that current discrete implementations tend

to be very time consuming making its use impractical for large data sets and for

real-time applications. For instance, the current (CPU-based) MATLAB implemen-

tation [1] of the 2D shearlet transform, run on a typical desktop PC, takes about

two minutes to denoise a noisy image of size 512× 512 [9, 21]. The running time of

the current (CPU-based) MATLAB implementation of the 3D shearlet transform

for denoising a video sequence of size 1923 is about five minutes [20]. Running times

for alternative shearlet implementations from Shearlab [10] as well as for the current

implementation of the curvelet transform [22] are comparable.

In recent years, General Purpose Graphics Processing Units (GPGPUs) have be-

come ubiquitous not only on High Performance Computing (HPC) clusters, but

also on workstations. For example, Titan, which was until recently the world’s

fastest supercomputer, contains 18,688 NVIDIA Tesla K20X GPUs. These GPUs

provide about 90% of Titan’s peak computing performance, which is greater than

20 PetaFLOPS (quadrillion floating point operations per second). Due to their en-

ergy efficiency and capabilities, GPGPUs are also becoming mainstream on mobile

platforms, such as iOS and Android devices. There are two main architectures for

GPGPU computing: CUDA and OpenCL. CUDA was designed by NVIDIA, and

has been around since 2006. OpenCL was originally designed by Apple, Inc, and was

introduced in 2008. OpenCL is an open standard maintained by the Khronos Group,

whose members include Intel, AMD, NVIDIA, and many others, so it has broader

industry acceptance than any other architecture. In 2009, Microsoft introduced Di-

rectCompute as an alternative architecture for GPGPU computing, which is only

available in Windows Vista and later. OpenCL has been designed to provide the de-

veloper with a common framework for doing computation on heterogeneous devices.

One of the advantages of OpenCL is that it can potentially support any computing

device, such as CPUs, GPUs, and FPGAs, as long as there is an OpenCL compiler

available for such processor. NVIDIA provides CUDA/OpenCL drivers, libraries

and development tools for the three major Operating Systems (Linux, Windows

and Mac OS X), while AMD/ATITMand Intel provide OpenCL drivers and tools

for their respective GPUs.

The objective of this paper is to introduce and demonstrate a new implemen-

tation of the 2D and 3D discrete shearlet transform which takes advantage of the

computational capabilities of the Graphics Processing Unit (GPU). To demonstrate

the effectiveness of the proposed implementations, we will illustrate its application

[1]Note that this code also includes some C routines to speed-up the computation

time. This is true both for the 2D and 3D implementations.
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on problems of image and video denoising and on a problem of feature recognition

aiming at crack detection of railway components. In particular, we will show that

our new implementation takes about 40 milliseconds to denoise an image of size

512 × 512, which is a 233× speed-up compared to single core CPU, and about 3

seconds to denoise a video of size 1923, which is a 551× speed-up compared to single

core CPU.

The organization of the paper is as follows. In Section 2, we recall the construction

of 2D and 3D shearlets. Next, in Section 3, we present our implementation of the

discrete shearlet transform and, in Section 4, we benchmark our implementation

using three specific applications. Finally, concluding remarks and future work are

discussed in Section 5.

2 Shearlets
In this section, we recall the construction of 2D and 3D shearlets (cf. [7, 6]).

2.1 2D Shearlets

To construct a smooth Parseval frames of shearlets for L2(R2), we start by defining

appropriate multiscale function systems supported in the following cone-shaped

regions of the Fourier domain R̂2:

P1 =

{
(ξ1, ξ2) ∈ R2 : |ξ2

ξ1
| ≤ 1

}
, P2 =

{
(ξ1, ξ2) ∈ R2 : |ξ2

ξ1
| > 1

}
.

Let φ ∈ C∞([0, 1]) be a ‘bump’ function with suppφ ⊂ [− 1
8 ,

1
8 ] and φ = 1 on

[− 1
16 ,

1
16 ]. For ξ = (ξ1, ξ2) ∈ R̂2, let Φ(ξ) = Φ(ξ1, ξ2) = φ(ξ1)φ(ξ2) and define the

function

W (ξ) = W (ξ1, ξ2) =
√

Φ2(2−2ξ1, 2−2ξ2)− Φ2(ξ1, ξ2).

Note that the functions W 2
j = W 2(2−2j ·), j ≥ 0, have support inside the Cartesian

coronae

Cj = [−22j−1, 22j−1]2 \ [−22j−4, 22j−4]2

and that they produce a smooth tiling of the frequency plane:

Φ2(ξ1, ξ2) +
∑
j≥0

W 2(2−2jξ1, 2
−2jξ2) = 1 for (ξ1, ξ2) ∈ R̂2.

Let V ∈ C∞(R) so that suppV ⊂ [−1, 1], V (0) = 1, V (n)(0) = 0, for all n ≥ 1 and

|V (u− 1)|2 + |V (u)|2 + |V (u+ 1)|2 = 1 for |u| ≤ 1.

For F(1)(ξ1, ξ2) = V ( ξ2ξ1 ) and F(2)(ξ1, ξ2) = V ( ξ1ξ2 ), the shearlet systems associated

with the cone-shaped regions Pν , ν = 1, 2 are defined as the countable collection of

functions

{ψ(ν)
j,`,k : j ≥ 0,−2j ≤ ` ≤ 2j , k ∈ Z2}, (1)
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where

ψ̂
(ν)
j,`,k(ξ) = |detA(ν)|−j/2W (2−jξ)F(ν)(ξA

−j
(ν)B

−`
(ν)) e

2πiξA−j
(ν)
B−`

(ν)
k
, (2)

and

A(1) =

(
4 0

0 2

)
, B(1) =

(
1 1

0 1

)
, A(2) =

(
2 0

0 4

)
, B(2) =

(
1 0

1 1

)
.

Note that the dilation matrices A(1), A(2) produce anisotropic dilations, namely,

parabolic scaling dilations; by contrast, the shear matrices B(1), B(2) are non-

expanding and their integer powers control the directional features of the shearlet

system. Hence, the systems (1) form collections of well-localized functions defined

at various scales, orientations and locations, controlled by the indices j, `, k respec-

tively. In particular, the functions ψ̂
(1)
j,`,k, given by (2) with ν = 1, can be written

explicitly as

ψ̂
(1)
j,`,k(ξ) = 2−2jW (2−2jξ)V

(
2j
ξ2
ξ1
− `
)
e
2πiξA−j

(1)
B−`

(1)
k
,

showing that their supports are contained inside the trapezoidal regions

Σj,` := {(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], | ξ2ξ1 − `2
−j | ≤ 2−j}

in the Fourier plane (see Fig. 1). Similar properties hold for the functions ψ̂
(2)
j,`,k.

A smooth Parseval frame for the whole space L2(R2) is obtained by combining

the two shearlet systems associated with the cone-based regions P1 and P2 together

with a coarse scale system, associated with the low frequency region. To ensure that

all elements of this combined shearlet system are C∞c in the Fourier domain, the

elements whose supports overlap the boundaries of the cone regions in the frequency

domain are slightly modified. That is, we define a shearlet system for L2(R2) as{
ψ̃−1,k : k ∈ Z2

}⋃{
ψ̃j,`,k,ν : j ≥ 0, |`| < 2j , k ∈ Z2, ν = 1, 2

}
⋃{

ψ̃j,`,k : j ≥ 0, ` = ±2j , k ∈ Z2
}
, (3)

consisting of:

• the coarse-scale shearlets {ψ̃−1,k = Φ(· − k) : k ∈ Z2};
• the interior shearlets {ψ̃j,`,k,ν = ψ

(ν)
j,`,k : j ≥ 0, |`| < 2j , k ∈ Z2, ν = 1, 2},

where the functions ψ
(ν)
j,`,k are given by (2);

• the boundary shearlets {ψ̃j,`,k : j ≥ 0, ` = ±2j , k ∈ Z2}, obtained by joining

together slightly modified versions of ψ
(1)
j,`,k and ψ

(2)
j,`,k, for ` = ±2j , after that

they have been restricted in the Fourier domain to the cones P1 and P2,

respectively. We refer to [6] for details.

For brevity, let us denote the system (3) using the compact notation

{ψ̃µ, µ ∈M},
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where M = MC ∪MI ∪MB are the indices associated with coarse scale shearlets,

interior shearlets, and boundary shearlets, respectively. We have the following result

from [6]:

Theorem 2.1 The system of shearlets (3) is a Parseval frame for L2(R2). That

is, for any f ∈ L2(R2), ∑
µ∈M

|〈f, ψ̃µ〉|2 = ‖f‖2.

All elements {ψ̃µ, µ ∈M} are C∞ and compactly supported in the Fourier domain.

As mentioned above, it is proved in [7] that the 2D Parseval frame of shearlets

{ψ̃µ, µ ∈ M} provides essentially optimal approximations for functions of 2 vari-

ables which are C2 regular away from discontinuities along C2 curves.

The mapping from f ∈ L2(R2) into the elements 〈f, ψ̃µ〉, µ ∈M , is called the 2D

shearlet transform.

2.2 3D Shearlets

The construction outlined above extends to higher dimensions. In 3D, a shearlet

system is obtained by appropriately combining 3 systems of functions associated

with the pyramidal regions

P1 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ2

ξ1
| ≤ 1, |ξ3

ξ1
| ≤ 1

}
,

P2 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ1

ξ2
| < 1, |ξ3

ξ2
| ≤ 1

}
,

P3 =

{
(ξ1, ξ2, ξ3) ∈ R3 : |ξ1

ξ3
| < 1, |ξ2

ξ3
| < 1

}
,

in which the Fourier space R̂3 is partitioned. With φ defined as above, for ξ =

(ξ1, ξ2, ξ3) ∈ R̂3, we now let

Φ(ξ) = Φ(ξ1, ξ2, ξ3) = φ(ξ1)φ(ξ2)φ(ξ3)

and W (ξ) =
√

Φ2(2−2ξ)− Φ2(ξ). As in the 2-dimensional case, we have the smooth

tiling condition

Φ2(ξ) +
∑
j≥0

W 2(2−2jξ) = 1 for ξ ∈ R̂3.

Hence, for d = 1, 2, 3, ` = (`1, `2) ∈ Z2, the 3D shearlet systems associated with the

pyramidal regions Pd are defined as the collections

{ψ(d)
j,`,k : j ≥ 0,−2j ≤ `1, `2 ≤ 2j , k ∈ Z3},
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where

ψ̂
(d)
j,`,k(ξ) = |detA(d)|−j/2W (2−2jξ)F(d)(ξA

−j
(d)B

[−`]
(d) ) e

2πiξA−j
(d)
B

[−`]
(d)

k
,

F(1)(ξ1, ξ2, ξ3) = V ( ξ2ξ1 )V ( ξ3ξ1 ), F(2)(ξ1, ξ2, ξ3) = V ( ξ1ξ2 )V ( ξ3ξ2 ), F(3)(ξ1, ξ2, ξ3) =

V ( ξ1ξ3 )V ( ξ2ξ3 ), the anisotropic dilation matrices A(d) are given by

A(1) =

4 0 0

0 2 0

0 0 2

 , A(2) =

2 0 0

0 4 0

0 0 2

 , A(3) =

2 0 0

0 2 0

0 0 4

 ,

and the shear matrices are defined by

B
[`]
(1) =

1 `1 `2

0 1 0

0 0 1

 , B
[`]
(2) =

 1 0 0

`1 1 `2

0 0 1

 , B
[`]
(3) =

 1 0 0

0 1 0

`1 `2 1

 .

Similar to the 2D case, the shearlets ψ̂
(1)
j,`,k(ξ) can be written explicitly as

ψ̂
(1)
j,`1,`2,k

(ξ) = 2−2jW (2−2jξ)V
(

2j
ξ2
ξ1
−`1

)
V
(

2j
ξ3
ξ1
−`2

)
e
2πiξA−j

(1)
B

[−`1,−`2]

(1)
k
, (4)

showing that their supports are contained inside the trapezoidal regions

{ξ : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], |ξ2
ξ1
− `12−j | ≤ 2−j , |ξ3

ξ1
− `22−j | ≤ 2−j}.

Note that these support regions become increasingly more elongated at fine scales,

due to the action of the anisotropic dilation matrices Aj(1), wand the orientations of

these regions are controlled by the shear parameters `1, `2. A typical support region

is illustrated in Fig. 2. Similar properties hold for the elements associated with the

regions P2 and P3.

A Parseval frame of shearlets for L2(R3) is obtained by using an appropriate

combination of the systems of shearlets associated with the 3 pyramidal regions

Pd, d = 1, 2, 3, together with a coarse scale system, which will take care of the low

frequency region. Similar to the 2D case, in order to build such system in a way that

all its elements are smooth in the Fourier domain, one has to appropriately define

the elements of the shearlet systems overlapping the boundaries of the pyramidal

regions Pd in the Fourier domain. We refer to [8, 15] for details. Hence, we define

the 3D shearlet systems for L2(R3) as the collections{
ψ̃−1,k : k ∈ Z3

}⋃{
ψ̃j,`,k,d : j ≥ 0, |`1| < 2j , |`2| ≤ 2j , k ∈ Z3, d = 1, 2, 3

}
⋃{

ψ̃j,`,k : j ≥ 0, `1, `2 = ±2j , k ∈ Z3
}
,

which again can be identified as the coarse-scale, interior and boundary shearlets.

It turns out that the 3D system of shearlets is a Parseval frame of L2(R3) [6] and it

provides essentially optimal approximations for functions of 3 variables which are

C2 regular away from discontinuities along C2 surfaces [8].
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3 Discrete Implementation
A faithful numerical implementation of the 2D shearlet transform was originally

presented in [9]. Let us briefly recall the main steps of this implementation.

3.1 2D Discrete Shearlet Transform

Recall that the shearlet coefficients associated with the interior shearlets can be

expressed as:

〈f, ψνj,`,k〉 = 23j/2
∫
R̂2

f̂(ξ)W (2−2jξ)F(ν)(ξA
−j
(ν)B

−`(ν)) e
2πiξA−j

(ν)
B
−`(ν)k

dξ.

First, to compute f̂(ξ1, ξ2)W (2−2jξ) in the discrete domain, at the resolution level

j, we apply the Laplacian pyramid algorithm [23], which is implemented in space-

domain. Let f̂ [k1, k2] denote 2D Discrete Fourier Transform (DFT) of f ∈ `2(Z2
N ),

where we adopt the convention that brackets [·, ·] denote arrays of indices, parenthe-

ses (·, ·) denote function evaluations, and where we interpret the numbers f̂ [k1, k2]

as samples f̂ [k1, k2] = f̂(k1, k2) from the trigonometric polynomial

f̂(ξ1, ξ2) =

N−1∑
n1,n2=0

f [n1, n2] e−2πi(
n1

N ξ1+
n1

N ξ2).

The Laplacian pyramid algorithm will accomplish the multiscale partition illus-

trated in Figure 3, by decomposing f j−1a [n1, n2], 0 ≤ n1, n2 < Nj−1, into a low

pass filtered image f ja [n1, n2], a quarter of the size of f j−1a [n1, n2], and a high pass

filtered image f jd [n1, n2]. Observe that the matrix f ja [n1, n2] has size Nj×Nj , where

Nj = 2−2jN , and f0a [n1, n2] = f [n1, n2] has size N ×N . In particular, we have that

f̂ jd(ξ1, ξ2) = f̂(ξ1, ξ2)W (2−2j(ξ1, ξ2))

and thus, f jd [n1, n2] are the discrete samples of a function f jd(x1, x2), whose Fourier

transform is f̂ jd(ξ1, ξ2). Since this operation is implemented as a convolution in

space-domain, this step of the algorithm is one of the most computationally expen-

sive.

The next step produces the directional filtering and this is achieved by computing

the DFT on the pseudo-polar grid, and then applying a one-dimensional band-pass

filter to the components of the signal with respect to this grid. More precisely, let

us define the pseudo-polar coordinates (u, v) ∈ R2 as follows:

(u,w) = (ξ1,
ξ2
ξ1

) if (ξ1, ξ2) ∈ P1,

(u,w) = (ξ2,
ξ1
ξ2

) if (ξ1, ξ2) ∈ P2.

After performing this change of coordinates, we obtain

f̂(ξ1, ξ2)W (2−2jξ1, 2
−2jξ2)F(ν)(ξA

−j
(ν)B

−`(ν)) = gj(u,w)V (2jw − `), (5)

where gj(u,w) = f̂ jd(ξ1, ξ2). This shows that the directional components are

obtained by simply translating the window function V . The discrete samples
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gj [n1, n2] = gj(n1, n2) are the values of the DFT of f jd [n1, n2] on a pseudo-polar

grid.

Now let {vj,`[n] : n ∈ Z} be the sequence whose discrete Fourier transform gives

the samples of the window function V (2jk− `), i.e., v̂j,`[k] = V (2jk− `). Then, for

fixed n1 ∈ Z, we have

F1

(
F−11

(
gj [n1, n2]

)
∗ vj`[n2]

)
= gj [n1, n2]F1

(
vj`[n2]

)
, (6)

where ∗ denotes the one-dimensional convolution along the n2 axis and F1 is the

one-dimensional discrete Fourier transform Thus (6) gives the algorithmic imple-

mentation for computing the discrete samples of gj(u,w) v(2jw− `). At this point,

to compute the shearlet coefficient in the discrete domain, it suffices to compute

the inverse PDFT or directly re-assemble the Cartesian sampled values and apply

the inverse two-dimensional FFT.

Figure 3 illustrates the cascade of Laplacian pyramid and directional filtering.

Recall that, once the discrete shearlet coefficients are obtained, the inverse shearlet

transform is computed using the following steps: (i) convolution of discrete shearlet

coefficients and synthesis directional filters; (ii) sum of all directional components;

(iii) reconstruction by inverse Laplacian pyramidal transformation.

3.2 2D GPU-based Implementation

Before implementing the 2D Discrete Shearket Transform algorithm on the GPU,

we profiled the existing implementation available as a MATLAB toolbox at http://

www.math.uh.edu/~dlabate/shearlet_toolbox.zip. Table 3 contains the break-

down of the processing times showing that the FFT computations used to perform

directional filtering and the convolution part of the à trous algorithm used for pyra-

midal image decomposition and reconstruction take around 75% of the computation

time. Hence they were the first candidates for porting into CUDA.

Since most of the computing time for performing a discrete shearlet transform is

spent in FFT function calls, it is crucial to have the best possible library to per-

form FFTs. The main two GPU vendors provide optimized FFT libraries: NVIDIA

provides cuFFT as part of its CUDA Toolkit, and AMD provides clAmdFft as part

of its Accelerated Parallel Processing Math Libraries (APPML). We have decided

to use CUDA as our development architecture both because there is better docu-

mentation and because of the availability of more mature development tools. We

have implemented the device code in CUDA C++, while the host code is pure C++.

Since both CUDA C/C++ and OpenCL are based on the C programming language,

porting the code from CUDA to OpenCL should not be difficult. However, for code

compactness, we have made extensive use of templates and operator overloading,

which are supported in CUDA C++, but not in OpenCL, which is based on C99.

To facilitate the development, we have used GPUmat from the GP-you Group, a

free (GPLv3) GPU engine for MATLAB R© (source code is available from http://

sourceforge.net/projects/gpumat/). This framework provides two new classes,

GPUsingle and GPUdouble, which encapsulate vectors of numerical data allocated

on GPU memory, and allow mathematical operations on objects of such classes via

function and operator overloading. Transfers between CPU and GPU memory are
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as simple as doing type casting, and memory allocation and deallocation is done

automatically. The idea is that existing MATLAB functions could be reused without

any code changes. In practice, however, in order to get acceptable performance it is

necessary to hand-tune the code or even use lower lever languages such as C/C++.

Fortunately, the GPUmat framework provides an interface for manipulating these

objects from MEX files, and a mechanism for loading custom kernels. Although

there are commercial alternatives to GPUmat such as Jacket from AccelerEyes, or

the Parallel Computing Toolbox from Mathworks, we have found that GPUmat is

pretty robust and adds very little overhead to the execution time as long as we follow

good programming practices such as in-place operations and reuse of preallocated

buffers.

Our implementation supports both single precision (32-bit) and double precision

(64-bit) IEEE 754 floating point numbers. We generate the filter bank of directional

filters using the Fourier-domain approach from [9], where directional filters are

designed as Meyer-type window functions in the Fourier domain. Since this step only

needs to be run once and does not depend on the image dimensions, we precompute

these directional filters using the original MATLAB implementation.

For the Laplacian pyramidal decomposition, we ported the à trous algorithm

using symmetric extension [2] into CUDA. This algorithm requires performing

non-separable convolutions with decimated signals. For efficiency reasons, the kernel

that performs à trous convolutions preloads blocks of data into shared memory, so

that the memory is only accessed once from each GPU thread.

With the above GPU-based Laplacian pyramid and directional filter implemen-

tation, it is just a matter of applying convolutions in the GPU to find the forward

and inverse shearlet transform.

The main steps of our GPU-based shearlet transform are as shown in table 1.

3.3 3D discrete shearlet transform

The algorithm for the discretization of the 3D shearlet transform is very similar

to the 2D shearlet transform and our implementation of the 3D discrete shearlet

transform adapts the code available from http://www.math.uh.edu/~dlabate/

3Dshearlet_toolbox.zip and described in [20]. The main practical difference is

that storing the 3D shearlet coefficients is much more memory-intensive. Since the

memory requirement can be easily exceed the available GPU memory, in our algo-

rithm we compute one convolution at a time in CUDA and add the result to the

output.

4 Applications
In the following, we illustrate the advantages of our new implementation of the

discrete shearlet transform by considering three applications: denoising of natural

images corrupted with white Gaussian noise, detection of cracks in textured images

and denoising of videos. The source code, sample data as well as the MATLAB

scripts used to generate all the figures in this paper are publicly available at http:

//www.umiacs.umd.edu/~gibert/ShearCuda.zip.

For benchmark, we have evaluated the performance of the new discrete shear-

let transform both on multicore CPUs and GPU. All CPU tests have been per-

formed on a Dell PowerEdge C6145 with four-socket AMD OpteronTM6274 pro-

cessors at 2.2GHz (64 cores total) and 256GB RAM, running Red Hat Enterprise
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Linux (REHL) 6. This machine is one of 16 identical nodes in the High Perfor-

mance Computing (HPC) cluster Euclid at the University of Maryland. During

these benchmarks, we had exclusive access to this node, and no other processes

were running, except for regular system services. To better understand the perfor-

mance of this code when running on systems with different number of cores, we

limited the number of available cores on some of the experiments. We found that

neither MATLAB’s maxNumCompThreads nor –singleCompThread work reliably

on non-Intel processors, so we used the taskset Linux command to set the proces-

sor affinity to the desired number of cores. GPU tests were performed on different

machines running RHEL 5 or 6, and CUDA 4.2 or 5.0. The tests include devices

with CUDA Compute Capabilities (CC) between 1.3 and 3.5. Table 2 summarizes

the configurations used in our experiments.

4.1 Image denoising

As a first test, we evaluated the performance of our implementation of the discrete

shearlet transform on a problem of image denoising, using a standard denoising

algorithm based on hard threshold of the shearlet coefficients. The setup is similar

to the one described in [9]. That is, given an image f ∈ RN2

, we observe a noisy

version of it given by u = f + ε, where ε ∈ RN2

is an additive white Gaussian

noise process which is independent of f , i.e., ε ∼ N(0, σ2IN2×N2). Our goal is to

compute an estimate f̃ of f from the noisy data u by applying a classical hard

thresholding scheme [24] on the shearlet coefficients of u. The threshold levels are

given by τi,j,n = σ2
εi,j/σ

2
i,j,n, as in [9, 2, 25], where σ2

i,j,n denotes the variance of

the n-th coefficient at the ith directional subband in the jth scale, and σ2
εi,j is the

noise variance at scale j and directional band i. The variances σ2
εi,j are estimated

by using a Monte-Carlo technique in which the variances are computed for several

normalized noise images and then the estimates are averaged.

For our experiments, we used 5 levels of the Laplacian pyramid decomposition,

and we applied a directional decomposition on 4 of the 5 scales. We used 8 shear

filters of sizes 32× 32 for the first two scales (coarser scales), and 16 shear filters of

sizes 16× 16 for the third and forth levels (fine scales). The shear filters are Meyer-

type windows [9]. We used the 512× 512 Barbara image to test our algorithm and,

to assess its performace, we used the peak signal-to-noise ratio (PSNR), measured

in decibels (dB), defined by

PSNR = 20 log10

255N

‖f − f̃‖F
,

where ‖·‖F is the Frobenius norm, the given image f is of size N×N and f̃ denotes

the estimated image.

In order to minimize latency as well as bandwidth usage on the PCIe bus, we

first transferred the input image to GPU memory, then we let all the computation

happen on the GPU and we finally transferred the results back to CPU memory. We

have verified that both CPU and GPU implementations provide an output PSNR of

29.9dB when the input PSNR is 22.1dB. At these noise levels, there is no difference

in PSNR between the single and the double precision implementations.



Gibert Serra et al. Page 11 of 21

To verify the numerical accuracy, we ran the shearlet decomposition and recon-

struction on a noise free image (without thresholding), and we got a reconstruction

MSE (Mean Squared Error) of 9.197×10−09 for single precision and 2.503×10−12

for double precision on a GeForce GTX 690. On the CPU implementation, we get

reconstruction errors of 9.1711×10−09 and 1.6643×10−26, respectively. This varifies

that our implementation does provide the exact reconstruction.

The running times vary significantly depending on the number of CPU cores

available and the GPU model. Figure 8 shows a comparison of running times (wall

times) of the image denoising algorithm on different hardware configurations. We

can clearly see that the CPU implementation does not scale well as we increase

the number of CPU cores due to parts of the algorithm running sequentially. For a

fair comparison of multicore vs GPU, we would have to compare the performance

to a fully optimized CPU implementation. It should be noted that there is enough

coarse level parallelism on this algorithm to accomplish full CPU utilization without

incurring in inter CPU communication issues. However, the trend reveals that on

this application GPU is more efficient than CPU. In summary, the denoising algo-

rithm takes 8.89 seconds on 4 CPU cores vs. 0.038 seconds on the GeForce GTX

690 (a 233× speed-up) when using single precision. For double precision, it takes

10.7 seconds on 4 CPU cores vs. 0.127 seconds on the GeForce GTX 690 (an 84×
speed-up).

Table 3 shows the breakdown of different parts of the image denoising algorithm

both on CPU and GPU.

4.2 Crack detection

Detection of cracks on concrete structures is a difficult problem due to the changes

in width and direction of the cracks, as well as the variability in the surface texture.

This problem has received considerable attention recently. Redundant representa-

tions, such as undecimated wavelets, have been extensively used for crack detection

[26, 27]. However, wavelets have poor directional sensitivity and have difficulties

in detecting weak diagonal cracks. To overcome this limitatation, Ma et al. [28]

proposed the use of the nonsubsampled contourlet transform [2] for crack detection.

However, all these methods rely on the assumption that the background surface can

be modeled as additive white Gaussian noise and his assumption leads to matched

filter solutions. As a matter of fact, on real images textures are highly correlated

and applying linear filters leads to poor performance.

To address this problem, we propose a completely new approach to crack detection

based on separating the image into morphological distinct components using sparse

reprentations, adaptive thresholding and variational regularization. This technique

was pioneered by Stark et al. [29] and later extended and generalized by many

authors (e.g., [30, 18, 17]). In particular, we will use the Iterative Shrinkage Algo-

rithm with a combined dictionary of shearlets and wavelets to separate cracks from

background texture.

To demonstrate the performance of the GPU-accelerated Iterative Shrinkage Al-

gorithm, we processed three 512× 512 images. The images correspond to cracks on

concrete railroad crossties collected by ENSCO Inc. during summer 2012 using four

2048×1 line-scan cameras, which were assembled into 8192×3072 frames. The cam-

eras were triggered using a calibrated encoder, producing images with square pixels
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with a constant size of 0.43mm. We have manually cropped these images so that we

can decouple crack detection from crosstie boundary tracking. As one can see from

Figure 5, these cracks propagate in different directions and the background texture

has a lot of variation. However, due to the fact that the information in these images

is highly redundant, it is possible to separate the image into two components, that

is, cracks and texture, by solving an `1 optimization problem [17].

More precisely, we will model an image x containing cracks on textural background

as a superposition of a crack component xc with a textural component xt:

x = xc + xt.

Let Φ1 and Φ2 be the dictionaries corresponding to wavelets and shearlets, respec-

tively. We assume that xc is sparse in a shearlet dictionary Φ1 and similarly xt

is sparse in a wavelet dictionary Φ2. That is, we assume that there are sparse co-

efficients ac and at so that xc = Φ1ac and xt = Φ2at. Then, one can separate

these components from an x via the coefficients ac and at by solving the following

optimization problem:

(âc, ât) = arg min ac,atλ‖ac‖1 + λ‖at‖1 +
1

2
‖x− Φ1ac − Φ2at‖22, (7)

where for an n-dimensional vector b the `1 norm is defined as ‖b‖1 =
∑
i |bi|.

This image separation problem can be solved efficiently using an iterative shrinkage

algorithm proposed in [17].

In our numerical experiments, we used symlet wavelets with 4 decomposition

levels to generate Φ2 and a 4-level shearlet decomposition with Meyer filters of

sizes 80 × 80 on all 4 scales, 8 directional filters on the first three scales, and 16

directional filters on the forth scale, to generate Φ1. To assess the performance of

the separation algorithm, we calculated the ROC curves for each image using the

following 2 detection methods.

a) Shearlet-C : This method takes advantage of the Parseval property of the

shearlet transform and performs crack detection directly in the transform do-

main. We first decompose the image into cracks and texture components using

Iterative Shrinkage with a shearlet dictionary and a wavelet one. Instead of

using the reconstructed image, we analyze the values of the shearlet trans-

form coefficients. For each scale in the shearlet transform domain, we analyze

the directional components corresponding to each displacement and collect

the maximum magnitude across all directions. If the sign of the shearlet coef-

ficient corresponding to the maximum magnitude is positive, we classify the

corresponding pixel as background, otherwise we assign the norm of the vector

containing the maximum responses at each scale to each pixel and we apply

a threshold.

b) Shearlet-I : We first decompose the image into cracks and texture components

as described for the previous method. Then, we apply an intensity threshold

on the reconstructed cracks image.

We compare our results to the following 2 basic methods not based on shearlets:
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c) Intensity : This is the most basic approach, which only uses image intensity.

After compensating for slow variations of intensity in the image, we apply a

global threshold.

d) Canny : We use the Canny[31] edge detector as implemented in MATLAB

using the default σ =
√

2 and the default high to low threshold ratio of 40%.

After using a low-level detector, it may be necessary to remove small isolated

regions corresponding to false detections due to random noise. This postprocessing

step may reduce the false detection rate on intensity-based methods. However, to

provide an objective comparison, we have generated the experimental results with-

out running any postprocessing. We leave the perfomance analysis of a complete

crack detector for future work.

To evaluate the performance of each crack detector, we manually annotated the

crack pixels in each image. To mitigate the effect of ambiguous segmentation bound-

aries, we annotated the boundaries around the cracks as tightly as possible (making

sure that only pixels completely contained inside the crack boundaries are anno-

tated as such) and defined an envelope region around each crack whose labels are

treated as “do not care”. Formally, let Ω denote the set of pixels in the image,

and F (foreground) denote the set of pixels labeled as cracks. We define the set B

(backgrond) as

B = {x ∈ Ω : min
f∈F
‖x− f‖ > δ}.

where ‖x − f‖ denotes the Euclidean distance between sites x and f . In our ex-

periments we used δ = 3. To account for possible small inaccuracies in the ground

truth, we performed a bipartite graph matching between the detected crack pixels

and the crack pixels in the ground truth. For our experiments, we allow matching

within a maximum distance of 2 pixels. This choice of matching metric does not

penalize crack overestimation errors as long as these errors are contained in such

envelope. This allows us to decouple errors in estimating the position of the crack

centerline from errors in estimating the crack width, which is more sensitive to

lighting variations. Let D be the set of pixels detected as cracks by a given detector

and

tp = |D ∩ F | fn = |D̄ ∩ F | p = tp+ fn = |F |

tn = |D̄ ∩B| fp = |D ∩B| n = tn+ fp = |B|

The probability of detection (PD) and false alarm (PF ) are defined as

PD =
tp

p
PF =

fp

n

A sequence of admissible detectorsD|PF≤ε, for a given false detection rate ε, 0 ≤ ε ≤
1 would produce monotonically increasing detection rates, PD|PF≤ε. The Receiving

Operating Characteristic function (ROC curve) is defined as PD as a function of

PF

ROC(x) = max
ε≤x

PD|PF=ε
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One commonly used metric is the Area Under the ROC Curve (AUC), defined by

AUC =

∫ 1

0

ROC(x) dx,

which corresponds to the probability that a sample randomly drawn from F will

receive a score higher than a sample randomly drawn from B. AUC provides a

mesure of the average performance of the detection across all possible sensitivity

settings. Although it is an important mesure, in practice we are interested in know-

ing how well the detector will work when we choose a particular sensitivy setting.

For this reason, we have selected Constant False Alarm Rate (CFAR) detectors with

PF = 10−3 and PF = 10−4 and we report the corresponding PD. For complete-

ness, we also report the F1 score (also know as the Dice similarity index), which is

defined as

F1 =
2 tp

2 tp+ fn+ fp

The F1 score is also known as the balanced F−score, since it is equivalent to the

harmonic mean of the precision and recall :

F1 = 2
precision · recall
precision+ recall

where

precision =
tp

p
recall =

tp

tp+ fn
.

In this paper, we report the peak F1 score for all methods. The Canny edge detection

method estimates the location of the crack boundary, while the other three methods

estimate the location of the crack itself. To have a meaningful comparison, we have

generated a separate ground truth masks for the crack outline, so we can use the

same matching metric on the Canny method. For each method, we have used the

same algorithm parameters on all the images.

Table 4 summarizes our results. We observe that our shearlet-based detectors per-

form consistently well on all evaluation metrics. Note that, on Image 3, the Shearlet-I

method, which is based on intensity in the reconstructed image, produces better re-

sults than all other methods. Due to its simplicity, the intensity-based methods is

still being used by the industry. For example, the system recently proposed in [32]

uses pixel intensities to detect cracks on road pavement. Based on the results from

Table 4, we can conclude that, with the proper image preprocessing, intensity can

still be a powerful feature for crack detection. However, the detection performance

provided by shearlet-based features is more consistent across images. In future work,

we will further explore the potential of combining both intensity and shearlet-based

features.

4.3 Video denoising

Video denosing can be performed using the same type of algorithm described above

for image denoising and consisting, essentially, in computing the shearlet coeffi-

cients of the noisy data, followed by hard threshoding and reconstruction from the
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thresholded coefficients. Similar to the previous section, a noisy video is obtained

by adding white Gaussian noise to a video sequence.

We have tested our GPU-based implementation of the 3D shearlet video denoising

algorithm using the 192× 192× 192 waterfall video sequence. Figure 7 shows frame

96 before and after denoising. Figure 9 compares the running times of the video

denoising algorithm based on CPU vs. GPU. One can notice that, when we go from

single core to dual core, the run time drops from 27.5 minutes to 14.4 minutes on

single precision (a 1.91× speed-up). However, when going from dual-core to quad

core we only get 1.62× speed-up, and the rate of improvement as we keep doubling

the number of cores keeps diminishing, to the point where the improvement from

single core to 64 cores is just a 9.45× speed-up. On the other hand, a GeForce 480

produces the same result in just 3 seconds, a remarkable 551× speed-up compared

to single core CPU, and 58× speed-up over 64 CPU cores.

5 Discussion and Conclusion
The shearlet transform is an advanced multiscale method which has emerged in

recent years as a refinement of the traditional wavelet transform and was shown

to perform very competitively over a wide range of image and data processing

problems. However, standard CPU-based numerical implementations are very time-

consuming and make the application of this method to large data sets and real-time

problems very impractical.

In this paper, we have described how to speed-up the computation of the 2D/3D

discrete shearlet transform by using GPU-based implementations. The development

of algorithms on GPU used to be tedious and require a very specialized knowledge

of the hardware. Using CUDA this is no longer the case and scientists with C/C++

programming skills can quickly develop efficient GPU implementations of data-

intensive algorithms. In this paper, we have taken advantage of the GPU-based

implementation of the Fast Fourier Transform and used the capabilities of MATLAB

for quick prototyping. The results presented in this paper illustrate the practical

benefits of this approach. For example, a GeForce 480 GTX, a $200 graphics card,

can perform video denoising 58 times faster than an expensive 64-core machine

while consuming much less power.

Our new implementation enables the efficient application of the sherleat decom-

position to a variety of image and data processing tasks for which the required CPU

resources would be prohibitive. There are further improvements and extensions that

can be achieved such as pre-calculating the filter coefficients and porting the code

to OpenCL so it can also run on AMD and Intel GPUs, but this would go beyond

the scope of this paper.
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Figure 1 (a) The tiling of the frequency plane R̂2 induced by the shearlets. (b) Frequency support

Σj,` of a shearlet ψ
(1)
j,`,k, for ξ1 > 0. The other half of the support, for ξ1 < 0, is symmetrical.
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Figure 2 Frequency support of a representative shearlet function ψj,`,k, inside the pyramidal
region P1. The orientation of the support region is controlled by ` = (`1, `2); its shape is
becoming more elongated as j increases (j = 4 in this plot).

Table 1 Main steps of the shearlet transform

Forward transform Inverse transform

1. Laplacian decomposition 1. Forward FFT of directional components
2. Forward FFT of Laplacian components 2. Modulation with complex conjugate di-

rectional filter bank
3. Modulation of Laplacian components

with directional filter bank
3. Inverse FFT of directional components

4. Inverse FFT of directional components 4. Laplacian reconstruction

Tables
Additional Files
Additional file 1 — Sample additional file title

Additional file descriptions text (including details of how to view the file, if it is in a non-standard format or the file

extension). This might refer to a multi-page table or a figure.

[1]Although the GeForce GTX 690 is a dual-GPU with a total of 4GB and 3072 cores, we have only used

one of the 2 devices in the GPU for our experiments.



Gibert Serra et al. Page 18 of 21

Figure 3 The figure illustrating the succession of Laplacian pyramid and directional filtering.

(a) (b) (c) (d)

Figure 4 Image separation. (a) Original images separated into (b) Cracks and (c) Textural
background components (d) Crack ground truth

Table 2 Specifications and computing environments for each of the graphics processors used on our
benchmarks

GPU Model Memory #Cores CC OS CUDA

Tesla C1060 4GB 240 1.3 RHEL 5 5.0.35
GeForce GTX 480 1.5GB 448 2.0 RHEL 6 4.2.9

Tesla C2050 3GB 448 2.0 RHEL 6 4.2.9
GeForce GTX 690[1] 2GB 1536 3.0 RHEL 6 5.0.35

Tesla K20c 4.8GB 2496 3.5 RHEL 6 5.0.35

Additional file 2 — Sample additional file title

Additional file descriptions text.
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(a) (b) (c) (d)

Figure 5 Crack detection results. (e) using shearlet coefficients (Shearlet-C) (f) using
thresholding in the image reconstruction using shearlets (Shearlet-I) (g) using intensity
thresholding in the original image (h) using Canny edge detection. All results are generated at
peak F2 score

Table 3 Comparison of processing times for denoising a single precision 512× 512 image on a
multicore CPU using 4 CPU cores vs. a GeForce GTX 690 GPU.

Step
4-core CPU GTX 690 GPU

time (s) % time time (ms) % time

Laplacian pyramid 2.787 31.6% 18.282 47.3%
Directional filters 4.386 49.7% 18.350 47.5%

Hard threshold 0.375 4.2% 1.967 5.1%
Other 1.281 14.5 % 0.063 0.2%

TOTAL TIME 8.829 seconds 38.662 msec

Table 4 Comparison of detection performance for different crack detection algorithms.

Image Method AUC F1 score PD|PF=10−3 PD|PF=10−4

1

Shearlet-C 0.99915 0.79916 0.8398 0.6746
Shearlet-I 0.99908 0.65810 0.7140 0.4247
Intensity 0.99874 0.73188 0.7411 0.5722
Canny 0.94457 0.27752 0.2114 0.1099

2

Shearlet-C 0.99999 0.98841 0.9989 0.9895
Shearlet-I 0.99557 0.62705 0.4837 0.3964
Intensity 0.99037 0.55404 0.4371 0.3342
Canny 0.99043 0.81787 0.6425 0.4462

3

Shearlet-C 0.99934 0.76418 0.8368 0.5874
Shearlet-I 0.99977 0.82353 0.9101 0.7098
Intensity 0.99650 0.45992 0.0543 0.0000
Canny 0.96248 0.19436 0.0000 0.0000



Gibert Serra et al. Page 20 of 21

(a)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

Shearlet−C

Shearlet−I

Intensity

Canny

(b)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

Shearlet−C

Shearlet−I

Intensity

Canny

(c)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

Shearlet−C

Shearlet−I

Intensity

Canny

Figure 6 ROC curves for crack detection. (a) Image 1 (b) Image 2 (c) Image 3

(a) (b) (c)

Figure 7 Video denoising. (a) Original video frame (b) Noise added (c) Denoised frame
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Figure 8 Comparison of CPU vs GPU run times for denoising a 512× 512 image using shearlets.
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Figure 9 Comparison of CPU vs GPU run times for denoising a 1923 video using 3D shearlets.
Time includes all transfers between CPU and GPU.


