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ABSTRACT

Many imaging modalities, such as Synthetic Aperture Radar (SAR), can be described mathematically as col-
lecting data in a Radon transform domain. The process of inverting the Radon transform to form an image can
be unstable when the data collected contain noise so that the inversion needs to be regularized in some way. In
this work, we develop a method for inverting the Radon transform using a shearlet-based decomposition, which
provides a regularization that is nearly optimal for a general class of images. We then show through a variety of
examples that this technique performs better than similar competitive methods based on the use of the wavelet
and the curvelet transforms.

1. INTRODUCTION

The concept of Radon transform, originally suggested in 1917 by Johann Radon1 , is the underlying basis for
the development of many of today’s imaging sensors. Some of its most famous applications are in the field
of computerized tomography (CT) and magnetic resonance imaging (MRI). It also can be used to describe
the underlining principles of remote sensing devices such as SAR, inverse synthetic aperture radar (ISAR), and
many other sensors that reconstruct an image based on several scans at different locations or angles of a region of
interest. In a general sense, the Radon transform projects data onto an appropriate number of lower-dimensional
elements which are what is produced from these types of scans. Inverting the Radon transform then produces a
reconstruction of the scanned region.

In its classical formulation, the Radon transform can be described abstractly as follows. Let L be a collection
of lines in R2 whose union is the entire plane. For a function f belonging to the class L1(R2) of functions on R2

whose modulus is integrable and a line ` with slope m and y-intercept b, define

(Rf)(m, b) =
∫ ∞

−∞
f(x,mx + b) dx.

The inversion formula that allows to reconstruct the function f from g = Rf can be written as f = R∗Kg, where
R∗ is the a dual transform given by

(R∗g)(b, x) =
∫ ∞

−∞
g(m, b−mx) dm,

and K is the operator given by

(Kg)(m, t) =
∫ ∞

−∞
|s|ĝ(m, s)e2πist ds,

with
ĝ(m, s) =

∫ ∞

−∞
g(m, t)e−2πist dt.

Therefore, the Radon inversion formula in operator form is R∗KR = I, where I is the identity operator.

The process of inverting the Radon transform can be unstable when the scans are contaminated by noise.
Thus, some form of regularization of the inversion is needed in order to control the amplification of noise in
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the reconstruction. In this work, we propose a technique for regularizing the inversion by means of a multiscale
and multidirectional representation known as shearlets. Our approach adapts the general framework for the
operator–biorthogonal decomposition of the Radon transform originally introduced by Donoho2 (see also3), but
allows for a significant performance improvement over the wavelets– and curvelets–based results.

2. SHEARLETS

The theory of composite wavelets, recently introduced in4–6 , provides an effective approach for combining geom-
etry and multiscale analysis by taking advantage of the classical theory of affine systems. In dimension n = 2,
the affine systems with composite dilations are the collections of the form {AAB(ψ)}, where ψ ∈ L2(R2), A,B
are 2× 2 invertible matrices with | detB| = 1, and

AAB(ψ) = {ψj,`,k(x) = | detA|j/2 ψ(B` Ajx− k) : j, ` ∈ Z, k ∈ Z2}.

The elements of this system are called composite wavelets if AAB(ψ) forms a Parseval frame (also called tight
frame) for L2(R2); that is, ∑

j,`,k

|〈f, ψj,`,k〉|2 = ‖f‖2,

for all f ∈ L2(R2). The dilations matrices Aj are associated with scale transformations, while the matrices B`

are associated to area-preserving geometric transformations, such as rotations and shear. This framework allows
one to construct Parseval frames whose elements, in addition to ranging at various scales and locations, like
ordinary wavelets, also range at various orientations.

In this paper, we will consider a special example of affine systems with composite wavelets in L2(R2), called
shearlets, where A = A0 is the anisotropic dilation matrix and B = B0 is the shear matrix, which are defined by

A0 =
(

4 0
0 2

)
, B0 =

(
1 1
0 1

)
.

For any ξ = (ξ1, ξ2) ∈ R̂2, ξ1 6= 0, let

ψ̂(0)(ξ) = ψ̂(0)(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2

(
ξ2

ξ1

)
, (1)

where ψ̂1, ψ̂2 ∈ C∞(R̂), supp ψ̂1 ⊂ [−1/2,−1/16] ∪ [1/16, 1/2] and supp ψ̂2 ⊂ [−1, 1]. This implies that ψ̂(0) is a
compactly-supported C∞ function with support contained in [−1/2, 1/2]2. In addition, we assume that

∑

j≥0

|ψ̂1(2−2jω)|2 = 1 for |ω| ≥ 1
8
, (2)

and, for each j ≥ 0,
2j−1∑

`=−2j

|ψ̂2(2j ω − `)|2 = 1 for |ω| ≤ 1. (3)

From the conditions on the support of ψ̂1 and ψ̂2 one can easily deduce that the functions ψj,`,k have frequency
support contained in the set

{(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], |ξ2/ξ1 + ` 2−j | ≤ 2−j}.

Thus, each element ψ̂j,`,k is supported on a pair of trapezoids of approximate size 22j × 2j , oriented along lines
of slope ` 2−j (see Figure 1(a)).

From equations (2) and (3) it follows that the functions {ψ̂(0)(ξ A−j
0 B−`

0 )} form a tiling of the set

D0 = {(ξ1, ξ2) ∈ R̂2 : |ξ1| ≥ 1/8, |ξ2/ξ1| ≤ 1}.



Indeed, for (ξ1, ξ2) ∈ D0

∑

j≥0

2j−1∑

`=−2j

|ψ̂(0)(ξ A−j
0 B−`

0 )|2 =
∑

j≥0

2j−1∑

`=−2j

|ψ̂1(2
−2j ξ1)|2 |ψ̂2(2

j ξ2

ξ1
− `)|2 = 1. (4)

An illustration of this frequency tiling is shown in Figure 1(b).
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Figure 1. (a) The frequency support of a shearlet ψj,`,k satisfies parabolic scaling. The figure shows only the support for

ξ1 > 0; the other half of the support, for ξ1 < 0, is symmetrical. (b) The tiling of the spatial-frequency plane R̂2 induced
by the shearlets. The tiling of D0 is illustrated in black lines; the tiling of D1 is shown in gray lines.

Letting L2(D0)∨ be the set of functions f ∈ L2(R2) such that the support of f̂ is contained in D0, property (4)
and the fact that ψ̂(0) is supported inside [−1/2, 1/2]2 imply that the collection of functions defined by

ψ
(0)
j,`,k(x) = 23j/2 ψ(0)(B`

0A
j
0x− k), for j ≥ 0,−2j ≤ ` ≤ 2j − 1, k ∈ Z2, (5)

is a Parseval frame for L2(D0)∨. Similarly, we can construct a Parseval frame for L2(D1)∨, where D1 is the
vertical cone D1 = {(ξ1, ξ2) ∈ R̂2 : |ξ2| ≥ 1/8, ξ1/ξ2| ≤ 1}. Specifically, let

A1 =
(

2 0
0 4

)
, B1 =

(
1 0
1 1

)
,

and ψ(1) be given by

ψ̂(1)(ξ) = ψ̂(1)(ξ1, ξ2) = ψ̂1(ξ2) ψ̂2

(
ξ1

ξ2

)
.

Then the collection {ψ(1)
j,`,k : j ≥ 0,−2j ≤ ` ≤ 2j − 1, k ∈ Z2} defined by

ψ
(1)
j,`,k(x) = 23j/2 ψ(1)(B`

1A
j
1x− k) (6)

is a Parseval frame for L2(D1)∨. Details about this can be found in 6 .

Finally, let ϕ̂ ∈ C∞0 (R2) be chosen to satisfy

|ϕ̂(ξ)|2 +
∑

j≥0

2j−1∑

`=−2j

|ψ̂(0)(ξA−j
0 B−`

0 )|2 χD0(ξ) +
∑

j≥0

2j−1∑

`=−2j

|ψ̂(1)(ξA−j
1 B−`

1 )|2 χD1(ξ) = 1



for ξ ∈ R̂2, where χD is the indicator function of the set D. This implies that the support of ϕ̂ is contained in
[−1/8, 1/8]2, |ϕ̂(ξ)| = 1 for ξ ∈ [−1/16, 1/16]2, and the collection {ϕk : k ∈ Z2} defined by ϕk(x) = ϕ(x− k) is
a Parseval frame for L2([−1/16, 1/16]2)∨.

Thus, letting ̂̃
ψ

(d)

j,`,k(ξ) = ψ̂
(d)
j,`,k(ξ) χDd

(ξ) for d = 0, 1, we have the following result.

Theorem 2.1.7The collection of shearlets

{ϕk : k ∈ Z2}
⋃
{ψ(d)

j,`,k(x) : j ≥ 0, −2j + 1 ≤ ` ≤ 2j − 2, k ∈ Z2, d = 0, 1}
⋃
{ψ̃(d)

j,`,k(x) : j ≥ 0, ` = −2j , 2j − 1, k ∈ Z2, d = 0, 1},

is a Parseval frame for L2(R2).

For d = 0, 1, the shearlet transform maps f ∈ L2(R2) into the elements 〈f, ψ
(d)
j,`,k〉, where j ≥ 0,−2j ≤ ` ≤

2j − 1, k ∈ Z2.

Based on ψ1 and ψ2, filters vj and w
(d)
j,` can be found so that 〈f, ψ

(d)
j,`,k〉 = f ∗ (vj ∗ w

(d)
j,` )[k]7 . To simplify

the notation, we suppress the superscript (d) and absorb the distinction between d = 0 and 1 by re-indexing the
parameter ` so that it has double the cardinality.

3. COMPANION REPRESENTATIONS

For brevity of notation, for j ≥ 0,−2j ≤ ` ≤ 2j − 1, k ∈ Z2, we set µ = (j, `, k) and denote ψj,`,k by sµ. We
define new companion representations of the shearlets to be images of a fractional Laplacian as follows.

Definition 3.1. For a positive rational number α and f ∈ C∞(R2), define (−∆)αf by the relation ((−∆)αf )̂ (ξ) =
|ξ|2αf̂(ξ). Let s+

µ = 2−j(−∆)1/4sµ and s−µ = 2j(−∆)−1/4sµ.

We may use these companion functions to form a frame that will be used in a construction to invert the
Radon transform. First, we establish the following result.

Theorem 3.2.8 The systems {s+
µ }µ∈M and {s−µ }µ∈M are frames for L2(R2) which obey the relation

〈s+
µ , s−µ 〉 = 2j′−j〈sµ, sµ′〉, (7)

for µ, µ′ ∈ M , with µ = (j, `, k), µ′ = (j′, `′, k′).

The following result follows from general facts from frame theory as explained in3 .

Corollary 3.1.8 The systems {s+
µ }µ∈M and {s−µ }µ∈M satisfy the following conditions:

1. (L2-norm equivalence) ∥∥∥∥∥
∑

µ

〈f, s±µ 〉
∥∥∥∥∥

`2

³ ‖f‖2 ∀f ∈ L2(R2).

2. There exists C > 0 such that ∥∥∥∥∥
∑

µ

cµs±µ

∥∥∥∥∥
`2

≤ C

(∑
µ

c2
µ

)1/2

,

for all {cµ} ∈ `2.



Figure 2. An image of a filter sµ in the frequency domain on the left. An image of a filter Rsµ in frequency domain on
the right.

4. INVERSION OF RADON TRANSFORM BASED ON SHEARLETS

Having established the frame properties of the companion functions of shearlets, we may now construct an
inversion formula of the Radon transform based on them.

Let DR be the domain of the Radon transform and observe that all functions f ∈ DR satisfy the symmetry
property Rf(−t, θ + π) = Rf(t, θ).

Definition 4.1. Given the Radon transform R, the Radon isometry is defined by the formula R = (∆1⊗ I)◦R,
where

∆1f(f) =
1
2π

∫ ∞

−∞
|ω|1/2f̂(ω)eiωt dω,

and I denotes the identity operator.

We use the notation [f, g] for the inner product defined on DR so that the Radon isometry property can be
expressed as [Rf,Rg] = 〈f, g〉.

Given the Radon isometry function, a set of systems based of the image of the isometry applied to the shearlet
companion functions can be used to decompose and invert the Radon transform.

Theorem 4.2.8 The systems {Uµ} and {Vµ} defined by Uµ = Rs+
µ and Vµ = Rs−µ for µ ∈ M are frames for DR

satisfying the following properties:

•
∥∥∥∑

µ cµUµ

∥∥∥
`2
≤ C

(∑
µ c2

µ

)1/2

,

•
∥∥∥∑

µ cµVµ

∥∥∥
`2
≤ C

(∑
µ c2

µ

)1/2

, for all {c}µ ∈ `2;

• ∑
µ〈f, Uµ〉2 ³ ‖f‖2L2 ,

• ∑
µ〈f, Vµ〉2 ³ ‖f‖2L2 , for all f ∈ DR;

• (Quasi-biorthogonal relation:) [Vµ, Uµ′ ] = 2j−j′〈sµ, sµ′〉;
• Rf =

∑
µ〈f, sµ〉2−jVµ;

• R∗g =
∑

µ[g, Uµ]2−jsµ, where R∗ denotes the adjoint of R.

• For all functions f which are finite sums of sµ’s, we have the reproducing formula

f =
∑

µ

[Rf,Uµ]2jsµ.



Figure 3. The image on the left illustrates some shearlet coefficients at a given direction and scale. The image on the
right shows the corresponding companion shearlet coefficients in a Radon domain.

Note that, defining

∆2f(f) =
1
2π

∫ ∞

−∞
|ω|f̂(ω)eiωt dω,

it is possible to express Uµ and Vµ as 2−j(∆2 ⊗ I)Rsµ and 2jRsµ, respectively. (See 3 for details on this
derivation.)

5. INVERSION OF NOISY RADON DATA VIA SHEARLETS.

In our model, we assume that Radon transform data Rf is corrupted by additive white Gaussian noise W ; that
is, what is received is Rf + εW , where ε is measuring the noise level. Projecting this data onto the frame {Uµ},
we obtain

2−j〈f, sµ〉+ ε nµ,

where nµ is a non-i.i.d. (that is, not independent and identically distributed) Gaussian noise ((nµ, nµ′) =
[Uµ, Uµ′ ]; σn,µ = ‖s+

µ ‖2). The goal is then to estimate f as

f̃ =
∑

µ

Ts([Rf + W,Uµ] 2j , τj)sµ

where Ts(y, t) = sgn(y)(|y| − t)+ is the soft thresholding function and τj are scale-dependent thresholds.

6. RESULTS

Several experiments have been carried out that demonstrate the improved performance of a shearlet-based
reconstruction. In the first experiment, white Gaussian noise was added to the Radon projections of the Shepp-
Logan Phantom image so that a non-regularized reconstruction gave a SNR of 7.48 dB. The reconstructions
were then implemented by means of the wavelet, curvelet, and shearlet-based regularization techniques. The
standard deviation of the noise for each decomposition level was estimated using a Monte Carlo simulation and
the thresholding parameters were chosen to be four times the estimated standard deviation of the noise for the
finest decomposition scales and three times the estimated standard deviations of the remain decomposition levels.
The results of the reconstructions (shown in Figure 4) had a SNR of 16.64 dB for the wavelet-based estimate, a
SNR of 18.73 dB for the curvelet-based estimate, and a SNR of 19.75 dB for the shearlet-based estimate.

It is mathematically known that both the shearlet and curvelet transforms obtain a much better non-linear
approximation rate than that of a wavelet transform for star-like domains7, 9 . Specifically, for this class of images,



a shearlet/curvelet-based estimate yields a MSE approximation rate of O(ε4/3) as ε → 0, where ε is the noise
level of the noisy image10 , while the MSE approximation rate of wavelet thresholding is O(ε) for ε → 0.

With the above result in mind, we tested the methods using an image that belongs to this class of images
(see Figure 5). White Gaussian noise was added to the Radon projections of this star-like image so that a
non-regularized reconstruction gave a SNR of 8.02 dB. Using the same thresholding parameters as above, the
results of the reconstruction had a SNR of 14.83 dB for the wavelet-based estimate, a SNR of 15.90 dB for the
curvelet-based estimate, and a SNR of 16.78 dB for the shearlet-based estimate.

Finally, we tested the performance of the algorithms using an ISAR dataset collected by System Planning
Corporation’s Mark IV radar of a SAAB 9000 car. A non-regularized reconstruction is shown in Figure 6. Instead
of determining the standard deviation of the noise for each decomposition level, we have used a generalized cross
validation (GCV) function to determine the thresholding parameters for each band (see 11 for more details). Note
that in this case, the curvelet-based estimate is very poor because the downsampling used in its implementation 12

decreases the accuracies in determining the thresholding parameters from the GCV functions.

7. CONCLUSION

We have devised a shearlet-based representation for the purpose of regularizing the inversion of the Radon
transform. This representation allows us to obtain noise-reduced reconstructions for many imaging systems
such as CT, MRI, SAR, ISAR, and many other sensors that reconstruct an image based on several scans at
different locations or angles that can be modeled by the Radon transform. We have shown through various
experiments that this method performs significantly better than many of the current competitive techniques.
A considerable advantage of our proposed technique is that it is better suited for use with GCV functions for
automatic determination of the threshold parameters.
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Figure 4. From the top, clockwise: noisy Radon reconstruction (7.48 dB); wavelet-based estimate (16.64 dB); shearlet-
Based estimate (19.75 dB); curvelet-based estimate (18.72 dB).



Figure 5. From the top, clockwise: noisy Radon reconstruction (8.02 dB); wavelet-based estimate (14.83 dB); shearlet-
Based estimate (16.78 dB); curvelet-based estimate (15.90 dB).



Figure 6. From the top, clockwise: noisy Inverse Synthetic Aperture Radar (Radon) reconstruction; wavelet-based
estimate; shearlet-Based estimate; curvelet-based estimate.


