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What is statistics?

Statistics is a discipline focused on the collection and analysis of
data.

Its objective: to solve quantitative problems in the presence of
uncertainty due to the variability of data.

Its method: the main tool for the study of statistics is the
mathematical theory of probability.



Historical note

Historically, probability originated with calculations related to
games of chance.

G. Cardano, about 1560: Liber de ludo aleae = Book about games
of dice.

The modern mathematical theory of probability started with A.
N. Kolmogorov, about 1933. He laid out an axiomatic approach
which is the basis for the current theory.
One of the cornerstone of his approach is the notion of idealized
thought experiment. For example, one can think of a coin tossing
experiment as an idealized experiment that can be repeated
indefinitely and that admits two equally likely outcomes.

Applications of probability are very pervasive: opinion polls, stock
market models, weather forecast, Mendel’s theory of heredity,
queues in communications, robot navigation, analysis of noise in
signal processing, models of radioactive decay, spread of infectious
diseases, reliability theory, neural networks, . . .



Review of set theory

Definition: A set is a collection of objects.

It can be defined by enumeration

A � r1, 7, 10x
B � rAdam, Jim,Paulax

or can be defined by description

E � rThe students enrolled in MA3339, Sec.2x
Each objects in a set is an element of the set.

a " A = ”a belongs to A”= ”a is an element of A”

Two sets A and B are equal if and only if they contain the same
elements.



Review of set theory
Definitions:
o is the empty set, that is, the set that contains no elements.
R is the set of real numbers
N is the set of natural numbers

Definition: A subset B of a set A, denoted as B L A, is a set
such that any element of B is also an element of A.
Note: if B L A and A L B, it follows that A � B.

Definition: The union of two sets A and B is the set

A < B � rx � x " A or x " Bx
Definition: The intersection of two sets A and B is the set

A = B � rx � x " A and x " Bx



Review of set theory
Definition: Let S be a set and A L S . The complement of A in
S , denoted as A

c
(or A) is the set of all elements in S that are not

in A, that is
A
c
� rx � x " S and x � Ax

Definition: The difference of two sets A ¯ B is the set of all
elements in A that are not in B, that is

A ¯ B � A = B
c



Review of set theory

Properties: Let S be a set and A L S .

1 �Ac�c � A

2 A < A
c
� S , A = A

c
� o

3 A <o � A, A =o � o

4 A < S � S , A = S � A



Review of set theory
Properties: Let A and B be sets.

1 A < B � B < A (commutative property)

2 A = B � B = A (commutative property)

3 A < B � �Ac
= B

c�c (De Morgan’s law)

4 A = B � �Ac
< B

c�c (De Morgan’s law)

Definition: Two sets A and B are said to disjoint if A = B � o.



1. Probability Theory



Axiomatic theory of probability

We will be concerned with (thought) experiments whose outcome
is subject to uncertainty.
E.g., tossing a coin, rolling a die, picking a card from deck of cards.

Definition: The sample space S is the set of all possible
outcomes of an experiment.
An event is any collection of outcomes/events in S .
Events A and B in S such that A = B � o are called mutually
exclusive or disjoint.



Axiomatic theory of probability

Definition: Given a random experiment and a sample space S , we
assign to any event A a number P�A� called probability of A
according to the following axioms:

1 For any A " S , P�A� ' 0;

2 P�S� � 1;

3 if A1, . . . ,An are disjoint events, then
P�A1 < � � � < An� � <n

i�1 P�Ai�.
It follows that P�o� � 0. (Exercise: Why?)

It follows that P�A� & 1 for any event A. (Exercise: Why?)



Axiomatic theory of probability

Proposition. Given a random experiment and a sample space S ,
let A and B be two events.

1 P�Ac� � 1 � P�A�
2 P�A� & 1 for any event A.

3 P�A ¯ B� � P�A < B� � P�B�.
4 P�A ¯ B� � P�A� � P�A = B�.
5 P�A < B� � P�A� � P�B� � P�A = B�.

Proof.
3. �A ¯ B� < B � A < B where left-hand-side (LHS) is disjoint.
Hence P�A ¯ B� � P�B� � P�A < B�
4. �A ¯ B� < �A = B� � A where LHS is disjoint.
Hence P�A ¯ B� � P�A = B� � P�A�
5. �A ¯ B� < B � A < B where LHS is disjoint.
Hence P�A ¯ B� � P�B� � P�A < B�.
By 4., P�A ¯ B� � P�B� � P�A� � P�A = B� � P�B� � P�A < B�



Axiomatic theory of probability - Exercise
Exercise: In Springfield, MO, 60% of households receive internet
access through ACME company, 80% of households receive TV
access through the same company and 50% of households receive
both TV and internet through ACME company.
(a) If a household is randomly selected, what is the probability it
receives at least one of the two services through ACME company?
(b) If a household is randomly selected, what is the probability it
receives exactly one of the two services through ACME company?

Solution: We start by reformulating the problem in terms of
probability calculations.

A = household receives internet access through ACME
company;
B = household receives TV access through ACME company;

Hence, we have that P�A� � 0.6, P�B� � 0.8 and P�A=B� � 0.5.

Question (a) asks to find P�A < B�.
Question (b) asks to find P ��A ¯ B� < �B ¯ A��.
It follows that P�A� & 1 for any event A. (Exercise: Why?)



Axiomatic theory of probability - Equally likely events
Let S be a sample space containing a finite number of simple
events A1, . . .An.
We assume that events A1, . . .An are mutually exclusive and
exhaustive, that is

n

�
i�1

Ai � S and Ai = Aj � o, ¾i j j .

This implies that

1 � P�S� � n

=
i�1

P�Ai� � P�A1� � � � � � P�An�
We also assume that events A1, . . .An are equally likely, that is

P�Ai� � p ¾i � 1, . . . , n.

This implies that

1 �
n

=
i�1

P�Ai� � np � p �
1
n



Axiomatic theory of probability - Equally likely events

In conclusion, if the events A1, . . .An are mutually exclusive,
exhaustive and equally likely, then

P�Ai� � 1
n , ¾i � 1, . . . , n.

If the event E � rA1 < A2 < . . .Akx (the union of k elementary
events Ai ), then

P�E� � P�A1 < A2 < . . .Ak� � k

=
i�1

P�Ai� � k
n .



Equally likely events - Examples

Several classical games of chance, e.g., coin tossing, rolling dice,
card games, can be modeled using equally likely events as
described above.

Example: Consider the experiment of rolling a (fair) die. We want
to compute the probability of the following events:
E1 � A2 � outcome is 2
E2 � �A2 < A4 < A6� � outcome is an even number

Solution:

P�E1� � P�A2� � 1

6

P�E2� � P�A2 < A4 < A6� � 3

6
�

1

2



Equally likely events - Card example

Consider a deck of 52 playing cards (we assume cards in the deck
are shuffled).

Note: A standard deck of playing cards consists of 52 cards.
All cards are divided into 4 suits. There are two black suits
- spades (¹) and clubs (º) and two red suits — hearts (¸)
and diamonds (¶).
In each suit there are 13 cards including a 2, 3, 4, 5, 6, 7, 8,
9, 10, a jack, a queen, a king and an ace A.

Our experiment consists in drawing a card from the deck.



Equally likely events - Card example

We want to compute the probability of the following events:
E1 � card is a king; E2 � card is a spade (¹)

P�E1� � 4

52
(there are 4 kings in the deck)

P�E2� � 13

52
(there are 13 spades in the deck)

P�E1 = E2� � 1

52
(there is 1 king of spade in the deck)

P�not a spade� � P�E c
2 � � 1 � 13

52
�

39
52

P�a king or a spade� � P�E1<E2� � P�E1��P�E2��P�E1=E2� � 16
52



Counting rules

If all n outcomes of a random experiment are equally likely, as we
examined above, the probability of an event E is given by

P�E� � ¶E ¶
n

where ¶E ¶ denotes the number of elements in E .

To apply this rule, we need to be able to count the number of
elements in events. We shall look at:

multiplication rules

permutations

combinations



Counting rules - multiplication

Let us considered an ordered pair �a, b�.
If we can choose a in n1 ways and b in n2 ways then the number of
possible pairs is n1n2.

Example. A survey consists of two multiple choice questions. The
first question has 3 possible answers and the second has 4 possible
answers. What is the total number of different ways in which this
survey could be completed? Solution: 3 � 4 � 12

We proceed similarly with an ordered m-tuple �a1, . . . , am� where
we can choose a1 in n1 ways, . . . , am in nm ways.

Example. A circuit board contains 4 relays where each of the first
2 can be set to any of 4 positions and each of the last 2 can be set
to any of 3 positions. What is the total number of distinct
configurations for the 4 relays? Solution: 4 � 4 � 3 � 3 � 144



Counting rules - permutations and combinations

Permutations and combinations describe the various ways in which
objects from a set may be selected, generally without replacement,
to form subsets. This selection of subsets is called a permutation
when the order of selection is a factor, a combination when order
is not a factor.



Counting rules - permutations

How many different arrangements (permutations) of n
distinct objects are possible?

The first object can be chosen in n ways;

the second object can then be chosen in n � 1 ways and so on.

The number of ways of arranging (in order) n distinct objects is

n � �n � 1� � �n � 2��3 � 2 � 1 � n! (n factorial)

Example. 6 horses run a race. The total number of possible results
of this race (assuming no ties) is 6! = (6)(5)(4)(3)(2)(1) = 720.

Example. The total number of different ways in which the letters
of the word “sprint” can be arranged is 6! = (6)(5)(4)(3)(2)(1) =
720. (Note: it is important here that all letters are different.)



Counting rules - permutations

How many different arrangements (permutations) of n
distinct objects, taken k at a time, are possible?

The first object can be chosen in n ways;

the second object can then be chosen in n � 1 ways and so on.

When choosing the k-th object, we have already chosen k � 1
objects, so there are still n � �k � 1� � n � k � 1 possible choices.

Hence the number of size-k arrangements (k-permutations) of a
set of n distinct objects is

P
n
k � n � �n � 1� � �n � 2���n � k � 1� � n!�n � k�!

Example. 8 horses run a race. How many different possibilities are
there for who finishes finish first, second and third? The number of
3-permutations is a set of size 8 is 8!�8�3�! � �8��7��6� � 336



Counting rules - permutations

What if not all the objects are distinct?

What is the total number of different arrangements of the letters
in the word pill?

Suppose the two l can be distinguished pil1l2. Then we would have
4! arrangements.

Each arrangement of the original word pill would generate 2!
arrangements of pil1l2
So the number of arrangements of the word pill is 4!

2!
� 12.

In general if we have n items k of which are identical, the total
number of distinct permutations is n!

k!

Example. How many different ways can we rearrange the letters of
MISSISSIPPI?
There are 11 letters of which 4 are ‘I’, 4 are ‘S’ and 2 are ‘P’. In
this situation, the total number of different rearrangements is 11!

4!4!2!



Counting rules - combinations

How many different ways can we select a set of size k from a
larger set of n distinct objects? Here the order of selection does
not matter.

We know that there are P
n
k (ordered) arrangements of n distinct

objects of size k . Since each combination of k objects can be
permuted in k! ways then the number of combinations of n
objects taken k at a time is

C
n
k �

P
n
k

k!
�

n!�n � k�!k! �� �nk� (binomial coefficient)

Note: �n
k
� � � n

n�k
�



Counting rules - combinations
Example. In how many ways can a subcommittee of 5 be chosen
from a panel of 20 individuals?

�205 � � �20��19��18��17��16��5��4��3��2��1� � 15504

Example. In the powerball game, first a player selects 5 out of the
first 55 positive integers and next a second number - the powerball
– out of the first 42 integers.
What is the probability of hitting the powerball, that is, of guessing
correctly all 6 numbers? What is the probability of matching the
first 5 numbers but not the last one?
The size of the samples space is �55

5
� � �42

1
�.

P�powerball� � 1�55
5
���42

1
� � 6.884 � 10

�9

P�first 5 numbers� � 41�55
5
���42

1
� � 2.806 � 10

�7



Counting rules - combinations
Example.
A hand of 5 cards is dealt from a well-shuffled 52-card deck. What
is the probability that the hand contains:

1 no aces?
2 5 clubs?
3 at least 1 club
4 at least 1 ace?

Solution. Size of sample space is �52
5
� � 52!

47!5!
� 2, 598, 960.

P�no aces� � �48
5
�

�52
5
�

P�5 clubs� � �13
5
�

�52
5
�

P�at least 1 club� � 1 � P�no clubs� � 1 �
�39
5
�

�52
5
�

P�at least 1 ace� � 1 � P�no aces� � 1 �
�48
5
�

�52
5
�



Counting rules

Example.
A hand of 5 cards is dealt from a well-shuffled 52-card deck. What
is the probability that the hand contains:

1 3 clubs and 2 hearts?
2 2 kings, 2 queens and 1 jack?

Solution.

P�3 clubs and 2 hearts� � �13
3
��13

2
�

�52
5
�

P�2 kings, 2 queens and 1 jack� � �4
2
��4

2
��4

1
�

�52
5
�



Conditional probability

Definition: Given a random experiment and a sample space S , Let
A and B be two events. The conditional probability of A given B
is

P�A¶B� � P�A = B�
P�B� , provided P�B� % 0

It follows that

P�A = B� � P�B�P�A¶B�
and

P�A = B� � P�A�P�B¶A�
the probability of A and B is the probability of A multiplied by the
probability of B given A.



Conditional probability - Example

Example.
A bowl contains 10 chips: 5 red, 3 white, 2 blue.
We randomly draw a chip from the bowl.

Let us consider the following events:
E1 = chip is red or blue
E2 = chip is red or white.

P�E1� � 7
10
, P�E2� � 8

10

P�E1¶E2� � P�E1=E2�
P�E2� �

5©10
8©10 � 5

8
.

Interpretation: the condition E2 has the effect of reducing the size
of the sample space. If we know that the chip is red or white, then
the sample space only includes 8 chips, not 10.



Conditional probability - Example
Example.
A bowl contains 10 chips: 6 white, 4 blue.
We randomly draw 2 chips from the bowl in succession (and
without replacement).
What is the probability that both chips are white?

Solution 1. We count the number of ordered arrangements of 2
chips (where we think of every chip as a distinct object).

There are C
10
2 possible ways to draw 2 chips.

There are C
6
2 possible ways to draw 2 white chips.

Hence

P�2 white chips� � �6
2
��10

2
� � 30

90
�

1

3



Conditional probability - Example

Solution 2. We consider the events
E1 = first chip is white.
E2 = second chip is white.

Using conditional probability, we write

P�E1 = E2� � P�E1�P�E2¶E1� � 6

10

5

9
�

30

90
�

1

3
.

P�E2¶E1� � 5
9
since only 5 white chips and 9 chips in total are left

after the first draw.



Conditional probability

The definition of conditional probability is consistent with the
multiplication rule.

P�A1 = A2� � P�A1�P�A2¶A1�
P�A1 = A2 = A3� � P�A1 = A2�P�A3¶A1 = A2�

� P�A1�P�A2¶A1�P�A3¶A1 = A2�
(Same idea can be extended to more events)



Conditional probability - Example
Example. 3 cards are dealt from a 52-deck of playing cards
successively and without replacement.
What is the probability that all cards are spades?
Solution. We consider the events:
E1 = first card is spade.
E2 = second card is spade.
E3 = third card is spade.

Using conditional probability, we write

P�E1 = E2 = E3� � P�E1�P�E2¶E1�P�E3¶E1 = E2�
Hence

P�E1 = E2 = E3� � 13

52

12

51

11

50
.

Alternative solution. Using combinations we have

P�E1 = E2 = E3� � �13
3
��52

3
� .



Conditional probability - Example

Example. 3 cards are dealt from a 52-deck of playing cards
successively and without replacement.
What is the probability that the first card is a spade, the second is
a spade and the third is not a spade?
Solution. We consider the events:
E1 = first card is spade.
E2 = second card is spade.
E3 = third card is not a spade.

Using conditional probability, we write

P�E1 = E2 = E3� � P�E1�P�E2¶E1�P�E3¶E1 = E2�
Hence

P�E1 = E2 = E3� � 13

52

12

51

39

50
.



Conditional probability - Example

Example. 5 cards are dealt from a 52-deck of playing cards
successively and without replacement.
What is the probability that the 3rd spade occurs in the 5th draw?
Solution. We consider the events:
E1 = first 4 cards include 2 spades.
E2 = fifth card is a spade.

Using conditional probability, we write

P�E1 = E2� � P�E1�P�E2¶E1� � �13
2
� �39

2
��52

4
� 11

48
.

P�E2¶E1� � 11
48

since at the fifth draw there are only 11 spades and
48 cards in total left in the deck.



Conditional probability - Independence

Definition: Two events A and B are independent if

P�A = B� � P�A�P�B�
Otherwise A and B are dependent.

It follows that, if A and B are independent, then

P�A¶B� � P�A = B�
P�B� �

P�A�P�B�
P�B� � P�A�

and similarly

P�B¶A� � P�A = B�
P�A� �

P�A�P�B�
P�A� � P�B�



Independence - Example

Example. We toss a quarter, a nickel and a dime.
What is the probability that we get 3 heads?
Solution. We consider the events:
E1 = head on the quarter;
E2 = head on the nickel;
E3 = head on the dime;
Note that P�E1� � P�E2� � P�E3� � 1

2

Since the three events are independent,

P�E1 = E2 = E3� � P�E1�P�E2�P�E3� � �1
2
�3



Conditional probability - Bayes’ theorem

Theorem

Suppose that a random experiment results in k mutually exclusive
and exhaustive events A1, . . . ,Ak with probabilities
P�A1�, . . . ,P�Ak�.
Suppose there is another event B for which the conditional
probabilities P�B¶A1�, . . . ,P�B¶Ak� are given. Then , for any
i � 1, . . . , k , we have

P�Ai ¶B� � P�B¶Ai�P�Ai�
<k

j�1 P�B¶Aj�P�Aj�
In the language of Bayes’ theorem, the initial probabilities
P�A1�, . . . ,P�Ak� are called the prior probabilities and the
computed probabilities P�A1¶B�, . . . ,P�Ak¶B� are called the
posterior probabilities.



Bayes’ theorem - Example

Example. Three separate plants, M1, M2 and M3, produce 45%,
30% and 25%, respectively, of the total parts produced in a
factory. The percentages of defective production of these machines
are 3%, 4% and 5%, respectively.
a) If we choose a part randomly, what is the probability that it is
defective?
b) Suppose now that we choose a part randomly and it is
defective. What is the probability that it was produced by M2.

Solution. We denote as Ei the event that a part is produced by
plant Mi , i � 1, . . . , 3 and by D the event that a part is defective.
The word problem gives:
P�E1� � 0.45,P�E2� � 0.30,P�E3� � 0.25
and
P�D¶E1� � 0.03,P�D¶E2� � 0.04,P�D¶E3� � 0.05



Bayes’ theorem - Example

a) If we choose a part randomly, what is the probability that it is
defective?

P�D� � P�D = E1� � P�D = E2� � P�D = E3�
� P�D¶E1�P�E1� � P�D¶E2�P�E2� � P�D¶E3�P�E3�
� �0.03��0.45� � �0.04��0.30� � �0.05��0.25� � 0.038.

b) If a randomly chosen part is defective, what is the probability
that it was produced by M2?
By Bayes’ theorem

P�E2¶D� � P�D¶E2�P�E2�
<3

j�1 P�D¶Ej�P�Ej�
�

P�D¶E2�P�E2�
P�D� �

�0.04��0.30�
0.038

� 0.316



Bayes’ theorem - Case k � 2

When the Bayes’ theorem is applied to the situation where there
are only k � 2 mutually exclusive and exhaustive events A,A

c
,

then the formula of the theorem can be simplified.

Given an event B for which the conditional probabilities
P�B¶A�,P�B¶Ac� are given, then we have

P�A¶B� � P�B¶A�P�A�
P�B¶A�P�A� � P�B¶Ac�P�Ac�

P�Ac¶B� � P�B¶Ac�P�Ac�
P�B¶A�P�A� � P�B¶Ac�P�Ac�



Bayes’ theorem - Example (n � 2)

Example. Two similar bat species, A1 and A2, occupy both
highland (B) and lowland (B

c
) areas. Species A1 makes up 90% of

the population; species A2, 10%. We know that 80% of species A1

live in the lowlands while 60% of species A2 live in the highlands.
What is the probability that a randomly caught bat belongs to
each species, if it is caught in the highlands?
Solution. Based on the word problem, P�A1� � 0.9, P�A2� � 0.1.
We have that P�Bc¶A1� � 0.8 and P�B¶A2� � 0.6.
For the solution, we need P�B¶A1� � 1 � P�Bc¶A1� � 0.2.
By Bayes’ theorem, the posterior probabilities are

P�A1¶B� � P�B¶A1�P�A1�
P�B¶A1�P�A1��P�B¶A2�P�A2� �

�0.2��0.9��0.2��0.9���0.6��0.1� � 0.75

P�A2¶B� � P�B¶A2�P�A2�
P�B¶A1�P�A1��P�B¶A2�P�A2� �

�0.1��0.6��0.2��0.9���0.6��0.1� � 0.25



Bayes’ theorem - Screening Tests and Disease Diagnosis

Clinical tests are frequently used in medicine and epidemiology to
diagnose or screen for the presence (T

�

) or absence (T
�

) of a
particular condition, such as pregnancy or disease. Different
measures of the test’s merit can then be estimated via various
conditional probabilities.

Sensitivity or True Positive rate = P�T�¶D��
Specificity or True Negative rate = P�T�¶D��
False Positive rate or Fall-out = P�T�¶D��
False Negative rate or Miss rate= P�T�¶D��

Definitive disease status (either D
�

or D
�

) is often subsequently
determined by means of a gold standard, typically resulting from
follow-up, invasive surgical or radiographic procedures or from
autopsy.



Bayes’ theorem - Screening Tests and Disease Diagnosis

In order to apply such a screening test to the general population,
we need accurate estimates of its predictive values of a positive
and negative test, PV

�

� P�D�¶T�� and PV
�

� P�D�¶T��,
respectively, which are calculated via Bayes’s theorem as

PV
�

� P�D�¶T�� � P�T�¶D��P�D��
P�T�¶D��P�D���P�T�¶D��P�D��

PV
�

� P�D�¶T�� � P�T�¶D��P�D��
P�T�¶D��P�D���P�T�¶D��P�D��

To compute such formulas, we need the prior probabilities P�D��
and P�D�� � 1 � P�D��.
P�D�� is called the prevalence of the disease in the population
and is estimate (usually grossly overestimated) by the
corresponding sample-based value.



Bayes’ theorem - Example

Example. A patient exhibits symptoms that make the physician
concerned that he/she may have a particular disease. The disease
has a prevalence of 2%, (i.e., the disease affects 2% of the
population). The screening test has a reported sensitivity of 85%,
that is, the probability of screening positive, given the presence of
disease is 85%, and a specificity of 95%, that is, the probability of
screening negative, given the absence of disease is 95%. What is
the probability that the patient is sick if the test returns positive?
What is the probability that the patient is healthy if the test
returns negative?



Bayes’ theorem - Example

Solution. From the word problem we have P�D�� � 0.02, hence
P�D�� � 1 � P�D�� � 0.98.
We also have P�T�¶D�� � 0.85, P�T�¶D�� � 0.95, hence we
derive P�T�¶D�� � 1 � P�T�¶D�� � 0.05 and
P�T�¶D�� � 1 � P�T�¶D�� � 0.15
Hence

P�D�¶T�� � P�T�¶D��P�D��
P�T�¶D��P�D���P�T�¶D��P�D��

�
�0.85� �0.02��0.85� �0.02���0.05� �0.98� � 0.258

P�D�¶T�� � P�T�¶D��P�D��
P�T�¶D��P�D���P�T�¶D��P�D��

�
�0.95� �0.98��0.95� �0.98���0.15� �0.02� � 0.997



Bayes’ theorem - Example

Discussion of solution.
A positive test result increases the probability of having this
disease from 2% (prior probability) to 25.8% (posterior
probability); a negative test result increases the probability of not
having the disease from 98% (prior probability) to 99.7% (posterior
probability).
Hence, this test is extremely specific for the disease (i.e., low false
positive rate, P�T�¶D�� � 0.05) but it is not very sensitive to its
presence (i.e., high false negative rate, P�T�¶D�� � 0.15).
A physician may wish to use a screening test with higher sensitivity
(i.e., low false negative rate). However, such tests also sometimes
have low specificity (i.e., high false positive rate), e.g., MRI
screening for breast cancer. An ideal test generally has both high
sensitivity and high specificity but a test satisfying both conditions
is often expensive.



2. Random Variables



Random variables

Definition: Any measurements that are outcomes of a random
experiment are random variables.

The name indicates that the outcomes of the random experiment
cannot be deterministically predicted.

A random variable is a discrete random variable if it has a
countable number of possible values.
Example: counting the number of eggs N that a hen lays in a
given day.

A random variable is a continuous random variable if it has an
uncountable number of possible values.
Example: measuring the time T for a task to be completed.



Random variables

Next, I will present the general theory of discrete random
variables.

Following that, I will present two important classes of discrete
random variables:

1 Binomial random variables

2 Poisson random variables



2.1 Discrete random variables



Random variables

Example. We consider the random experiment of tossing an
(unbiased) coin three times. Let X be the number of times we
obtain an head (H).

Sample space S � r0, 1, 2, 3x.
Probabilities:
P�X � 0� � P�‘TTT’� � 1

2
�
1
2
�
1
2
� �1

2
�3

P�X � 1� � P�‘HTT’ or ‘THT’ or ‘TTH’� � 3 1
2
�
1
2
�
1
2
� 3 �1

2
�3

P�X � 2� � P�‘HHT’ or ‘THH’ or ‘HTH’� � 3 1
2
�
1
2
�
1
2
� 3 �1

2
�3

P�X � 3� � P�‘HHH’� � 1
2
�
1
2
�
1
2
� �1

2
�3

In general,

p�x� � P�X � x� � �3
x
� �1

2
�3

describes the values of the probability of X for any element in its
range r0, 1, 2, 3x.
p�x� is the probability mass function (pmf) of X .



Random variables - pmf

Definition: Let X be a discrete random variables with values in R
(the range of X ). p�x� is the probability mass function (pmf)
of X if

1 p�x� ' 0 ¾x " R

2 <x"R p�x� � 1

In this case p�x� � P�X � x� is the probability that X � x



Random variables - pmf

Example. We consider the random experiment of tossing an
(unbiased) coin until head (H) appears. Let X be the number of
trials needed to obtain a head (H).

Sample space S � r1, 2, 3, . . . x � N.

Probabilities:
P�X � 1� � P�‘H’� � 1

2

P�X � 2� � P�‘TH’� � 1
2
�
1
2
� �1

2
�2

P�X � x� � P�‘T. . . TH’� � �1
2
�x�1 � 1

2
� �1

2
�x

Hence,

p�x� � P�X � x� � �1
2
�x

Note that <�

x�1�12�x � 1
2

1�
1
2

� 1.



Random variables - pmf and cdf

Definition: Let X be a discrete random variables with pmf p�x�.
The cumulative distribution function (cdf) of X is

F �x� � P�X & x� � =
xi&x

p�xi�
It follows that F �x� is a piece-wise constant increasing function
with values in �0, 1�.
For xi , xj " R and xi $ xj , we have that

P�xi & X & xj� � F �xj� � F �xi�1�
In fact

P�xi & X & xj� � xj

=
x�xi

p�x� � =
x&xj

p�x� � =
x&xi�1

p�x�



Random variables - pmf and cdf

Example. We consider the random experiment of tossing an
(unbiased) coin until head (H) appears. Let X be the number of
trials needed to obtain a head (H).

Sample space S � r1, 2, 3, . . . x � N.

We found that in this case p�x� � P�X � x� � �1
2
�x

The cdf in this case is

F �x� � P�X & x� � x

=
i�1

p�i� � x

=
i�1

�1
2
�i � 1

2
� �1

2
�x�1

1
2

� 1 � �1
2
�x

Example (continue). We can use the cdf to compute probabilities
over intervals:
P�3 & X & 5� � F �5�� F �2� � 1� �1

2
�5 � 1� �1

2
�2 � �1

2
�2 � �1

2
�5.

P�X ' 2� � 1 � P�X $ 2� � 1 � F �1� � 1 � 1
2
�

1
2
.



Random variables - Expectation

Definition: Let X be a discrete random variables with pmf p�x�
and range R. The expected value - or mean - of X is

µX � E�X � � =
x"R

xp�x�
If u is a function on R, the expected value of u�X � is

E�u�X �� � =
x"R

u�x�p�x�
The expected value of X is a measure of the central tendency of
the r.v. X .



Random variables - Expectation

Example. Let X be the number of times we obtain an head (H) in
3 independent tosses of an (unbiased) coin.

(a) Find the expected value of X

(b) Suppose we set up a game awarding X
2
dollars to each person

flipping a coin 3 times. If the game will be played ”many” times,
how much should each player chip in to play the game (so that
there will be enough time to pay the awards)?

Solution
Recall that p�x� � P�X � x� � �3

x
� �1

2
�3, with X � 0, 1, 2, 3.

E�X � � 3

=
x�0

x �3x� �12�3 � 0� 1 � 3 �1
2
�3 � 2 � 3 �1

2
�3 � 3 � 1 �1

2
�3 � 3

2

E�X 2� � 3

=
x�0

x
2 �3x� �12�3 � 0� 1 � 3 �1

2
�3� 4 � 3 �1

2
�3� 9 � 1 �1

2
�3 � 3



Random variables - Expectation

Proposition Let X be a discrete random variables with pmf p�x�
and range R.

1 If c is a constant, E�c� � c .

2 If c1, . . . , cn are constants, then
E�<n

i�1 ciui�X �� � <n
i�1 ciE�ui�X ��.

Example. Let X be the number of times we obtain an head (H) in
3 independent tosses of an (unbiased) coin. Suppose we set up a

game awarding 3X � 2X
2
dollars to each person flipping a coin 3

times. If the game will be played ”many” times, how much should
each player chip in to play the game?

Solution. Using the computation from example above,

E�3X � 2X
2� � 3E�X � � 2E�X 2� � 3 �

3

2
� 2 � 3 �

21

2



Random variables - Expectation

Definition: Let X be a discrete random variables with pmf p�x�
and range R. The variance of X is

σ
2
X � var�X � � E��X � µX �2� � =

x"R

�x � µX �2p�x�
The standard deviation of X is

σX �
Õ
var�X � � Õ

E��X � µX �2� �Ø
=
x"R

�x � µX �2p�x�
The variance of X is a measure of the variability of the r.v. X
around its mean.



Random variables - Expectation

Proposition Let X be a discrete random variables.

1 σ
2
x ' 0, σx ' 0

2 σ
2
X � E�X 2� � µ

2
X

Proposition Let X be a discrete random variables and
Y � a0 � a1 X where a1, a2 are constants.

1 µY � a0 � a1 µX

2 σ
2
Y � a

2
1 σ

2
X

Example Let Y � �2 � X , where µX � �1, σ
2
X � 0.5.

Then µY � �2 � ��1� � �1 and σ
2
Y � ��1�2�0.5� � 0.5.



Random variables - Expectation

Example. Let X be a discrete random variable with pmf given by

x 1 2 3 4

p�x� 0.4 0.2 0.3 0.1

Compute mean and variance of X

Solution.

µX � E�X � � 4

=
x�1

x p�x� � 1�0.4� � 2�0.2� � 3�0.3� � 4�0.1� � 2.1

E�X 2� � 4

=
x�1

x
2
p�x� � 1�0.4� � 4�0.2� � 9�0.3� � 16�0.1� � 5.5

σ
2
X � E�X 2� � µ

2
X � 5.5 � �2.1�2 � 1.09



A note about R and RStudio



R software

R is a free software environment for statistical computing and
graphics.
https://www.r-project.org/

It compiles and runs on a wide variety of UNIX platforms,
Windows and MacOS.

R provides a wide variety of statistical techniques such as linear
and nonlinear modelling, classical statistical tests, time-series
analysis, classification, clustering as well as graphical techniques,
and is very extensible.

https://www.r-project.org/


R Studio

To run R, I recommend to use RStudio
https:

//rstudio.com/products/rstudio/download/#download

RStudio is a set of integrated tools designed to help you write and
execute scripts in R. It includes a console, syntax-highlighting
editor that supports direct code execution, and a variety of robust
tools for plotting, viewing history, debugging and managing your
workspace.
You can run RStudio on a wide variety of UNIX platforms,
Windows and MacOS.

https://rstudio.com/products/rstudio/download/#download
https://rstudio.com/products/rstudio/download/#download


R examples

Once you have R environment setup, you can start your R
command prompt by just typing a command.

This will launch R interpreter and R will execute the command.

Example: Create and print a vector.

apple <- c(’red’,’green’,"yellow")

print(apple)

Example: Create and print a matrix.

M = matrix( c(’a’,’a’,’b’,’c’,’b’,’a’), nrow = 2,

ncol = 3, byrow = TRUE)

print(M)



R examples

Example: Create a plot from a vector

v <- c(7,12,28,3,41)

plot(v,type = "o", col = "red", xlab = "Month", ylab

= "Rain fall", main = "Rain fall chart")



R examples
More than one line can be drawn on the same chart by using the
lines() function. After the first line is plotted, the lines()
function can be used to draw a second line.

v <- c(7,12,28,3,41)

t <- c(14,7,6,19,3)

plot(v,type = "o",col = "red", xlab = "Month", ylab =

"Rain fall", main = "Rain fall chart")

lines(t, type = "o", col = "blue")



R examples

You can use R to compute the mean, standard deviation and other
statistical functions.

mean() computes the mean

median() computes the median

var() computes the sample variance s
2
�

1
n�1
<n

i�1�xi � x̄�2
sd() computes the sample standard deviation =

Ô
s2

There is no direct command to compute the variance.
To compute the variance of a vector y you can do as follows:
n=length(y); var(y)*(n-1)/n



R examples

Many tutorials on R are freely available online such as

https://www.tutorialspoint.com/r/index.htm

In the first assignment, you will be asked to plot the graphs of the
pmf and cdf for some given distributions. You can handle those
with the command plot.

Here are some tutorials specifically focused on producing graphs
in R:

https://sites.harding.edu/fmccown/r/

http://www.sthda.com/english/wiki/

creating-and-saving-graphs-r-base-graphs

https://sites.harding.edu/fmccown/r/
http://www.sthda.com/english/wiki/creating-and-saving-graphs-r-base-graphs
http://www.sthda.com/english/wiki/creating-and-saving-graphs-r-base-graphs


2.2 The binomial distribution



Bernoulli trials
Definition: Any (discrete) random variable whose only possible
values are 0 and 1 is a Bernoulli random variable.

Bernoulli trial. A Bernoulli trial is a random experiment with
exactly two possible outcomes, ‘success’ and ‘failure’, in which (i)
the outcome of the trials are mutually independent and (ii) the
probability of success p is the same every time the experiment is
conducted.

Let X be a Bernoulli random variable. We associate the random
variable X to a Bernoulli trial where

X � 1 � success , X � 0 � failure

P�X � 1� � p, P�X � 0� � 1 � p � q

Hence, the pmf of X is

f �x� � P�X � x� � p
x�1 � p�1�x , x � 0, 1



Bernoulli trials

For a Bernoulli r.v. X with f �x� � p
x�1 � p�1�x , x � 0, 1,

µX � E�x� � 1

=
x�0

xf �x� � f �1� � p

σ
2
X � E�X 2� � µ

2
X �

1

=
x�0

x
2
f �x� � p

2
� p � p

2
� p�1 � p�

Since the outcomes of n Bernoulli trials are mutually independent,
given n Bernoulli random variables X1, . . . ,Xn, then

P�X1 � x1, . . . ,Xn � xn� � f �x1��f �xn� � p
<n

i�1 xi �1 � p�n�<n
i�1 xi



Bernoulli trials

In practical applications, the probability p of success in a Bernoulli
trial need to be estimated.

Since the mean of a Bernoulli random variable is µX � p, we use
the estimator

p̂ �
1
n

n

=
i�1

Xi

where Xi is a Bernoulli trial.

Since E�Xi� � p, then

E�p̂� � E�1n n

=
i�1

Xi� � 1
n

n

=
i�1

E�Xi� � p

This shows that p̂ is an unbiased estimator of p.



The binomial distribution

Definition: A binomial random variable is a random variable of
the form Y � <n

i�1 Xi where any Xi is a Bernoulli random variable
with probability of success p.

The binomial random variable Y counts the number of successes
over n Bernoulli trials.
The range of Y is R � r0, 1, . . . , nx.
To compute P�Y � y�, we observe that the event Y � y happens
when, over n trials, we have y successes and n � y failures. Any
such event has probability p

y�1 � p�n�y . Observing that there are�n
y
� possible sequences with y successes and n � y failures, then

P�Y � y� � �ny� py�1 � p�n�y



The binomial distribution

Therefore, the pmf of Y , called the binomial pmf with parameters
n, p, is the function

f �y� � P�Y � y� � �ny� py�1 � p�n�y , y � 0, 1, . . . , n

To say that Y is a binomial random variable with parameters n, p,
we use the notation Y � b�n, p�
By the classical binomial theorem from linear algebra:

n

=
y�0

f �y� � n

=
y�0

�ny� py�1 � p�n�y � 1



The binomial distribution

Mean and variance of the binomial pmf are as follows:

µY �

n

=
y�0

yf �y� � n

=
y�0

y�ny� py�1 � p�n�y � np

σ
2
Y �

n

=
y�0

y
2�ny� py�1 � p�n�y � µ

2
Y � np�1 � p�

The cdf of the binomial distribution is:

F �y� � P�Y & y� �=
z&y

f �z� �=
z&y

�nz� pz�1 � p�n�z



The binomial distribution

According to the observations made above, since the mean of a
binomial random variable Y is µY � np, we define the estimator
of p

p̂ �
Y
n

and we have that p̂ is an unbiased estimator of p since

E�p̂� � E�Yn � � 1
nE�T � � p

We also have that

var�p̂� � E��p̂ � p�2� � E��Y
n
� p�2�

�
1
n2
E��Y � np�2�

�
1
n2
np�1 � p�

�
p�1�p�

n



The binomial distribution

Example
Suppose that a certain medical procedure is known to have a 70%
successful recovery rate (assuming independence). In a random
sample of n � 5 patients, (a) what is the probability that three or
fewer patients will recover? (b) what is the probability that more
than 3 patients will recover? (c) what is the mean number of
patients expected to recover?

Solution Set Y to be the number of patients that recover. Y is a
binomial random variable Y � bin�5, 0.7��a� P�Y & 3� � F �3�

� P�Y � 0� � P�Y � 1� � P�Y � 2� � P�Y � 3� � 0.4718�b� P�Y % 3� � 1 � P�Y & 3� � 1 � F �3� � 0.5282�c� µY � np � �5��0.7� � 3.5



The binomial distribution

Example: R solution

Y is a binomial random variable Y � bin�5, 0.7�
(a) P�Y & 3�
> pbinom(3,5,0.7)

[1] 0.47178

(b) P�Y % 3� � 1 � P�Y & 3�
> 1-pbinom(3,5,0.7)

[1] 0.52822



The negative binomial distribution

Definition: A negative binomial random variable is a random
variable Z that counts the number of independent Bernoulli trials
needed to observe k successes (each with probability p).

The range of Z is R � rk , k � 1, . . . x.
P�Z � z� can be expressed as the probability of getting k � 1
successes in z � 1 trials times the probability p of getting a success
at the zth trial. Since the probability of getting k � 1 successes in
z � 1 trials is �z�1

k�1
� pk�1�1 � p�z�k , then

h�z� � P�Z � z� � �z � 1
k � 1� pk�1 � p�z�k

h�z� is the negative binomial distribution with parameters k , p.

When k � 1, h�z� is called the geometric distribution.



The negative binomial distribution
Mean and variance of the negative binomial pmf are as follows:

µZ �

�

=
z�k

z�z � 1
k � 1� pk�1 � p�z�k � k

p

σ
2
Z �

�

=
z�k

z
2�z � 1
k � 1� pk�1 � p�z�k � µ

2
Z �

k�1 � p�
p2

Remark. The negative binomial distribution is sometimes defined
in terms of the random variable Y = number of failures before
k-th success. This formulation is statistically equivalent to the one
given above in terms of Z = trial at which the k-th success occurs,
since Y � Z � k . The alternative form of the negative binomial
distribution is

P�Y � y� � �k � y � 1
y � pk�1 � p�y , y � 0, 1, . . .



The negative binomial distribution
Example
Suppose that a certain production process is repeated until the
first defective part is produced. Assuming that the probability of
producing a defective part is p � 0.05, (a) what is the probability
that the first defective part occurs at the 5-th trial? (b) what is
the probability that the first defective part occurs at or before the
5-th trial? (c) when do you expect to see the first defective part?

Solution Set Z to be the number of trials needed for the
production line to produce the first defective part. Z is a negative
binomial random variable with k � 1, Z � nbin�1, 0.05�

�a� P�Z � 5� � �40� �0.05��0.95�4 � 0.0407

�b� P�Z & 5� � 5

=
z�1

�z � 1
0 � �0.05��0.95�z�1 � 0.2262

�c� µZ �
1
p � 20



The negative binomial distribution

Example: R solution

Z � nbin�1, 0.05�
Y = number of failures before k-th success = Z � 1

(a) P�Z � 5� � P�Y � 4�
> dnbinom(4,1,0.05)

[1] 0.04072531

(b) P�Z & 5� � P�Y & 4�
> pnbinom(4,1,0.05)

[1] 0.2262191



The hypergeometric distribution
Definition: A hypergeometric experiment is a statistical
experiment that has the following properties:

1 A sample of size n is randomly selected without replacement
from a population of N items.

2 In the population, N1 items can be classified as successes and
N2 � N � N1 items can be classified as failures.

A hypergeometric random variable is the number of successes
W that result from a hypergeometric experiment.

The range of W is R � r1, 2, . . . ,N1x.
The hypergeometric pmf and the corresponding mean and variance
are:

f �w� � P�W � w� � �N1

w
� �N�N1

n�w
��N

n
�

E�W � � n
N1

N
, var�W � � n N1

N
�1 � N1

N
��N � n�

N � 1



The hypergeometric distribution
Example An animal population in certain region consists of 25
individuals in total. To monitor such populations, 5 animals are
caught, tagged and the released. After a certain time, 10 such
animals are caught; of those animal, X are found to be tagged. (a)
What is the probability that X � 2? (b) What is the probability
that X & 2? (c) What is the expected number of tagged animals?

Solution X is a hypergeometric random variable with
n � 10,N1 � 5,N � 25.

�a� P�X � 2� � �5
2
� �20

8
��25

10
� � 0.385

�b� P�X & 2� � 2

=
x�0

�5
x
� � 20

10�x
��25

10
� � 0.699

�c� µX � n
N1

N
� 10

5

25
� 2



The hypergeometric distribution

Example: R solution

X is a hypergeometric random variable with
n � 10,N1 � 5,N � 25. Thus N2 � N � N1 � 20.
X � hypergeom�5, 20, 10�.
(a) P�X � 2�
> dhyper(2,5,20,10,log=FALSE)

[1] 0.3853755

(b) P�X & 2�
> phyper(2,5,20,10,log=FALSE)

[1] 0.6988142



Hypergeometric vs binomial distribution
As compared to the binomial distribution where the probability of
success p is constant, in a hypergeometric experiment the
probability of success N1

N
changes at every trial since the values N

and possibly N1 are being decreased at each trial.

However, if N, N1 9 n (in practice, N, N1 about an order of

magnitude larger than n), then the probability of success N1

N
will

remain approximately constant during each trial of the
hypergeometric experiment.

In this case, the hypergeometric distribution with parameters
N,N1, n is well approximated be a binomial distribution with
parameters p � N1

N
and n.

Note that, in this case,

E�W � � n
N1

N
� np

var�W � � n N1

N
�1 � N1

N
��N � n�

N � 1
� np�1 � p�N � n

N � 1
� np�1 � p�



The hypergeometric distribution
Example An animal population in certain region consists of 1000
individuals. To monitor such populations, 100 animals are caught,
tagged and the released. After a certain time, 20 such animals are
caught; of those animal, X are found to be tagged. What is the
probability that X & 2?

Exact solution. X is a hypergeometric random variable with
n � 20,N1 � 100,N � 1000.

P�X & 2� � 2

=
x�0

�100
x
� � 900

20�x
��1000

20
� � 0.6772

Using R: phyper(2,100,900,20,log=FALSE)= 0.677224

Approximate solution. We approximate X as a binomial random
variable with n � 20, p � 100

1000
� 0.1.

P�X & 2� � 2

=
x�0

�20x ��0.1�x�0.9�20�x � 0.6769



A note about R and RStudio



Computing probabilities in R

The following commands in R can be used to compute probabilities
associated with various distributions.

dbinom(x, n, p): P�X � x� for X � bin�n, p�
pbinom(q, n, p): P�X & q� for X � bin�n, p�
dnbinom(x, n, p): P�X � x� for X � Nbin�n, p�
pnbinom(q, n, p): P�X & q� for X � Nbin�n, p�
dhyper�x ,N1,N2, n, log � FALSE�: P�X � x� for
X � hyper�N1,N2, n�
phyper�q,N1,N2, n, log � FALSE�: P�X & q� for
X � hyper�N1,N2, n�
dpois(x, lambda): P�X � x� for X � Poisson�λ�
ppois(q, lambda): P�X & q� for X � Poisson�λ�

Note that the negative binomial rv in R counts the number of
failures that occur before getting the desired success.



2.3 The Poisson distribution



The Poisson distribution
The Poisson distribution is associated with counting the number of
occurrences of a (rare) event in a given interval of time or space.

Definition: A Poisson process is a processes generating a certain
number X of occurrences of an event E over a fixed interval in
time or space of size T that satisfies the following properties:

1 all the occurrences of E are independent in the interval;
2 the expected number of occurrences of E in the interval is

proportional to T , i.e., µ � αT . This constant of
proportionality is the rate of the Poisson process.

In this case, the probability of obtaining any specified number x of
occurrences of the event E is given by the Poisson distribution

p�x� � P�X � x� � e
�µ

µ
x

x!

where the range of X is R � r0, 1, . . . x.
We say that X is Poisson random variable with parameter µ.
Notation: X � Poisson�µ�



The Poisson distribution

We have that

�

=
x�0

p�x� � �

=
x�0

e
�µ

µ
x

x!
� e

�µ
�

=
x�0

µ
x

x!
� e

�µ
e
µ
� 1

Using the above observation,

µX � E�X � � �

=
x�0

x
e
�µ

µ
x

x!
�

�

=
x�1

e
�µ

µ
x�x � 1�! � µ

�

=
z�0

e
�µ

µ
z

z!
� µ

With a similar computation, we show E�X 2� � µ
2
� µ, hence

var�X � � E�X 2� � µ
2
X � µ



The Poisson distribution

Example The number of fatal traffic accidents reported per week
in a certain county was estimated to be equal to 7. What is the
probability that the number of accidents in a given week is larger
or equal than 10?

Solution. We can model the number X of fatal accidents per
week as a Poisson distribution, X � Poisson�7�. Hence
P�X ' 10� � 1 � P�X & 9� � 1 �

9

=
x�0

e
�7
µ
x

x!
� 1 � 0.830 � 0.170

R solution:

> 1-ppois(9,7)

[1] 0.1695041



Poisson approximation to the Binomial Distribution
When n is large and p is small, the binomial distribution is well
approximated by a Poisson distribution with µ � np.

Example A certain medical condition E affects 1% of the
population. Let X = number of affected individuals in a random
sample of size n � 300. What is the probability that 3 individuals
are affected by the disease?
Exact solution We model X as X � bin�n � 300, p.0.01�. Hence

P�X � 3� � �300x ��0.01�x�0.99�300�x � 0.22517

Approximate solution We approximate X using a Poisson
distribution where µ � pn � �0.01��300� � 3. Note that 3 is the
mean number of expected occurrences of E in the sample. Hence

P�X � 3� � e
�µ

µ
3

3!
�

e
�3
3
3

3!
� 0.22404



Discrete random variables - Review problems

Problem. A die is thrown until the number 6 occurs for the first
time. (a) What is the probability that the number 6 occurs for the
first time in the 3rd throw? (b) What is the probability that it
takes at most 3 throws for the number 6 to occur for the first
time? (c) What is the expected number of throws for the number
6 to occur for the first time?

Solution.
X , counting the number of throws until the number 6 occurs for
the first time, is a geometric random variable with p � 1©6
In R, W � X � 1 counts the number of failures before the number
6 occurs for the first time.

(a) P�X � 3� � P�W � 2� � dnbinom�2, 1, 1©6� � 0.1157407

(b) P�X � 3� � P�W & 2� � pnbinom�2, 1, 1©6� � 0.4212963

(c) E�X � � 1©p � 0.1666667
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Discrete random variables - Review problems

Problem. In a certain town, it is known that 6% of the population
is color-blind. If a random sample of 50 people is drawn from this
population, what is the probability that (a) at least 3 people are
color-blind? (b) at most 3 people are color blind?

Solution.
X , counting the number of color-blind people in the population, is
a binomial random variable with p � 0.06 and n � 50

(a)
P�X ' 3� � 1 � P�x & 2� � 1 � pbinom�2, 50, 0.06� � 0.5837535.

(b) P�X & 3� � pbinom�3, 50, 0.06� � 0.6473034.
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Discrete random variables - Review problems

Problem. In a study of the effectiveness of an insecticide, a large
area was sprayed. Later the area was examined by randomly
selecting squares of the same size and counting the number of live
insects per square. Past experience has shown that the average
number of live insects per square after spraying to be 1.2. What is
the probability that a selected square will contain (a) no live
insects? (b) at most 2 live insects?

Solution.
X , counting the number of live insects per square, is a Poisson
random variable with µ � 1.2

(a) P�X � 0� � dpois�0, 1.2� � 0.3011942.

(b) P�X & 2� � ppois�2, 1.2� � 0.8794871.
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2.4 Multivariate distributions



Multivariate distributions

In many situations, we are interested in more than one aspect of a
random experiment.

In this case, we are interested in the probability of a combination
of events, that is, several random variable are involved.

Examples:
price of crude oil (per barrel) and price per gallon of unleaded
gasoline at your local station (per gallon);
grades of college students across multiples disciplines;
level of multiples chemical contaminants in soil samples



Multivariate distributions

Definition. Let X and Y be two discrete random variables and R
be the range of X � Y . The probability that X � x and Y � y ,
denoted by

p�x , y� � P�X � x ,Y � y�, �x , y� " R

is the joint probability mass function (joint pmf) of X and Y
and satisfies the following properties

1 p�x , y� ' 0, for any �x , y� " R

2 <�x ,y�"R p�x , y� � 1

The cumulative density function (cdf) of X and Y is

F �x , y� � P�X & x ,Y & y�



Multivariate distributions
Example We roll a pair of unbiased dice. The consider as outcome
of the experiment the random variables (ordered) pair �X ,Y �
where X is the smaller and Y is the larger of the two outcomes.
For example, if we get the number 3 and 2, then the outcome of
the experiment is �X � 2,Y � 3�. Note that we get the same�X ,Y � if we either the dice from the rolling experiment are 2 and
3 or 3 and 2. Clearly, if get 2 and 2, then �X � 2,Y � 2�.
Since 36 ordered pairs can result from rolling a pair of dice:

P�X � 2,Y � 3� � P�dice 2,3� � P�dice 3,2� � 1

36
�

1

36
�

2

36

P�X � 2,Y � 2� � P�dice 2,2� � 1

36
In general

P�X � x ,Y � y� � ~����������
1
36

if 1 & x � y & 6
2
36

if 1 & x $ y & 6

0 otherwise



Multivariate distributions

Example (continue) Using the joint pmf of X and Y , we can
solve any probability problem on X and Y .

P�X � x ,Y � y� � ~����������
1
36

if 1 & x � y & 6
2
36

if 1 & x $ y & 6

0 otherwise

P�X�Y � 4� � P�X � 1,Y � 3��P�X � 2,Y � 2� � 2
36
�

1
36
�

3
36

P�X � 4� � P�X � 4,Y � 4� � P�X � 4,Y � 5� � P�X � 4,Y �

6� � 1
36
�

2
36
�

2
36
�

5
36



Multivariate distributions - Marginals

Definition. Let X and Y be two discrete random variables with
joint pmf f �x , y� with �x , y� " R. The marginal pmf of X is

f1�x� �=
y

f �x , y�, x " R1

Similarly, the marginal pmf of Y is

f2�y� �=
x

f �x , y�, y " R2

the random variables X and Y are independent is
f �x , y� � f1�x� f2�y�



Multivariate distributions
Example (continue)

x 1 2 3 4 5 6
y
1 1/36
2 2/36 1/36
3 2/36 2/36 1/36
4 2/36 2/36 2/36 1/36
5 2/36 2/36 2/36 2/36 1/36
6 2/36 2/36 2/36 2/36 2/36 1/36

The marginal pmfs are computed on the margins of the table

f1�x� � 6

=
y�x

f �x , y�, f2�y� � y

=
x�1

f �x , y�



Multivariate distributions

Example
Let the joint pmf of X and Y be given by

f �x , y� � x � y

21
, x � 1, 2, 3; y � 1, 2

Note that <2
y�1<3

x�1 f �x , y� � 1. Hence f �x , y� is a pmf.
Are X and Y independent?

Solution. By direct computation,
f1�x� � <2

y�1 f �x , y� � <2
y�1

x�y
21

�
2x�3
21

f2�y� � <3
x�1 f �x , y� � <3

x�1
x�y
21

�
6�3y
21

Since f �x , y� j f1�x� f2�y�, then X and Y are NOT independent.



Multivariate distributions

Example
Let the joint pmf of X and Y be given by

f �x , y� � x y
2

30
, x � 1, 2, 3; y � 1, 2

Note that <2
y�1<3

x�1 f �x , y� � 1. Hence f �x , y� is a pmf.
Are X and Y independent?

Solution. By direct computation,

f1�x� � <2
y�1 f �x , y� � <2

y�1
xy

2

30
�

x
6

f2�y� � <3
x�1 f �x , y� � <3

x�1
xy

2

30
�

y
2

5

Since f �x , y� � f1�x� f2�y�, then X and Y are independent.



Multivariate distributions - Expectation

Definition. Let X and Y be two discrete random variables with
joint pmf f �x , y� with �x , y� " R.
The expectations of X and Y are

µX � E�X � � =
�x ,y�"R

x f �x , y� �=
x

x f1�x�
µY � E�Y � � =

�x ,y�"R
y f �x , y� �=

y

y f2�y�
Similarly, the variances of X and Y are

σ
2
X � E��X � µX �2� �=

x

�x � µX �2 f1�x� �=
x

x
2
f1�x� � µ

2
X

σ
2
Y � E��Y � µY �2� �=

y

�y � µY �2 f2�y� �=
y

y
2
f2�y� � µ

2
Y



Multivariate distributions - Expectation
In addition to the variance of X (or, similarly, Y ) that measure the
variability around its mean, we can also quantify the variability of
X and Y with respect to each other.

Definition. Let X and Y be two discrete random variables with
joint pmf f �x , y� with �x , y� " R.
The covariance of X and Y is

cov�X ,Y � � σXY � E��X � µX ��Y � µY ��
� =

�x ,y�"R
�x � µX ��y � µY � f �x , y�

� =
�x ,y�"R

x y f �x , y� � µX µY

Remark. If X and Y are independent, one can show that
<�x ,y�"R x y f �x , y� � µXµY , hence σXY � 0. However, the
converse is not true in general, that is, σXY � 0 does not imply
that X and Y are independent.



Multivariate distributions - Expectation

The correlation coefficient is a normalized version of the
covariance.

Definition. Let X and Y be two discrete random variables with
joint pmf f �x , y� with �x , y� " R.
The correlation coefficient of X and Y is

ρ �
σXY
σX σY

Remark. ρ ranges in the interval ��1, 1�. If ρ % 0, then X and Y
are positively correlated; if ρ $ 0, then X and Y are negatively
correlated; if ρ � 0, then X and Y are uncorrelated;

As for the covariance, if X and Y are independent, then ρ � 0;
that is, independence implies no correlation. However, the converse
is not true in general, that is, ρ � 0 does not imply that X and Y
are independent.



Multivariate distributions - Covariance

Properties of the covariance

1 cov�X ,Y � � cov�Y ,X �
2 cov�X ,X � � var�X � � σ

2
X

3 If X and Y are independent cov�X ,Y � � 0

4 If X , Y and Z are jointly distributed, and a, b are constants,
then cov�X , aY � bZ� � a cov�X ,Y � � b cov�X ,Z�.



Multivariate distributions

Example. Let the joint pmf of X and Y be given by the table
below

x 1 2 3
y
1 0.1 0.3 0.1
2 0.2 0.1 0.2

Are X and Y positively/negatively correlated? uncorrelated?

Solution.
µX � <3

x�1 x f1�x� � �1��0.3� � �2��0.4� � �3��0.3� � 2

µY � <2
y�1 y f2�y� � �1��0.5� � �2��0.5� � 1.5

E�XY � � <2
y�1<3

x�1 xy f �x , y� � �1��1��0.1� � �2��1��0.3�
��3��1��0.1� � �1��2��0.2� � �2��2��0.1� � �3��2��0.2� � 3
σXY � E�XY � � µX µY � 3 � �2��1.5� � 0
Hence: X and Y are uncorrelated (however one can verify they are
NOT independent).



Multivariate distributions

Example. Let the joint pmf of X and Y be given by

x 1 2
y
1 0.4 0.1
2 0.1 0.4

Are X , Y positively/negatively correlated? uncorrelated? Find ρ.
Solution.
µX � <2

x�1 x f1�x� � �1��0.5� � �2��0.5� � 1.5

µY � <2
y�1 y f2�y� � �1��0.5� � �2��0.5� � 1.5

E�XY � � <2
y�1<2

x�1 xy f �x , y� � �1��1��0.4� � �2��1��0.1�
��1��2��0.1� � �2��2��0.4� � 2.4
σXY � E�XY � � µX µY � 2.4 � �1.5��1.5� � 0.15
Hence: X and Y are positively correlated.
E�X 2� � <2

x�1 x
2
f1�x� � �1��0.5� � �4��0.5� � 2.5 � E�Y 2�

Hence σ
2
X � σ

2
Y � 2.5 � �1.5�2 � 0.25 and

ρ � σXY

σX σY
�

0.15Ô�0.25��0.25� � 0.6



Multivariate distributions
Interpretation. Consider the two joint pmf

x 1 2
y
1 0.4 0.1
2 0.1 0.4

and

x 1 2
y
1 0.1 0.4
2 0.4 0.1

In the first case, ρ � 0.6, in the second case, ρ � �0.6.

Positive correlation: it is more likely that smaller values of X occur
with smaller values of Y and larger values of X occur with larger
values of Y .
Negative correlation: it is more likely that smaller values of X
occur with larger values of Y and larger values of X occur with
smaller values of Y .



Multivariate distributions

Let W � a0 � a1X � a2Y where X , Y are random variables with
joint pmf f �x , y� and a0, a1, a2 are constants.

Then W is also a random variable where

µW � a0 � a1 µX � a2 µY

and

σ
2
W � a

2
1 σ

2
X � a

2
2 σ

2
Y � 2a1 a2 σXY

NOTE: If X and Y are independent, then σXY � 0 and

σ
2
W � a

2
1 σ

2
X � a

2
2 σ

2
Y



Multivariate distributions

Example Let X be a random variable with mean µX � �1 and
variance σ

2
X � 2, and Y be another random variable with mean

µY � 2 and variance σ
2
Y � 1. Let W � 1 � 2X � Y . Assuming

that X , Y are independent, find the mean and variance of W .

By the formulas derived above, we have

µW � 1 � 2µX � µY � 1 � ��2���1� � 2 � 5

σ
2
W � 4σ

2
X � σ

2
Y � �4��2� � 1 � 9



2.5 Continuous distributions



Continuous random variables

A continuous random variable is a random variable whose range R
is uncountable.
The main difference with respect to discrete random variables is
that probabilities involving continuous random variables are defined
over an interval of values and represented as an integral.

Given an interval �a, b� L R L R,

P�a & X & b� � E b

a
f �x� dx ,

where f �x� is the probability density function (pdf) of X

The probability of observing any single value is equal to 0

P�X � c� � P�c & X & c� � E c

c
f �x� dx � 0



Continuous random variables

Properties of a probability density function:

1 f �x� ' 0, x " R

2 DR f �x� dx � 1

The probability is computed by evaluating an area under a curve:

P�a & X & b� � E b

a
f �x� dx



Continuous random variables
The probability is computed by evaluating an area under a curve:

P�a & X & b� � E b

a
f �x� dx

The cumulative distribution function of X is the indefinite
integral of f :

F �x� � E x

��

f �w� dw
Hence (as in the Fundamental Theorem of Calculus)

P�a & X & b� � E b

��

f �x� dx � E a

��

f �x� dx � F �b� � F �a�



Continuous random variables: the uniform distribution

A random variable X is uniform on the interval �a, b� if X is
equally likely to take any value in the range R � �a, b�. In this case

f �x� � w 1
b�a

if x " �a, b�
0 if x � �a, b�

Notation: X � unif �a, b�
Example. Transit time of the subway between Downtown Station
and Midtown Station is uniformly distributed between 10.0 and
20.0 minutes. What is the the probability that the transit time is
less than 12 minutes?

We have that uniform pdf: f �x� � 1
10

for 10 & x & 20

P�X $ 12� � E 12

10

1

10
dx �

x

10

»»»»»»»»x�12x�10

�
2

10
�

1

5
.



Continuous random variables: the uniform distribution

Solution using R:

Let X � unif �10, 20�
(a) Compute P�X & 12�
> punif(12,min=10,max=20)

[1] 0.2

(b) Compute P�X % 12�
> 1-punif(12,min=10,max=20)

[1] 0.8



Continuous random variables: expectation
Let X be a continuous random variable with pdf f �x�, x " R.

The mean or expectation of X is

µX � E�X � � E
R
x f �x� dx

For a function u defined on R,

E�u�X �� � E
R
u�x� f �x� dx

The variance of X is

σ
2
X � E��X � µX �2� � E

R
�x � µX �2 f �x� dx

A direct computation shows that

σ
2
X � E�X 2� � µ

2
X



Continuous random variables: expectation
Example: uniform pdf
Let X be a uniformly distributed continuous random variable
defined in the interval �a, b�.

µX � E
b

a

x

b � a
dx �

x
2

2�b � a�»»»»»»»»»»
b

a

�
b
2
� a

2

2�b � a� � b � a

2

σ
2
X � E

b

a

x
2

b � a
dx � µ

2
X �

x
3

3�b � a�»»»»»»»»»»
b

a

�
�b � a�2

4

�
b
3
� a

3

3�b � a� � �b � a�2
4

� ���
�
�b � a�2

12



The normal distribution

The normal distribution is the most important probability
distribution in statistics because it fits many natural phenomena.
In addition, many statistical hypothesis test require that data
follow a normal distribution.

It is defined as

f �x� � 1

σ
Ó
2π

e
�

1
2
� x�µ

σ
�2
, x " R

where the factor 1

σ
Ó
2π

ensures that

E �

��

f �x� dx � E �

��

1

σ
Ó
2π

e
�

1
2
� x�µ

σ
�2
dx � 1

The normal distribution is a Gaussian function described by the
parameters µ and σ.
Notation of normal random variable: X � N�µ, σ�



The normal distribution

Normal distribution: f �x� � 1

σ
Ó
2π

e
�

1
2
� x�µ

σ
�2

Mean:

E�X � � E �

��

x f �x� dx � µ

Variance:

Var�X � � E��X � µ�2� � E �

��

�x � µ�2 f �x� dx � σ
2



The normal distribution

The plot of the normal distribution is a bell-shaped curve,
symmetrical with center about µ and spread determined by σ.

Larger σ � larger spread about µ. Total area =1.



The normal distribution

The fraction of the area under the curve y � f �x� depends on σ.

Most of the area, 99.7%, is contained between µ � 3σ and µ � 3σ



The normal distribution

Probability computations when X � N�µ, σ� require to solve

P�a & X & b� � E b

a

1

σ
Ó
2π

e
�

1
2
� x�µ

σ
�2
dx

As in the general case, we can write

P�a & X & b� � P�X & b� � P�X $ a� � F �b� � F �a�
where F �x� is the cumulative distribution function (cdf)

F �x� � E x

��

1

σ
Ó
2π

e
�

1
2
�w�µ

σ
�2
dw

Note: there is no analytic closed-form solution of the integral.



The normal distribution - Using R

Example. The test scores of a college entrance exam fit a normal
distribution where the mean test score is 72 and the standard
deviation is 15.2. (a) What is the percentage of students scoring
less than 84 in the exam? (b) What is the percentage of students
scoring 84 or more in the exam?

(a) We compute P�X $ 84� where X � N�µ � 72, σ � 15.2�
Using R
> pnorm(84, mean=72, sd=15.2)

[1] 0.78508

(b) We compute P�X ' 84� where X � N�µ � 72, σ � 15.2�
Using R
> 1-pnorm(84, mean=72, sd=15.2)

[1] 0.21492



The standard normal distribution

To solve problems involving the normal distribution, we introduce
the standard normal distribution obtained for µ � 0, σ � 1.

f �z� � 1Ó
2π

e
�

z
2

2 , z " R

Standard normal random variable: z � N�0, 1�
The values of

Φ�z� � P�Z & z� � E z

��

1Ó
2π

e
�

w
2

2 dw

are available on statistical tables.
Using the tables:

P�z1 & Z & z2� � P�Z & z2� � P�Z $ z1� � Φ�z2� � Φ�z1�



The standard normal distribution



The standard normal distribution

Examples. Let Z � N�0, 1�. Compute (a) P�Z & 0.92�; (b)
P�Z % 0.92�; (c) P�0.45 $ Z & 1.17�
(a) P�Z & 0.92� � Φ�0.92� � 0.8212

> pnorm(0.92)

[1] 0.8212136

(b) P�Z % 0.92� � 1 � Φ�0.92� � 1 � 0.8212 � 0.1788

> 1-pnorm(0.92)

[1] 0.1787864

(c) P�0.45 $ Z & 1.17� � Φ�1.17� � Φ�0.45� � 0.8790 � 0.6736 �
0.2054

> pnorm(1.17)-pnorm(0.45)

[1] 0.2053547



The standard normal distribution

From the plot:
P�Z & 0� � Φ�0� � 0.5
P�Z & 1� � Φ�1� � 0.841
P�0 & Z & 1� � Φ�1� � Φ�0� � 0.341
P��1 & Z & 1� � Φ�1� � Φ��1� � 0.682



The standard normal distribution

Useful properties:

Φ��1� � 1 � Φ�1�
Φ��z� � 1 � Φ�z�
You can derive all the value of Φ�z� using the table for z ' 0.



The normal distribution

To solve probability problems for X � N�µ, σ� we can apply a
change of variable to standardize the random variable.

Setting Z �
X�µ
σ

, then then Z � N�0, 1�
Hence

P�a $ X $ b� � P�a � µ
σ $

X � µ
σ $

b � µ
σ � � Φ�b � µ

σ ��Φ�a � µ
σ �

where Φ is the cdf of the standard normal distribution.



The normal distribution

Example. Let X � N�µ � 80, σ � 5.2�.
P�X $ 73� � P�X � 80

5.2
$

73 � 80

5.2
� � Φ�73 � 80

5.2
� � Φ��1.346�

From the table Φ��1.346� � 1 � Φ�1.346� � 0.0893



The normal distribution

Example. The body mass index (BMI) in the Canada population
of 60 year old males is normally distributed and has a mean value
= 29 and a standard deviation = 6. What is the probability that a
60 year old male has BMI less than 35? What is the probability
that a 60 year old male has BMI larger than 35?

The population is modeled as a normal random variable
X � N�µ � 29, σ � 6�.
P�X $ 35� � P�X � 29

6
$

35 � 29

6
� � Φ�35 � 29

6
� � Φ�1� � 0.841

P�X % 35� � 1 � P�X & 35� � 1 � Φ�1� � 0.159

Using R:
> pnorm(1)

[1] 0.8413447



The normal distribution - Percentiles

Definition. A percentile is a value in the distribution that holds a
specified percentage of the population below it.

For the standard normal distribution, the 100p-th percentile is
the value zp such that P�Z & zp� � p.

Example: the 25-th percentile is the number z0.25 such that
P�Z & z0.25� � 0.25

z0.25 � �0.675



The normal distribution - Percentiles

Commonly used percentiles:

50-th percentile z0.50 � 0

75-th percentile z0.75 � 0.675

90-th percentile z0.90 � 1.282

95-th percentile z0.95 � 1.645

99-th percentile z0.99 � 2.326

By the symmetry of f �z�, we have: z1�p � �zp



The normal distribution - Percentiles

For a normal distribution, the 100p-th percentile is the value xp
such that P�X & xp� � p.
Example. The body mass index (BMI) in the Canada population
of 60 year old males is normally distributed and has a mean value
= 29 and a standard deviation = 6. What is the 90th percentile of
BMI for 60 year old males?

The 90th percentile is the BMI that holds 90% of the BMIs below
it (and 10% above). We need to find x0.90 such that
P�X & x0.90� � 0.90

By converting into the standard normal distribution, we have

P�X � 29

6
&

x0.90 � 29

6
� � P�Z &

x0.90 � 29

6
� � 0.90

Using the percentile values of the standard normal distribution,
x0.90�29

6
� z0.90 � 1.282.

Hence x0.90 � �6��1.282� � 29 � 36.69



The normal distribution - Percentiles

Solution of the percentile problem in R

The function qnorm(), which comes standard with R, finds the
boundary value zp that determines this probability area
P�z $ zp� � p.

For example, the 90-th percentile is

> qnorm(0.9)

[1] 1.281552

If you want to find that 90-th percentile of a normal distribution
whose mean is 29 and whose standard deviation is 6, then

> qnorm(0.90,mean=29,sd=6)

[1] 36.68931



The normal distribution - Percentiles

Example. Suppose that SAT scores are normally distributed, and
that the mean SAT score is 1000 and the standard deviation of all
SAT scores is 100. How high must you score so that only 10% of
the population scores higher than you?

Solution.
If 10% score higher than you, then 90% score lower. That is, you
want to find the 90-th percentile x0.90 of the SAT scores given by

P�X & x0.90� � 0.90.

Using R we find

> qnorm(0.90,mean=1000,sd=100)

[1] 1128.155



3. Statistical Inference



Statistical inference

In scientific applications or social sciences, where we deal with data
affected by randomness, we often want to extract useful
information and draw conclusions from the data.

Examples: medical diagnostics, wireless communication, election
polls.

Statistical inference is a collection of methods that deal with
drawing conclusions from real data that are associated with
uncertainty.



Statistical inference

In a typical problem of statistical inference, after data collection,
we want to draw some conclusion about a random variable X . We
may have the following two situations:

1 The form of the pdf f �x , θ� or the pmf p�x , θ� describing the
random variable X is known, but the parameter θ is unknown.
Note that θ may be a vector.

2 The pdf f �x , θ� or the pmf p�x , θ� describing the random
variable X is unknown.

In case 1, where the distribution model is known but the parameter
θ is not, the problem is addressed using classical parametric
methods. For example, we may have reason to think that a certain
collection of data can be modeled using a normal distribution
N�µ, σ�. Hence, we need to estimate µ and σ.

In case 2, where the distribution model is unknown, we need to use
a nonparametric approach.



Statistical inference - parametric case
Estimation is the procedure by which we infer the value about the
unkown parameter(s) of a distribution based on collected data:

1 There is an unknown parameter θ that we would like to
estimate;

2 we collect a random sample of the data;

3 we use the data sample to estimate the desired quantity.

There are two major approaches to this problem:

Frequentist or classical inference. The unknown quantity θ
is assumed to be a fixed quantity. That is, θ is a deterministic
(non-random) quantity to be estimated using collected data.

Bayesian approach. The unknown parameter θ is assumed
to be a random variable, and we assume that we have some
initial guess about the distribution of θ. After observing the
data, we update the distribution of θ using Bayes’ Theorem.

In MATH 3339 and MATH 4310, we only consider the frequentist
or classical approach.



Statistical inference - parametric case

Estimation includes two main categories: point estimation and
interval estimation.

For example, in the classical polling problem, we are interested in
the percentage p of people who will vote for Candidate A. After
polling n randomly chosen voters, we define the estimator

rp � Y
n

where Y is the number of people - among the randomly chosen
voters - who say they will vote for Candidate A.

Note that, although p is a parameter, the estimator rp of p is a
random variable as it depends on the random sample.

Rather than a point estimate, we can compute an interval in which
the value of the unknown parameter p is highly likely to lie.



3.1 Point Estimation



Random sampling
Suppose that our goal is to investigate the height distribution of
people in a well defined population (i.e., adults of age 25-50 in a
certain country). To do this, we define random variables
X1,X2,X3, . . . ,Xn as follows: we choose a random sample of size
n from the population and let Xi be the height of the i-th chosen
person.

Definition. A collection of random variables X1,X2, . . . ,Xn is said
to be a random sample of size n if they are independent and
identically distributed (i.i.d.), i.e.,

1 X1,X2, . . . ,Xn are independent random variables;

2 they have the same distribution.

To estimate the average height in the population, we may define
an estimator as

θ̂ �
X1 � X2 � � � � � Xn

n

Note that the estimator is a function of the random sample and, in
particular, it is a random variable.



Point estimation

Estimation is a process for learning and determining the
population parameter based on the model fitted to the data.

Point estimation, interval estimation and hypothesis testing
are among the main ways of learning about the population
parameter from a random sample.

An estimator is particular example of a statistic and becomes an
estimate when the formula is replaced with actual observed
sample values.

Point estimation = a single value that estimates the parameter.
Point estimates are single values calculated from a random sample.



Point estimation
Let us assume that θ is an unknown parameter to be estimated.
For example, it might be the expected value of a random
variable X :

θ � µX � E�X �
To estimate θ, we collect a random samples X1,X2,X3, . . . ,Xn

from the unknown distribution p�x� of X and then we define a
point estimator θ̂ that is a function of the samples, that is

θ̂ � h�X1,X2,X3, . . . ,Xn�
There are many possible estimators for θ̂ of θ:

X̄ �
X1 � X2 � � � � � Xn

n (sample mean)

X̃ � X1

˜̃X �
minXi �maxXi

2



Point estimation

How do we compare different possible estimators?
Roughly speaking, a good estimator θ̂ should be “close” to the real
value of θ.

We make this notion more precise by defining 3 desirable properties
for point estimators: bias, mean square error and consistency.

Definition. Let θ̂ � h�X1,X2,X3, . . . ,Xn� be a point estimator of
θ. The bias of the estimator is

b�θ̂� � E�θ̂� � θ

We say that θ̂ is an unbiased estimator of θ if b�θ̂� � 0

Interpretation: The bias of an estimator θ̂ tells us on average how
far θ̂ is from the real value of θ.



Point estimation - The sample mean

Proposition. Let X1,X2, . . . ,Xn be a random samples from a
distribution with E�X � � µX and consider the sample mean
X̄ �

1
n
<n

i�1. Then X̄ is an unbiased estimator of the mean.

Proof: Since the samples X1,X2, . . . ,Xn are i.i.d, then E�Xi� � µX

for any i . Hence

b�X̄ � � E�X̄ � � µX �
1
n

n

=
i�1

E�Xi� � µX �
1
nnµX � µX � 0

Also the estimator X̃ � X1 is an unbiased estimator since

b�X̃ � � E�X̃ � � µX � E�X1� � µX � µX � µX � 0

The second example shows that an unbiased estimator is not
necessarily a good estimator.



Point estimation - The sample mean

Definition. The mean squared error (MSE) of a point estimator
θ̂, denoted as MSE�θ̂�, is defined as

MSE�θ̂� � E��θ̂ � θ�2�
Interpretation: the MSE is a measure of the distance between θ̂
and θ, and a smaller MSE is generally indicative of a better
estimator.
Proposition. Let X1,X2, . . . ,Xn be a random samples from a
distribution with E�X � � µ and var�X � � σ

2
. We consider the

following two estimators for µX .

1 X̄ �
1
n
<n

i�1 Xi ;

2 X̃ � X1.

Then MSE�X̄ � $ MSE�X̃ �., if n % 1. That is, the sample mean
estimator has a lower MSE.



Point estimation - The sample mean

Proof:
MSE�X̃ � � E��X1 � µ�2� � var�X1� � σ

2

MSE�X̄ � � E��X̄ � µ�2� � var�X̄ � µ� � �E�X̄ � µ��2,
using the observation that var�Y � � E�Y 2� � �E�Y ��2 with
Y � X̄ � µ.
Using the observation that var�X̄ � µ� � var�X̄ � since µ is
constant and that E�X̄ � µ� � 0, we conclude that

MSE�X̄ � � var�X̄ � � var�1n n

=
i�1

Xi� � 1

n2
nσ

2
�

σ
2

n



Point estimation - The sample mean

Definition. Let θ̂1, θ̂2, . . . be a sequence of point estimators of θ.
We say that �θ̂n� is a consistent estimator of θ, if

lim
n��

P�¶θ̂n � θ¶ ' ϵ� � 0, for all ϵ % 0

Interpretation: an estimator is consistent if as the sample size n
gets larger, the estimator converges to the real value of θ.

One can show that the sample mean X̄ is a consistent estimator of
the mean.



Point estimation - The sample variance

We examine now how to estimate the variance of a distribution.

Let X1,X2, . . . ,Xn be a random sample with mean E�Xi� � µ, and
variance Var�Xi� � σ

2
for all i . Suppose that we use the following

estimators of σ
2

1 S̄
2
�

1
n
<n

i�1�Xi � X̄ �2
2 S

2
�

1
n�1
<n

i�1�Xi � X̄ �2 (sample variance)

Proposition. S
2
is an unbiased estimator of σ

2
while S̄

2
is not.

The sample standard deviation is defined as S �
Ô
S2 and is

commonly used as an estimator for σ. Nevertheless, S is a biased
estimator of σ.



Point estimation - The sample variance
Proof. Since Var�Y � � E�Y 2� � �E�Y ��2, then
E�X̄ 2� � �E�X̄ ��2 � Var�X̄ � � µ

2
�

σ
2

n

E�X 2
i � � �E�Xi��2 � Var�Xi� � µ

2
� σ

2
.

Thus: E�S̄2� � 1
nE� n

=
i�1

�Xi � X̄ �2�
�

1
nE� n

=
i�1

X
2
i � nX̄

2�
�

1
n

n

=
i�1

E�X 2
i � � nE�X̄ 2�

�
1
n �n�µ2

� σ
2� � n�µ2

�
σ
2

n ��
�

n � 1
n σ

2

Similarly, E�S2� � σ
2
.



Sampling distribution

Let X1,X2, . . . ,Xn be a random samples from a distribution with
mean µ and variance σ

2
.

As noted, the sample mean

X̄ �
1
n

n

=
i�1

Xi

is also a random variable and, in particular, it has its own pdf.

We have:

µX̄ � E�X̄ � � 1
nE� n

=
i�1

Xi� � 1
n n µ � µ

σ
2
X̄ � var�X̄ � � 1

n2
var� n

=
i�1

Xi� � 1

n2
n σ

2
�

σ
2

n



Sampling distribution
We can standardize X̄ by defining

Zn �
X̄ � µ
σX̄

�
X̄ � µ

σ©Ón �
X1 � X2 � � � � � Xn � nµÓ

nσ

Note: E�Zn� � 1
σX̄

E�X̄ � µ� � 0 and var�Zn� � �Ón
σ
�2var�X̄ � � 1

Theorem

Let X1,X2, . . . ,Xn be a random samples from a normal distribution

with mean µ and variance σ
2
. Then X̄ � N�µ, σ2

n
� and, as a

consequence, Zn � N�0, 1�
Than is, the sample mean X̄ is also normally distributed with mean

µ and variance σ
2
X̄ �

σ
2

n
.

Not surprisingly, if samples are taken from a normal distribution,
the sample mean is also normally distributed. In general, though,
samples are taken from a distribution which is not normal or that
may even be unknown.



Sampling distribution - Central Limit Theorem

Central Limit Theorem.

Let X1,X2, . . . ,Xn be random samples from a distribution with

mean µ and variance σ
2
. Then the random variable Zn �

X̄�µ
σ©Ón

converges in distribution to a standard normal random variable as
n tends to infinity, that is

lim
n��

P�Zn & x� � Φ�x�, for all x ,

where Φ is the standard normal cdf.

Significance: Even if we take random samples from an unknown
distribution, if the sample size is sufficiently large (n % 30) then
the distribution of the sample mean is approximately normal.



Sampling distribution - Central Limit Theorem

Exercise. The numerical population of grade point averages at a
college has mean 2.61 and standard deviation 0.5. If a random
sample of size 100 is taken from the population, what is the
probability that the sample mean will be between 2.51 and 2.71?

Solution. The sample mean X̄ has mean µ � 2.61 and standard
deviation σX̄ � σ©Ó100 � 0.5©10 � 0.05. By the CLT, we can
approximate the sampling distribution as
X � N�µ � 2.61, σX̄ � 0.05�.
Thus we can compute P�2.51 $ X̄ $ 2.71� using R as

pnorm(2.71,mean=2.61,sd=0.05)-pnorm(2.51,mean=2.61,sd=0.05)

[1] 0.9544997



Sampling distribution - Central Limit Theorem
Exercise. An automobile battery manufacturer claims that its
midgrade battery has a mean life of 50 months with a standard
deviation of 6 months. Suppose the distribution of battery lives of
this brand is normal. (a) Find the probability that a randomly
selected battery of this type will last less than 48 months. (b) Find
the probability that the mean battery life of a random sample of 36
such batteries will be less than 48 months.
Solution. (a) Since the population of battery lives is known to
have a normal distribution N�µ � 50, σ � 6�, we compute
P�X $ 48� as

> pnorm(48,mean=50,sd=6)

[1] 0.3694413

(b) The sample mean is normally distributed with µ � 50 and
standard deviation σX̄ � 6©Ó36 � 1. Thus we compute P�X̄ $ 48�
as

> pnorm(48,mean=50,sd=1)

[1] 0.02275013



Sampling distribution - Central Limit Theorem

The central limit theorem implies we can approximate the
binomial pmf with parameters p, n using the normal distribution.

Explanation: Recall that, given X1, . . . ,Xn Bernoulli trials with
probability of success p, then Y � <n

i�1 Xi � binom�n, p�, with
µY � np and σ

2
Y � np�1 � p�.

We can think of the n Bernoulli trials as a random sample. Hence,
if n is sufficiently large, by CLT we can approximate

Y
n �

n

=
i�1

Xi � N �µ � p, σ
2
�

p�1�p�
n

�
Y
n
can be interpreted as the proportion of successes, i.e., the

number of successes over the number of trials.

Note that Y � N �µ � np, σ
2
� np�1 � p��



Sampling distribution - Central Limit Theorem

Exercise. You flip a fair coin 100 times. (a) What is the expected
number of heads for this experiment? what is the variance? (b)
What is the probability that we observe between 45 and 60 heads?

Solution. (a) Because the coin is fair, the expected number of
heads is np � �100��0.5� � 50. Variance is
np�1 � p� � �100��0.5��0.5� � 25

(b) Define random variable Y = number of heads observed. BY
the CLT, Y � N�µ � 50, σ � 5�. Hence, P�45 & Y & 60� is
computed using R as

> pnorm(60,mean=50,sd=5)-pnorm(45,mean=50,sd=5)

[1] 0.8185946



Sampling distribution - Central Limit Theorem

Exercise. Lab results indicate that a certain drug is effective 75%
of the time (success) and ineffective 25% of the time (failure). As
a trial, the drug is administered to a sample of 1000 patients. a)
What is the expected proportion of successes for this experiment?
(b) What is the probability that between 71% and 77% of the
patients are helped by the drug?

Solution. (a) The expected proportion of successes is p � 0.75.

(b) Define random variable W = proportion of successes. By the
CLT, W is well approximated by a normal random variable with
mean 0.75 and standard deviationÔ
p�1 � p�©n � Ô�0.75��0.25�©1000 � 0.01369306

We compute P�0.71 &W & 0.77� using R as

pnorm(0.77,mean=0.75,sd=0.0137)-pnorm(0.71,mean=0.75,sd=0.0137)

[1] 0.9260831



Sampling distribution - Central Limit Theorem

We will use R to illustrate the Central Limit Theorem

The following commands in R computes 5000 simulations of
sample means of size 12 from a normal distribution with mean
µ � 100 and standard deviation σ � 14.

require(fastR2)

samplesum <- do(5000) *

c(sample.mean=mean(rnorm(12,100,14)))

We next compute the approximate mean and standard deviation of
the sample mean
mean(�sample.mean, data=samplesum)

[1] 100.0191
sd(�sample.mean, data=samplesum)

[1] 4.138746

Compare with the theoretical values:
µX̄ � µ � 100 and σX̄ � σ©Ó12 � 4.041452



Sampling distribution - Central Limit Theorem

The following command plots the histogram giving the
approximate distribution of the sample mean.
gf dhistogram(�sample.mean,data=samplesum,bins=20,color="black")

The histogram approximates a normal distribution with the same
mean as the data but a different standard deviation



Sampling distribution - Central Limit Theorem

For clarity, the following plot compares the histogram of the
sample mean and the histogram of the data.



Sampling distribution - Central Limit Theorem

R script used to generate comparison plot:

library(ggplot2)

normaldata <- rnorm(5000,mean=100,sd=12)

nsamplesum <- do(5000) *

c(sample.mean=mean(rnorm(12,100,14)))

samplemean=nsamplesum$sample.mean

df <- data.frame(variable = c(rep("normaldata",

length(normaldata)),

rep("samplemean",length(samplemean))),

value=c(normaldata,samplemean))

ggplot(df, aes(x=value, fill=variable))+

geom histogram(position = "identity",alpha =

.2,bins=50,color="black")



Sampling distribution - Central Limit Theorem

We repeat the same simulation as above using now samples from a
uniform distribution in the interval ��2, 4�.
Also in this case, we run a numerical test over 5000 simulations:

require(fastR2)

nsamplesum <- do(5000) *

c(sample.mean=mean(runif(12,-2,4)))

We next compute mean and standard deviation of the sample
mean, and compare it to the theoretical result.

mean(�sample.mean, data=nsamplesum)

[1] 0.9819321

sd(�sample.mean, data=nsamplesum)

[1] 0.4991983

Compare with the theoretical values:
µX̄ � µ � 4�2

2
� 1 and σX̄ �

σÓ
12
�

4�2Ó
12�

Ó
12
� 0.5



Sampling distribution - Central Limit Theorem

Again, we compare the histogram of the sample mean and the
histogram of the data.



Sampling distribution - Central Limit Theorem

R script used to generate comparison plot:

library(ggplot2)

unifdata <- runif(5000,-2,4)

nsamplesum <- do(5000) *

c(sample.mean=mean(runif(12,-2,4)))

samplemean=nsamplesum$sample.mean

df <- data.frame(variable = c(rep("unifdata",

length(unifdata)),

rep("samplemean",length(samplemean))),

value=c(unifdata,samplemean))

ggplot(df, aes(x=value, fill=variable))+

geom histogram(position = "identity",alpha =

.2,bins=50,color="black")



3.2 Confidence Intervals



Confidence Intervals or Interval Estimation

The point estimate alone does not give much information about a
parameter θ of a distribution. Without additional information, we
do not know how close the estimate θ̂ is to the real θ.

Here, we introduce the concept of interval estimation where, rather
than giving just one value θ̂ as the estimate for θ, we produce an
interval that is likely to include the true value of θ.

In interval estimation, there are two important concepts:

1 The length of the reported interval which is likely to contain
the true value of θ. The length of the interval shows the
precision of our estimate.

2 The confidence level that shows how confident we are about
the interval. The confidence level is the probability that the
interval includes the real value of θ.



Confidence Intervals or Interval Estimation

Let X1,X2, . . . ,Xn be a random sample from a distribution with a
parameter θ that is to be estimated. A interval estimator with
confidence level 1 � α consists of two estimators θ̂L and θ̂H such
that

P�θ̂L & θ & θ̂H� $ 1 � α, for all θ.

Equivalently, we say that �θ̂L, θ̂H� is a 100�1 � α� percent
confidence interval of θ.

We remark that θ̂L and θ̂H are random variables because they are
functions of the observed random variables X1,X2, . . . ,Xn. By
contrast θ is not a random variable.



How to find a Confidence Interval

Let X be a normal random variable with CDF F �x� � P�X & x�.
Suppose that we are interested in finding two values xh and xl such
that

P�xl & X & xh� � 1 � α

We can choose xl and xh such that

P�X & xl� � F �xl� � α©2, P�X ' xh� � 1 � F �xh� � α©2.

In this case, �xl , xh� is the 100�1 � α� percent confidence interval
of X .



How to find a Confidence Interval
Example Let z � N�0, 1�.
We want to find zl , zh such that P�zl & Z & zh� � 0.95

Because Z is the standard normal random variable, we can express
the solution using the cdf Φ of Z . In fact, zl , zh are determined by

Φ�zl� � 0.025, Φ�zh� � 1 � 0.025 � 0.975

zh is the 97.5th percentile and, by symmetry, zl � �zh. That is

zh � Φ
�1�0.975� � 1.96 zl � Φ

�1�0.025� � �1.96,
Using R: qnorm(0.975) = 1.959964, qnorm(0.025) = -1.959964



How to find a Confidence Interval

In general, we denote zα
2
and z1�α

2
� �zα

2
such that

P��zα
2
& Z & zα

2
� � 1 � α

Hence Φ�zα
2
� � 1 � α

2
and

zα
2
� Φ

�1�1 � α
2
� � qnorm�1 � α

2
� (R formula)

1 � α α zα
2

0.90 0.10 1.645
0.95 0.05 1.960
0.99 0.01 2.576



Confidence Interval of the mean

Let X1,X2, . . . ,Xn be a random sample from a normal
distribution N�µ, σ�, where σ is known.
We want to find the 95% confidence interval for µ.

To solve the problem, we start from the estimator of the mean

X̄ �
1
n

n

=
k�1

Xi

We have that X̄ � N�µ, σÓ
n
�, hence Z �

X̄�µ
σ©Ón � N�0, 1�

Because µZ � E�Z� � 0, to solve the problem we need to find
zl , zh such that

P�zl & �Z �
X̄�µ
σ©Ón	 & zh� � 0.95

By our observations above, zh � 1.96, zl � �1.96



Confidence Interval of the mean

Hence we can write:

P��1.96 & X̄�µ
σ©Ón & 1.96� � 0.95

which is equivalent to

P�X̄ � 1.96 σÓ
n
& µ & X̄ � 1.96 σÓ

n
� � 0.95

That is, the 95% confidence interval for µ is�X̄ � 1.96 σÓ
n
, X̄ � 1.96 σÓ

n
�



Confidence Interval of the mean [normal pdf, σ known ]

In general:

Theorem

Let X1,X2, . . . ,Xn be a random sample from a normal
distribution N�µ, σ�, where µ is unknown and σ is known.
Let X̄ be the sample mean X̄ �

1
n
<n

k�1 Xi . Then�X̄ � zα
2

σÓ
n
, X̄ � zα

2

σÓ
n
� or X̄ � zα

2

σÓ
n

is a �1 � α�100% confidence interval for µ.

Note that zα
2
� Φ

�1�1 � α
2
� � qnorm�1 � α

2
�



Confidence Interval of the mean [σ known, n % 30]

What if the distribution is not normal?

By the central limit theorem, Z �
X̄�µ
σ©Ón is approximately normal.

Hence we can use the same argument above to get:

Theorem

Let X1,X2, . . . ,Xn be a random sample an unknown
distribution where µ � E�Xi� is unknown, Var�Xi� � σ

2
is known

and n % 30. Let X̄ be the sample mean X̄ �
1
n
<n

k�1 Xi . Then�X̄ � zα
2

σÓ
n
, X̄ � zα

2

σÓ
n
� or X̄ � zα

2

σÓ
n

is an approximate �1 � α�100% confidence interval for µ.



Confidence Interval of the mean
Example.
A scientist measuring the boiling temperature of a certain liquid
observes the readings (in degrees Celsius)

102.5, 101.7, 103.1, 100.9, 100.5, 102.2

on 6 different samples of the liquid. If he knows that the standard
deviation for this procedure is σ � 1.2 degrees, what is the 95%
confidence interval for the population mean?

If the measurements follow a normal distribution, then the sample
mean will have the distribution N�µ, σX̄ � σ©Ón�. We compute
x̄ � 101.82. Hence a 95% confidence interval is:�101.82 � 1.96 � 1.2Ó

6
, 101.82 � 1.96 � 1.2Ó

6
� � �100.86, 102.78�

As the level of confidence decreases, the size of the corresponding
interval will decrease. For instance, the 90% confidence interval is:�101.82 � 1.645 � 1.2Ó

6
, 101.82 � 1.645 � 1.2Ó

6
� � �101.01, 102.63�



Confidence Interval of the mean
Example.
A scientist measuring the boiling temperature of a certain liquid
observes the readings (in degrees Celsius). If he knows that the
standard deviation for this procedure is σ � 1.2 degrees, under the
assumption that the measurements follow a normal distribution,
how large the sample size n should be so that the width of the
95% confidence interval is 1 degree Celsius?

We want to find n such that the interval�x̄ � 0.5, x̄ � 0.5�
is a 95% confidence interval for the mean. Hence we need to find
n such that 1.96 � 1.2Ó

n
� 0.5. We solve as

n � �1.96 � 1.2
0.5
�2 � 22.13

This shows that the scientist has to collect n � 23 measurements
or more.



Confidence Interval of the mean - Sample size

For normally distributed data with known standard deviation, the�1 � α�100% confidence interval for µ

X̄ � zα
2

σÓ
n

is an interval of width w � 2 zα
2

σÓ
n
and half-width h � zα

2

σÓ
n
.

To find the sample size n such that we are �1 � α�100% confident
the mean is contained in a confidence interval of width w , we solve
the equation above for n, finding

n '
�2 zα

2
σ�2

w2

or equivalently

n '
�zα

2
σ�2

h2



Confidence Interval of the mean [σ unknown, n % 30]

Let X1,X2, . . . ,Xn be a random sample from a distribution where
µ � E�Xi� is unknown, Var�Xi� � σ

2
is unknown and n % 30.

We want to find the �1 � α�100% confidence interval for µ.

As above, we have that

P�X̄ � zα
2

σÓ
n
& µ & X̄ � zα

2

σÓ
n
� � 1 � α.

However we cannot explicitly write the confidence interval because
σ is unknown.

There are two general approaches: we can either find an upper
bound for σ, or we can estimate σ.



Confidence Interval of the mean [σ unknown, n % 30]

Variance estimation.

We have already discussed a point estimator for σ
2
and we called

it the sample variance:

S
2
�

1

n � 1

n

=
i�1

�Xi � X̄ �2
If n is large, S

2
is likely to be close to the real value of σ

2
.

Hence, given a random sample X1,X2, . . . ,Xn from a distribution
where µ � E�Xi� is unknown, Var�Xi� � σ

2
is unknown and

n % 30, the (approximate) �1� α�100% confidence interval for µ is�X̄ � zα
2

SÓ
n
, X̄ � zα

2

SÓ
n
�

or
X̄ � zα

2

SÓ
n



Confidence Interval of the mean [σ unknown, n % 30]

Example.
We have collected a random sample X1,X2, . . . ,X100 from an
unknown distribution. The sample mean and the sample variance
for this random sample are given by X̄ � 15.6, S

2
� 8.4. Construct

an approximate 99% confidence interval for µ � E�Xi�.
Since 1 � α � 0.99, then α � 0.01 and z0.005 � 2.576. Hence, the
approximate 99% confidence interval for µ is

�15.6 � 2.576
Ó
8.4Ó
100

, 15.6 � 2.576
Ó
8.4Ó
100

� � �14.85, 16.34�



Confidence Interval of the mean [σ unknown, n % 30]

Variance upper bound.

If the variance of a distribution is unknown, we may be able to still
compute the confidence interval of the mean by using an upper
bound for σ

2

Suppose we can find a bound

σ & σmax $�.

Then the following interval�X̄ � zα
2

σmaxÓ
n
, X̄ � zα

2

σmaxÓ
n
�

is also a valid �1 � α�100% confidence interval for µ.



Confidence Interval of the proportion

We want to estimate the proportion of people who plan to vote
for Candidate A in an upcoming election. It is assumed that the
number of voters is large, and p is the portion of voters who plan
to vote for Candidate A.
We define the random variable X as follows. A voter is chosen
uniformly at random among all voters and we ask her/him: “Do
you plan to vote for Candidate A?” If she/he says ”yes,” then
X � 1, otherwise X � 0. Then X is a Bernoulli random variable
with probability of success p.

We randomly select n voters (with replacement) and we ask each
of them if they plan to vote for Candidate A. That is, we collect a
random sample X1,X2, . . . ,Xn be a random sample from the
Bernoulli distribution with probability of success p.

We want to find a �1 � α�100% confidence interval for p.



Confidence Interval of the proportion

We have that E�Xi� � p and Var�Xi� � σ
2
� p�1 � p�.

Thus, to find σ
2
we need to know p, which is the quantity we want

to estimate.
We will find an upper bound for σ

2
by observing that the function

f �p� � p�1 � p� satisfies

f �p� � p�1 � p� & f �1
2
� � 1

4
, p " �0, 1�

Hence, σ
2
&

1
4
and σ & σmax �

1
2
.

We conclude that�X̄ � zα
2

σmaxÓ
n
, X̄ � zα

2

σmaxÓ
n
� � �X̄ � zα

2

2
Ó
n
, X̄ �

zα
2

2
Ó
n
�

is also a �1 � α�100% confidence interval for p.



Confidence Interval of the proportion

Example.
We randomly selected 100 voters (with replacement) and we ask
each of them if they plan to vote for Candidate A. We found that
53% of respondents plan to vote for candidate A.
We want to find a 99% confidence interval for the proportion p of
voters who plan to vote for candidate A

Since 1 � α � 0.99, then α � 0.01 and z0.005 � 2.576. Hence, the
approximate 99% confidence interval for p is�0.53 � 2.576

2
Ó
100

, 0.53 � 2.576

2
Ó
100

� � �0.40, 0.66�
If we choose a 95% confidence level, we get�0.53 � 1.96

2
Ó
100

, 0.53 � 1.96

2
Ó
100

� � �0.43, 0.63�



Confidence Interval of the proportion

Example. As above, we want to determine what proportion p of
voters plan to vote for candidate A. We will choose a random
sample (with replacement) of n voters and ask them if they plan to
vote for Candidate A. Our goal is to estimate p so that the margin
of error is 3 percentage points. That is, we would like to choose n
such that

P�x̄ � 0.03, X̄ � 0.03� ' 0.95

where x̄ is the proportion of people in our random sample that say
they plan to vote for Candidate A. Assume a 95% confidence level.

Based on the above analysis, we need to choose n such that

zα
2

2
Ó
n
� 0.03

Hence n � � zα
2�2��0.03�	2 � � 1.96�2��0.03�	2 � 1067.11

If the confidence level is 99%, then n � � 2.576�2��0.03�	2 � 1843.27



Confidence Interval of the mean [σ unknown, n small]

In the above discussion, we assumed n to be large so that we could
use the CLT.

We found that the confidence interval does not depend on the
details of the distribution from which we obtained the random
sample but only depended on statistics such as X̄ and S

2
.

What if n is not large?

In this case, we cannot use the CLT, so we need to use the
probability distribution from which the random sample is obtained.
A very important case is when we have a sample X1,X2, . . . ,Xn

from a normal distribution.

Next, we discuss how to find interval estimators for the mean and
the variance of a normal distribution when σ

2
is unknown and n is

not large.



Chi-Squared Distribution

If Z1,Z2, . . .Zn are independent standard normal random variables,
then the random variable

X � Z1 � Z2 � � � � � Zn

is also normal. Specifically, X � N�0, n�
If we define a random variable Y as

Y � Z
2
1 � Z

2
2 � � � � � Z

2
n

then Y is said to have a chi-squared distribution with n degrees
of freedom, which we denote as Y � χ

2�n�



Chi-Squared Distribution
Properties of the chi-squared distribution:

1 It is a special case of the gamma distribution

fY �y� � 1

2
n
2 Γ�n

2
�y n

2
�1
e
�

y
2 , y % 0

2 E�Y � � n, Var�Y � � 2n.

Figure: Plot of the pdf of the χ
2�n� distribution for selected values of n



Chi-Squared Distribution

The chi-squared distribution arises in connection with the sample
variance of the normal distribution.

Theorem. Let X1,X2, . . . ,Xn be i.i.d. N�µ, σ2� random variables
and let S

2
be the sample variance for this random sample. Then,

the random variable Y defined as

Y �
�n � 1�S2

σ2
�

1

σ2

n

=
i�1

�Xi � X̄ �2
has a chi-squared distribution with n � 1 degrees of freedom, i.e.,
Y � χ

2�n � 1�
Moreover, X̄ and S

2
are independent random variables.



Student’s t-distribution

Let Z � N�0, 1� and Y � χ
2�n�, where n " N.

Also assume that Z and Y are independent.
The random variable T defined as

T �
ZÔ
Y ©n

has a Student’s t-distribution (or simply t-distribution) with n
degrees of freedom, which we denote by T � T �n�.



Student’s t-distribution
Properties of the Student’s t-distribution:

1 The t-distribution has a bell-shaped curved centered at 0

fT �t� � Γ�n�1
2
�Ó

nπ Γ�n
2
� �1 � t

2

n �� n�1
2

As n ��, T �n�� N�0, 1�.
2 E�T � � 0, for n ' 2. E�T � is undefined for n � 1.
3 Var�T � � n � 2, for n % 2. Var�T � is undefined for n � 1, 2.

Figure: Plot of the pdf of t-distribution for some values of n compared
with the standard normal pdf.



Student’s t-distribution
The t-distribution arises in connection with the sample mean of the
normal distribution.

Theorem

Let X1,X2, . . . ,Xn be i.i.d. N�µ, σ2� random variables and let X̄ ,
S
2
be the sample mean and sample variance for this random

sample, resp. Then, the random variable T defined as

T �
X̄ � µ

S©Ón
has a t-distribution with n � 1 degrees of freedom, T � T �n � 1�.
Proof. Define Z �

X̄�µ

σ©Ón . Then Z � N�0, 1�. Also define Y �
�n�1�S2

σ2 .

By our observations above, Y � χ
2�n � 1�. It follows that

T �
ZÔ

Y ©�n � 1� �
X̄ � µ

S©Ón
has a t-distribution with n � 1 degrees of freedom.



Student’s t-distribution

For any p " �0, 1� and n " N we define tp,n as the real value for
which

P�T ' tp,n� � p

Since the t-distribution has a symmetric pdf, we have that

t1�p,n � �tp,n



Confidence Interval for the mean of a normal distribution

Let X1,X2, . . . ,Xn be i.i.d. N�µ, σ2� random variables.
Our goal is to find an interval estimator for µ. We make no
assumptions on n, that is, n can be any natural number.

There are two possible scenarios depending on whether σ
2
is

known or not.
If the value of σ

2
is known, then the random variable

Z �
X̄ � µ

σ©Ón
has N�0, 1� distribution.
It follows from our discussed above, we have that�X̄ � zα

2

σÓ
n
, X̄ � zα

2

σÓ
n
�

is a �1 � α�100% confidence interval for µ.



Confidence Interval for the mean of a normal distribution
If the value of σ

2
is not known, then the random variable

T �
X̄ � µ

S©Ón ,
where S

2
is the sample variance for the random sample, has

T �n � 1� distribution.

To find a �1 � α�100% confidence interval for µ, we solve

P��tα
2
,n�1 &

X̄�µ
S©Ón & tα

2
,n�1� � 1 � α

which is equivalent to

P�X̄ � tα
2
,n�1

SÓ
n
& µ & X̄ � tα

2
,n�1

SÓ
n
� � 1 � α

That is, a �1 � α�100% confidence interval for µ is�X̄ � tα
2
,n�1

SÓ
n
, X̄ � tα

2
,n�1

SÓ
n
�



Confidence Interval for the mean of a normal distribution
[σ unknowns]

Theorem

Let X1,X2, . . . ,Xn be a random sample from a normal
distribution N�µ, σ�, where µ is unknown and σ is unknown.
Let X̄ be the sample mean X̄ �

1
n
<n

k�1 Xi . Then�X̄ � tα
2
,n�1

SÓ
n
, X̄ � tα

2
,n�1

SÓ
n
� or X̄ � tα

2
,n�1

SÓ
n

is a �1 � α�100% confidence interval for µ.

S
2
�

1
n�1
<n

i�1�Xi � X̄ �2 is the sample variance of X and S �
Ô
S2

is the sample standard deviation of X .

tα
2
,n�1 � qt�1 � α

2
, df � n � 1�



Confidence Interval for the mean - Example
Example. A farmer weights 10 randomly chosen watermelons from
his farm and he obtains the following values (in lbs):

7.72, 9.58, 12.38, 7.77, 11.27, 8.80, 11.10, 7.80, 10.17, 6.00

Assuming that the weight is normally distributed, find a 95%
confidence interval for the mean.

Solution. Using R, from the data we obtain
x <-c(7.72,9.58,12.38,7.77,11.27,8.8,11.10,7.8,10.17,6.0)

mean(x) = 9.259

var(x) = 3.961454

Hence, we set X̄ � 9.26, S
2
� 3.96 and, since the variance in not

known, the statistics is T �
X̄�µ
S©Ón � T �n � 1�, with n � 10.

Using R, we find t0.025,9 � qt�0.975, 9� � 2.262. Thus, we obtain
the 95% confidence interval for the mean

�9.26 � 2.26

Ó
3.96Ó
10

, 9.26 � 2.26

Ó
3.96Ó
10

� � �7.84, 10.68�



Confidence Interval for the mean - Example

Numerical solution using R. Case 1: σ known.

Assume that we have collected a normal sample of size n � 20 and
found that the sample mean is 5. Assume we know the standard
deviation is 2. We compute the 95% confidence interval using R.
Note: 1 � α � 0.95, α � 0.05, α

2
� 0.025, 1 � α

2
� 0.975

> xbar <- 5

> sigma <- 2

> n <- 20

> error <- qnorm(0.975)*sigma/sqrt(n)

> left <- xbar-error

> right <- xbar+error

> left

[1] 4.123477

> right

[1] 5.876523



Confidence Interval for the mean - Example

Numerical solution using R. Case 2: σ unknown.

Assume that we have collected a normal sample of size n � 20 and
found that the sample mean is 5 and the sample variance is 4. We
compute the 95% confidence interval using R.
Note: 1 � α � 0.95, α � 0.05, α

2
� 0.025, 1 � α

2
� 0.975

> xbar <- 5

> s <- 2

> n <- 20

> error <- qt(0.975,df=n-1)*s/sqrt(n)

> left <- xbar-error

> right <- xbar+error

> left

[1] 4.063971

> right

[1] 5.936029



Confidence Interval for the mean - Example
Numerical solution using R. Case 2: σ unknown.
R has a command called t.test that computes the confidence
interval for the mean after the significance test (that we will
discuss later).

> watermelon =c(7.72, 9.58, 12.38, 7.77, 11.27, 8.80,

11.10, 7.80, 10.17, 6.00)

> t.test(watermelon,conf.level=0.95)

One Sample t-test

data: watermelon

t = 14.711, df = 9, p-value = 1.336e-073

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

7.835196 10.682804

sample estimates:

mean of watermelon

9.259



Confidence Interval for the mean - Example
Numerical solution using R. Case 1: σ known.
R has a command z.test available with package TeachingDemos
Here we assume σ

2
� 3.96

> watermelon =c(7.72, 9.58, 12.38, 7.77, 11.27, 8.80,

11.10, 7.80, 10.17, 6.00)

>stdev=sqrt(3.96)

>library(TeachingDemos)

>z.test(watermelon,mu=9,stdev,conf.level=0.95)

One Sample z-test

data: watermelon

z = 0.41158, n = 10.00000, Std. Dev. = 1.98997, Std.

Dev. of the sample mean = 0.62929, p-value = 0.6806

alternative hypothesis: true mean is not equal to 9

95 percent confidence interval:

8.025623 10.492377

sample estimates:

mean of watermelon = 9.259



Confidence Interval for a proportion - Example

Numerical solution using R for a proportion.
The R command prop.test can be used to construct confidence
intervals for the normal approximation to the binomial.
Let us consider again the election poll example where 53 out of
100 respondents expressed intention to vote for candidate A.

> prop.test(53, 100, conf.level=0.95)

1-sample proportions test with continuity correction

data: 53 out of 100, null probability 0.5

X-squared = 0.25, df = 1, p-value = 0.6171

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.4280225 0.6296465

sample estimates:

p

0.53



Confidence Interval for the difference of two means

The same method can be applied to compute confidence intervals
for the difference of two means

Theorem

Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym be two independent random
samples from two normal distribution N�µX , σX � and N�µY , σY �,
where µX , µY are unknown and σX , σY are known.
Let X̄ and Ȳ be the sample means of X and Y respectively. Then

�X̄ � Ȳ � � zα
2

Ø
σ2
X
n �

σ2
Y
m

is a �1 � α�100% confidence interval for µx � µY .

Note that zα
2
� Φ

�1�1 � α
2
� � qnorm�1 � α

2
�



Confidence Interval for the difference of two means

Theorem

Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym be two independent random
samples from two normal distributions N�µX , σX � and N�µY , σY �,
where µX , µY are unknown and σX , σY are unknown but equal.
Let X̄ , Ȳ be the sample means and S

2
X ,S

2
Y be the sample variances

of X and Y respectively; also let Sp �

×
�n�1�S2

X��m�1�S2
Y

n�m�2
be the

pooled standard deviation. Then

�X̄ � Ȳ � � tα
2
,n�m�2 Sp

×
1
n �

1
m

is a �1 � α�100% confidence interval for µx � µY .

Note that tα
2
,n�m�2 � qt�1 � α

2
, df � n � m � 2�



Confidence Interval for the difference of two means

Theorem

Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym be two independent random
samples from two normal distributions N�µX , σX � and N�µY , σY �,
where µX , µY are unknown and σX , σY are unknown but unequal.
Let X̄ , Ȳ be the sample means and S

2
X ,S

2
Y be the sample variances

of X and Y respectively. Then

�X̄ � Ȳ � � tα
2
,r

Ø
S2
X
n �

S2
Y
m ,

where r �

^̂̂̂̂̂̂̂
\̂ �S2

X

n
�

S
2
Y

m
�2

1
n�1

�S2
X

n
�2� 1

m�1
�S2

Y

m
�2
_________] and ��$ denotes the floor function,

is a �1 � α�100% confidence interval for µx � µY .

Note that tα
2
,r � qt�1 � α

2
, df � r�



Confidence Interval for the difference of two means

Example. To study the genetic stability of a virus strain, two
nucleotide sequences of virus strains from rats isolated in two
different years where compared, yielding the following results:

X � 12, 14, 16, 18, 14, 9, 16, 13

Y � 11, 11, 12, 13, 13, 11, 13, 11, 12, 13

Assuming that the two sets are independent random samples from
normal populations with equal variances, compute a 95%
confidence interval for the difference between the mean number of
substitutions in the nucleotide sequences.



Confidence Interval for the difference of two means

Example. Here is the solution using R:

> x <-c(12,14,16,18,14,9,16,13)

> y <-c(11,11,12,13,13,11,13,11,12,13)

> t.test(x,y,conf.level=0.95,var.equal=TRUE)

Two Sample t-test

data: x and y

t = 2.1419, df = 16, p-value = 0.04793

alternative hypothesis: true difference in means is

not equal to 0

95 percent confidence interval:

0.02055439 3.97944561

sample estimates:

mean of x mean of y

14 12



Confidence Interval for the difference of two means
Example. Here is the solution using R if we assume the variances
to be unequal:

> x <-c(12,14,16,18,14,9,16,13)

> y <-c(11,11,12,13,13,11,13,11,12,13)

> t.test(x,y,conf.level=0.95,var.equal=FALSE)

Welch Two Sample t-test

data: x and y

t = 1.9489, df = 8.2952, p-value = 0.08586

alternative hypothesis: true difference in means is

not equal to 0

95 percent confidence interval:

-0.3519416 4.3519416

sample estimates:

mean of x mean of y

14 12



Confidence Interval for the variance of a normal distribution
Let X1,X2, . . . ,Xn be a random sample from a normal distribution
N�µ, σ2�. Our goal is to find an interval estimator for σ

2
. We

assume that µ is also unknown.

As noted above, the random variable

Y �
�n � 1�S2

σ2
�

1

σ2

n

=
i�1

�Xi � X̄ �2
has a chi-squared distribution with n � 1 degrees of freedom.

We define χ
2
p,n as the real value for which P�Y % χ

2
p,n� � p.



Confidence Interval for the variance of a normal distribution

A �1 � α� interval for Y �
�n�1�S2

σ2 is given by

P�χ2
1�α

2
,n�1 &

�n�1�S2

σ2 & χ
2
α
2
,n�1� � 1 � α

which is equivalent to

P� �n�1�S2

χ2
α
2 ,n�1

& σ
2
&

�n�1�S2

χ2
1�α

2 ,n�1

� � 1 � α

We conclude that � �n�1�S2

χ2
α
2 ,n�1

,
�n�1�S2

χ2
1�α

2 ,n�1

�
is a �1 � α�100% confidence interval for σ

2
.



Confidence Interval for the variance of a normal distribution

Example. A farmer weights 10 randomly chosen watermelons from
his farm and he obtains the following values (in lbs):

7.72, 9.58, 12.38, 7.77, 11.27, 8.80, 11.10, 7.80, 10.17, 6.00

Assuming that the weight is normally distributed, find a 95%
confidence interval for the variance.

Solution. Using the data, we obtain X̄ � 9.26, S
2
� 3.96. Using

the statistical tables or R, we find χ
2
0.025,9 � 19.02, χ

2
0.975,9 � 2.70.

Thus, we obtain the 95% confidence interval for the variance� �9��3.96�
19.02

,
�9��3.96�

2.70
� � �1.87, 13.20�



Confidence Interval for the variance of a normal distribution

Example. Numerical solution using R.

> s2 <- 3.96

> n <- 10

> left <- s2*(n-1)/qchisq(0.975, n-1)

> right <- s2*(n-1)/qchisq(0.025, n-1)

> left

[1] 1.873544

> right

[1] 13.1981

Note: χ
2
0.025,9 � 19.02, χ

2
0.975,9 � 2.70

qchisq(0.025, 9) = 2.700389

qchisq(0.975, 9) = 19.02277

qchisq(0.025, 9,lower.tail = FALSE) = 19.02277

qchisq(0.975, 9,lower.tail = FALSE) = 2.700389



Confidence Interval - Summary Tables

Table: Confidence Interval for the mean

Case Confidence Interval

Xi � N�µ, σ2�, σ known �X̄ � zα
2

σÓ
n
, X̄ � zα

2

σÓ
n
�

n large, σ known �X̄ � zα
2

σÓ
n
, X̄ � zα

2

σÓ
n
�

n large, σ unknown �X̄ � zα
2

SÓ
n
, X̄ � zα

2

SÓ
n
�

Xi � N�µ, σ2�, σ unknown �X̄ � tα
2
,n�1

SÓ
n
, X̄ � tα

2
,n�1

SÓ
n
�

Table: Confidence Interval for the proportion

Case Confidence Interval

Xi � Bernoulli�p�, �X̄ � zα
2

2
Ó
n
, X̄ �

zα
2

2
Ó
n
�

Table: Confidence Interval for the variance

Case Confidence Interval

Xi � N�µ, σ2�, � �n�1�S2

χ2
α
2 ,n�1

,
�n�1�S2

χ2
1�α

2 ,n�1

�



3.3 Hypothesis Testing



Hypothesis Testing

Hypothesis testing is addressing the problem of testing whether a
hypothesis is true or false.

For example, a pharmaceutical company might be interested in
knowing if a new drug is effective in treating a disease. Here, there
are two hypotheses:

H0 � the drug is not effective;

H1 � the drug is effective.

H0 is called the null hypothesis and H1 is called the alternative
hypothesis.
The null hypothesis, H0, is usually referred to as the default
hypothesis, i.e., the hypothesis that is initially assumed to be true.
The alternative hypothesis, H1, is the statement contradictory to
H0.
Based on the observed data, we need to decide either to accept
H0, or to reject it, in which case we say we accept H1.



Hypothesis Testing - Example

Example. You have a coin and you would like to check whether it
is fair or not.
Let p be the probability of heads, p � P�H�. We set up the
following problem:

H0 � the coin is fair, i.e., p � p0 �
1
2
;

H1 � the coin is not fair, i.e., p j 1
2
.

Solution. To check whether the coin is fair or not, we perform the
following experiment. We toss the coin 100 times and record the
number of heads. Let X be the number of heads that we observe,
so X � binom�n � 100, p�
If H0 is true, we expect the number of heads to be close to 50.
Hence we apply the following criteria: for a given threshold t,

if ¶X � 50¶ & t, we accept H0;

if ¶X � 50¶ % t, we reject H0 and accept H1.

How do we choose the threshold t?



Hypothesis Testing - Example

To determine the threshold t, we examine the probability of error.

Type I error: error incurred when we reject H0 while in fact it is
true, that is ¶X � 50¶ % t when H0 is true.

Clearly, we want to control this error, so we want a test for which

P�Type I error� � P�¶X � 50¶ % t¶ H0 is true� $ α,

where α is the significance level (e.g., α � 0.05).

Since we know the distribution of X under H0, i.e.,
X ¶H0 � binom�n � 100, p0 � 0.5�, we should be able to choose t
such that the above condition holds.



Hypothesis Testing - Example
By the Central Limit Theorem, we can approximate the binomial
distribution using the normal distribution when n is large
(np̂, n�1 � p̂� must be larger than 5). That is

Y �
X � np0Ô
np0�1 � p0� � X � 50

5
� N�0, 1�.

Since P�Type I error� � P�¶X � 50¶ % t¶ H0 is true�
� P�¶X � 50¶

5
%

t
5
¶ H0 is true�,

to determine t, we impose

α � P�¶X � 50¶
5

%
t
5
� � 1 � P�¶X � 50¶

5
&

t
5
�

� 1 � P�� t
5
&

X � 50

5
&

t
5
�

� 2 � 2P�X � 50

5
&

t
5
�

� 2 � 2Φ� t
5
�



Hypothesis Testing - Example

Hence, if we set the significance level α � 0.05, we have

2 � 2Φ� t
5
� � 0.05 � Φ� t

5
� � 0.975

�
t
5
� Φ

�1�0.975� � 1.960

� t � 9.8

It follows that

if ¶X � 50¶ & 9.8, we accept H0;

if ¶X � 50¶ % 9.8, we reject H0 and accept H1.

That is, we reject H0 if X ' 59.8 or X & 40.2. Otherwise we do
not reject H0.

Note that failing to reject H0 does snot imply that H0 is true. All
we know is that our data are not statistically contradictory to H0.



Hypothesis Testing - General setting

Suppose that θ is an unknown parameter of a distribution.
Hypothesis testing is a method to decide between two
contradictory hypotheses about θ based on observed data.

There are 4 steps involved.

1. Specify the null and alternative hypotheses.

Letting S " R be the set of possible values for θ, we partition S
into two disjoint sets S0 and S1

H0 � θ " S0;

H1 � θ " S1.



Hypothesis Testing - General setting

2. Compute the test statistic.

To decide between H0 and H1, we look at a function of the
observed data X1,X2, . . . ,Xn (a random sample).

A statistic is a real-valued function W �W �X1,X2, . . . ,Xn� of
the data and a test statistic is a statistic based on which we build
our test.

In our example above, W �
X�np0Ô
np0�1�p0� is a statistic, where X is the

number of observed heads.
The sample mean W � X̄ �

X1�X2�����Xn

n
or W �

X̄�µ
σ©Ón are also

statistics.



Hypothesis Testing - General setting

3. Find the critical value of the test statistic.

We want to determine a set A of values of the test statistic W for
which we would accept H0 (while assuming H0 is true).
A is called the acceptance region and its complement R � A

c
is

the rejection region.

To determine A, we minimize the probability of type I error, i.e.,
the event that we reject H0 when H0 is true:

P�type I error� & α for all θ " S0 �1�
where α is the significance level, typically α � 0.10, 0.05, or 0.01.

Condition (1) identifies a critical value c of the test statistic W .



Hypothesis Testing - General setting

Remark.

In addition to the type I error, there is a type II error corresponding to
the event that we accept H0 when H0 is false. The probability of type II
error is

P�type II error� � β for θ " S1

We would ideally like both α and β to be small. However, there is a

trade-off between α and β. That is, if we want to decrease the

probability of type I error, then the probability of type II error increases,

and vice versa.



Hypothesis Testing - General setting

4. Compare the test statistic to the critical value.

If the test statistic is more extreme in the direction of the
alternative than the critical value, reject the null hypothesis in
favor of the alternative hypothesis.

If the test statistic is less extreme than the critical value, do not
reject the null hypothesis.

The specific form of the comparison between the test statistic to
the critical value depends on the type of problems as we show next.



Hypothesis Testing for the Mean

We assume that we have a random sample X1,X2, . . . ,Xn from a
distribution and our goal is to make inference about the mean of
the distribution µ.

We consider three possible hypothesis testing problems.

Case 1: two-sided test, two-tailed

H0 � µ � µ0;
H1 � µ j µ0;

Case 2: one-sided test, left-tailed

H0 � µ ' µ0;
H1 � µ $ µ0;

Case 3: one-sided test, right-tailed

H0 � µ & µ0;
H1 � µ % µ0;



Hypothesis Testing for the Mean

In all of the three cases, we use the sample mean X̄ �
X1�X2�����Xn

n
to define our statistic.

If we know the variance of the Xi ’s, Var�Xi� � σ
2
, then we define

our test statistic as the normalized sample mean (assuming H0):

W �
X̄ � µ0

σ©Ón �1�
If the variance of the Xi ’s is not known, then we define our test

statistic as:

W �
X̄ � µ0

S©Ón �2�
where S is the sample standard deviation.

Note: in case (1), if Xi is normal, W � N�0, 1�; in case (2), if n is
large, W � N�0, 1�; if Xi is normal and n is small, W � T �n � 1�.



Hypothesis Testing for the Mean

Example (two-sided test)
The average adult male height in a certain country is 170 cm. We
suspect that the men in a certain city in that country might have a
different average height due to some environmental factors. We
pick a random sample of size 9 from the adult males in the city
and obtain the following values for their heights (in cm):

176.2, 157.9, 160.1, 180.9, 165.1, 167.2, 162.9, 155.7, 166.2

Assume that the height distribution in this population is normally
distributed. Based on the observed data, is there enough evidence
to support the hypothesis that the average population height is
different from 170 cm? Assume a significance level α � 0.05.



Hypothesis Testing for the Mean

Example - Solution.
(Step 1) We specify the hypothesis testing problem:

H0 � µ � 170;

H1 � µ j 170;

We need to determine if there enough evidence to reject H0 at
significance level α � 0.05?
From the data, we obtain:

X̄ �

9

=
i�1

Xi � 165.8, S
2
�

1

8

9

=
i�1

�Xi�X̄ �2 � 68.01, S �
Ô
S2 � 8.25.

(Step 2) We compute the test statistic:

W �
X̄ � µ0

S©Ón �
165.8 � 170

8.25©Ó9 � �1.52

W follows a t-distribution with 8 degrees of freedom.



Hypothesis Testing for the Mean
Example - Solution.
(Step 3) To find the critical value c of the test statistic, we impose
P�type I error� $ 0.05. Hence we examine

P�¶W ¶ % c� � 0.05� P�W % c� � 0.025

We find c � t0.025,8 � 2.31.
The rejection region is ¶W ¶ % 2.31,
that is W $ �2.31 or W % 2.31.



Hypothesis Testing for the Mean

Example - Solution.
(Step 4) We compare the critical value c with the test statistic W .

The rejection region is W $ �2.31 or W % 2.31.

Since W � �1.52 % �2.31, W is in the acceptance region and we
cannot reject H0.
That is, data do not support the hypothesis that the average
population height under consideration is different from 170 cm.



Hypothesis Testing for the Mean

Remark. Relation to Confidence Intervals

Let us examine the acceptance region in the last Example.

We found that we accept H0 if

¶ X̄ � µ0

S©Ón ¶ & t0.025,8�� 2.31�
This is equivalent to say that

µ0 " �X̄ � t0.025,8
SÓ
n
, X̄ � t0.025,8

SÓ
n
�

This shows that the acceptance region is exactly the same as the
confidence interval of the mean.

This is true in general for the two-sided hypothesis testing.



Hypothesis Testing for the Mean
Example (left-tailed test). The average tar content (per
cigarette) of a brand of cigarettes is 11.5 mg with σ= 0.6 mg. A
new filter is proposed which is claimed to reduce the average tar
content. We consider a sample of n � 40 randomly selected
cigarettes with the new filter and found that the sample average
tar content is x̄ � 11.4. Is there enough evidence to conclude that
the new filter reduces the tar content? Assume a significance level
α � 0.10.
Solution.
(Step 1) We specify the hypothesis testing problem:

H0 � µ ' 11.5;

H1 � µ $ 11.5;

(Step 2) We compute the test statistic:

W �
X̄ � µ0

σ©Ón �
11.4 � 11.5

0.6©Ó40 � �1.05

W follows a standard normal distribution.



Hypothesis Testing for the Mean

Example - Solution.
(Step 3) To find the critical value c of the test statistic, we impose
P�type I error� $ 0.10. Hence we examine P�W $ �c� � 0.10 We
find �c � �z0.10 � �1.28.

(Step 4) The rejection region is W $ �1.28. Since
W � �1.05 % �1.28, W is in the acceptance region and we cannot
reject H0.



Hypothesis Testing for the Mean

Example (right-tailed test). A soft drink company claims that
the average sodium content of a certain soda is 1.5 g per can with
standard deviation σ � 0.20. From a random sample of 32 cans,
we found that the sample average sodium content is x̄ � 1.6 g. Is
there enough evidence to conclude that the average sodium
content per can is over 1.5g? Assume a significance level α � 0.05.
Solution.
(Step 1) We specify the hypothesis testing problem:

H0 � µ & 1.5;

H1 � µ % 1.5;

(Step 2) We compute the test statistic:

W �
X̄ � µ0

σ©Ón �
1.6 � 1.5

0.2©Ó32 � 2.828

W follows a standard normal distribution.



Hypothesis Testing for the Mean

Example - Solution.
(Step 3) To find the critical value c of the test statistic, we impose
P�type I error� $ 0.05. Hence we examine P�W % c� � 0.05 We
find c � z0.05 � 1.645.

(Step 4) The rejection region is W % 1.645. Since
W � 2.282 % 1.645, W is in the rejection region, hence we reject
H0 and accept H1.



Hypothesis Testing for the Mean - Summary tables
Table: Two-sided hypothesis testing for the mean H1 � µ j µ0

case test statistic rejection region

Xi � N�µ, σ2�, σ known W �
X̄�µ0

σ©Ón ¶W ¶ % zα
2

n large, σ known or unknown W �
X̄�µ0

σ©Ón ¶W ¶ % zα
2

Xi � N�µ, σ2�, σ unknown W �
X̄�µ0

S©Ón ¶W ¶ % tα
2
,n�1

Table: One-sided hypothesis testing for the mean H1 � µ $ µ0

case test statistic rejection region

Xi � N�µ, σ2�, σ known W �
X̄�µ0

σ©Ón W $ �zα

n large, σ known or unknown W �
X̄�µ0

σ©Ón W $ �zα

Xi � N�µ, σ2�, σ unknown W �
X̄�µ0

S©Ón W $ �tα,n�1

Table: One-sided hypothesis testing for the mean H1 � µ % µ0

case test statistic rejection region

Xi � N�µ, σ2�, σ known W �
X̄�µ0

σ©Ón W % zα

n large, σ known or unknown W �
X̄�µ0

σ©Ón W % zα

Xi � N�µ, σ2�, σ unknown W �
X̄�µ0

S©Ón W % tα,n�1



Hypothesis Testing for the proportion

The hypothesis testing for the proportion is carried out very
similarly once we apply the Central limit theorem to approximate
the binomial distribution using the normal distribution.

As we observed in the discussion of the sampling distribution,
given Y � binom�n, p� with µY � np and σ

2
Y � np�1 � p�, if np

and n�1 � p� % 5 we can approximate

Y � N �µ � np, σ
2
� np�1 � p��

or
Y
n � N �µ � p, σ

2
� p�1 � p�©n�



Hypothesis Testing for the proportion

We have collected n Bernoulli trials and found y successes from a
binomial pmf. Our goal to use p̂ � y

n
to make an inference about

the true proportion p.

As in the hypothesis testing for the mean, we have three cases

Case 1: two-sided test, two-tailed Rejection region

H0 � p � p0;
H1 � p j p0; ¶W ¶ % zα

2

Case 2: one-sided test, left-tailed

H0 � p ' p0;
H1 � p $ p0; W $ �zα

Case 3: one-sided test, right-tailed

H0 � p & p0;
H1 � p % p0. W % zα



Hypothesis Testing for the proportion

Example [right-tailed]. We would like to check whether a coin is
fair or biased. We toss the coin 100 times and observe 60 heads. Is
there enough evidence to support the hypothesis that the coin is
biased and that P�head� % 1

2
? Use α � 0.05.

Solution. We set up the upper-tailed hypothesis problem

H0 � p &
1
2
;

H1 � p %
1
2
.

The observed proportion is p̂ � 60
100

� 0.6. Note that
pn � 50, �1 � p�n � 50 % 5 so that we can apply the Central Limit
Theorem. Hence, we apply the test statistic

W �
p̂ � p0Ô

p0�1 � p0�©n � N�0, 1�.
We find that W �

0.6�0.5Ô�0.5��0.5�©100 � 2.

Since W � 2 % z0.05 � 1.645, we reject the null hypothesis.



Hypothesis Testing for the proportion
Example [left-tailed]. Newborn babies are less likely to be girls
than boys. A random sample found 12,295 girls were born among
25,468 newborn children. Is this sample evidence that the birth of
girls is less common than the birth of boys in the entire
population? Use α � 0.001.
Solution. We set up the lower-tailed hypothesis problem

H0 � p '
1
2
;

H1 � p $
1
2
.

The sample proportion of girls was 0.4828. Note that
pn � �1 � p�n � 12734 % 5 so that we can apply the Central Limit
Theorem. Hence, we apply the test statistic

W �
p̂ � p0Ô

p0�1 � p0�©n � 0.4828 � 0.5Ô�0.5��0.5�©25468 � �5.490
Since W � �5.490 $ �z0.001 � �3.090, we reject the null
hypothesis.



Hypothesis Testing for the Mean - Introduction to p-value

Example. We want to test the hypothesis that the average weight
of adult men (above 21 years old) in a certain state is more than
191 pounds. From a random sample data of size n � 100, we find
the sample average weight x̄ � 197.1 lb and s � 25.6 lb. Assume a
significance level α � 0.05.

Solution. We test the hypothesis (right-tailed)

H0 � µ & 191;

H1 � µ % 191;

The test statistic is W �
197.1�191

25.6©Ó100 � 2.38. Since n is large, W

follows a standard normal distribution and z0.05 � 1.645.

According to the table, W � 2.38 is contained in the rejection
region W % 1.645, hence we reject H0 accept the alternative
hypothesis that the average weight is above 191 lb.



Hypothesis Testing for the Mean

In the last problem, we found that the value of the test statistic
W � 2.38 is in the rejection region as it satisfies
W % z0.05 � 1.645.

Hence, we rejected H0 with confidence level α � 0.05

What if we set α � 0.01?
Since W % z0.01 � 2.326, again we can reject H0.

What is the smallest α for which we are able to reject H0?
For that we compute
P�Z % 2.38� � 1 � Φ�2.38� � 1 � 0.99134 � 0.0087.
The last quantity is the p-value of the hypothesis problem.

The smaller the p-value, the more confident we are in rejecting the
null hypothesis.



Hypothesis Testing using p-value

Definition. The p-value is the lowest significance level α that
results in rejecting the null hypothesis.

If the p-value is small, it means that the observed data is very
unlikely to have occurred under H0, so we are more confident in
rejecting the null hypothesis. The smaller the p-value, the more
confident we are in rejecting H0.

To compute p-values:

Let W be the test statistic of a hypothesis testing problem
and w1 be the observed value of W .

The p-value is P�type I error� when the test threshold c is
chosen to be c � w1, under the assumption that H0 is true.



Hypothesis Testing using p-value

In practice, to compute the p-value we first compute w1, the
observed value of W .

Next, if W satisfies a standard normal distribution:

2-sided test: p-value = 2Φ��¶w1¶� � 2 � pnorm��¶w1¶�
1-sided, left-tailed test: p-value = Φ�w1� � pnorm�w1�
1-sided, right-tailed test: p-value = 1 � Φ�w1� � 1 � pnorm�w1�

If W satisfies a t-distribution with n � 1 degrees of freedom (df):

2-sided test: p-value = 2P�T $ �¶w1¶� � 2 � pt��¶w1¶, df�
1-sided, left-tailed test: p-value = P�T $ w1� � pt�w1, df�
1-sided, right-tailed test: p-value = 1�P�T $ w1� � 1 � pt�w1, df�

Recall that Φ is the standard cumulative normal distribution:
Φ�y� � P�Z & y�



Hypothesis Testing - Summary
Hypothesis testing: method to make decisions about the values
of parameters of a distribution, e.g., a mean or a proportion.

1) State the hypothesis.
Three cases:

1 H0 � θ � θ0 versus H1 � θ j θ0 (two-side test)
2 H0 � θ ' θ0 versus H1 � θ $ θ0 (one-side test, lower tail)
3 H0 � θ & θ0 versus H1 � θ % θ0 (one-side test, upper tail)

2) Choose the test statistic.
For the hypothesis testing of the mean, it is

W �
X̄ � µ0

σ©Ón or W �
X̄ � µ0

s©Ón (depending if you have σ or s)

For the hypothesis testing of the proportion, it is

W �
p̂ � p0Ô

p0�1 � p0�©n



Hypothesis Testing - Summary

3) Compute the test statistic and identify the probability model.

a For the hypothesis testing of the mean,

1 if σ is known and data are normal, then W � N�0, 1�
2 if σ is unknown and data are normal, then W � T �n � 1�
3 if n % 30, then W � N�0, 1�.

� If W � N�0, 1�, you apply a ”z-test”, that is, the critical value
(zα©2 or zα or �zα) is computed using the standard normal
distribution.
� If W � T �n � 1�, you apply a ”t-test”, that is, the critical value
(tα©2,n�1 or tα,n�1 or �tα,n�1) is computed using the Student t
distribution.

a For the hypothesis testing of the proportion,
if np % 5 and n�1 � p� % 5, then W � N�0, 1�.



Hypothesis Testing - Summary

4) Compute the p value.
We first compute w1, the observed value of W .

a If W " N�0, 1� and

- 2-sided test: p-value = 2 � pnorm��¶w1¶�
- 1-sided, lower tail: p-value = pnorm�w1�
- 1-sided, upper tail: p-value = 1 � pnorm�w1�

a If W � T �n � 1� and

- 2-sided test: p-value = 2 � pt��¶w1¶, n � 1�
- 1-sided, lower tail: p-value = pt�w1, n � 1�
- 1-sided, upper tail: p-value = 1 � pt�w1, n � 1�

Conclusion:
If p-value $ α, then H0 is rejected. Otherwise, H0 is accepted.



Hypothesis Testing using p-value

Example. The average tar content (per cigarette) of a brand of
cigarettes is 11.5 mg with σ= 0.6 mg. A new filter is proposed
which is claimed to reduce the average tar content. We consider a
sample of n � 40 randomly selected cigarettes with the new filter
and found that the sample average tar content is x̄ � 11.4. Is there
enough evidence to conclude that the new filter reduces the tar
content at significance level α � 0.05?
Solution. We have the left-tailed problem

H0 � µ ' 11.5;

H1 � µ $ 11.5;

We compute the test statistic: W �
X̄�µ0

σ©Ón � 11.4�11.5

0.6©Ó40 � �1.05

Since n % 30, we can assume W � N�0, 1� and we apply a z test.
p-value = P�Z $ �1.05� � pnorm��1.05� � 0.147.

Since p value is larger than α, we cannot reject H0.



Hypothesis Testing using p-value

Example. We want check whether a coin is fair or biased. We toss
the coin 100 times and observe 60 heads. Is there enough evidence
to support the hypothesis that the coin is biased and that
P�head� % 1

2
? Use α � 0.05

Solution. We set up the upper-tailed hypothesis problem

H0 � p &
1
2
;

H1 � p %
1
2
.

The observed proportion is p̂ � 60
100

� 0.6. Note that
pn � 50, �1 � p�n � 50 % 5 so that we can apply the Central Limit
Theorem. Hence, we apply the test statistic

W �
p̂ � p0Ô

p0�1 � p0�©n � N�0, 1�.
We find that W �

0.6�0.5Ô�0.5��0.5�©100 � 2.

Since p-value = 1 � pnorm�2� � 0.023 $ α, then we reject H0.



Hypothesis Testing using R

The commands to perform hypothesis testing in R are

t.test(y, mu = mu0, alternative = "greater",

conf.level = 0.95)

prop.test(x = x0, n = n0, p = pNULL, alternative =

"greater", correct = FALSE)

There are 3 possible alternatives: ”two.sided”, ”less”, or ”greater”
depending on the type of test

There is no built-it command to perform the one-sample z test.
However you can load the library TeachingDemos to use the
command
z.test(y, mu = mu0, stdev, alternative = "greater",

conf.level = 0.95)



Hypothesis Testing for the Mean using R
Example. We want to test the hypothesis that the average weight
of adult men (above 21 years old) in a certain state is more than
191 lb. From a random sample data of size n � 100, we find the
sample average weight x̄ � 197.1 lb and s � 25.6 lb. Set α � 0.01

Since n % 30, we can assume W � N�0, 1� and apply a z test.
# Set the values of sample mean and total sample size

xbar<-197.1

n<-100

# Set mean value under the null hypothesis

mu0<-191

# Set known S

S<-25.6

# Calculate test statistic and p-values

z<-sqrt(n)*(xbar-mu0)/S = 2.382812

# p-value for the right-tailed case

p value righttail=1-pnorm(z)= 0.008590471

Since p-value $ α, then we reject H0.



Hypothesis Testing for the Mean using R

Example. The average adult male height in a country is 170 cm.
We pick a random sample of size 9: 176.2, 157.9, 160.1, 180.9,
165.1, 167.2, 162.9, 155.7, 166.2. Assuming the height is normally
distributed, test the hypothesis that the average height is different
from 170 cm using α � 0.05.

Solution:

Since σ is unknown and data are normal, we will apply a t-test.
Note that n $ 30 in this case, so we are not allowed to apply the
CLT in this case.



Hypothesis Testing for the Mean using R

> y = c(176.2,157.9,160.1,180.9,165.1,167.2,162.9,155.7

,166.2)

> t.test(y, mu = 170, alternative = "two.sided",

conf.level = 0.95)

One Sample t-test

data: y

t = -1.5278, df = 8, p-value = 0.1651

alternative hypothesis: true mean is not equal to 170

95 percent confidence interval:

159.4608 172.1392

sample estimates:

mean of x

165.8

Since p-value % α, then we cannot reject H0.



Hypothesis Testing for the Mean using R
Example. We want to test the hypothesis that the mean systolic
blood pressure in a certain population equals 140 mmHg using
α � 0.01. We can assume that the population is normally
distributed. We collect 55 random samples:
120,115,94,118,111,102,102,131,104,107,115,139,115,113,114,105,
115,134,109,109,93,118,109,106,125,150,142,119,127,141,149,144,
142,149,161,143,140,148,149,141,146,159,152,135,134,161,130,125,
141,148,153,145,137,147,169.

Solution:

Since σ is unknown and data are normal, we will apply a t-test.
Note that n % 30 in this case, so we are also allowed to apply a z-test in
this case.

We start by creating a data vector in R

> x <- c(120,115,94,118,111,102,102,131,104,107,115,139,

115,113,114,105,115,134,109,109,93,118,109,106,125,150,142,

119,127,141,149,144,142,149,161,143,140,148,149,141,146,159,

152,135,134,161,130,125,141,148,153,145,137,147,169)



Hypothesis Testing for the Mean using R

We run a two-sided test:

> t.test(x, mu = 140, alternative = "two.sided",

conf.level = 0.95)

One Sample t-test

data: x

t = -3.8693, df = 54, p-value = 0.0002961

alternative hypothesis: true mean is not equal to

140

95 percent confidence interval:

124.8185 135.1815

sample estimates:

mean of x

130

Since p-value $ α, then we reject H0.



Hypothesis Testing for the Mean using R

If we want to test a one-sided lower-tailed test instead:

> t.test(x, mu = 140, alternative = "less",

conf.level = 0.95)

One Sample t-test

data: x

t = -3.8693, df = 54, p-value = 0.0001481

alternative hypothesis: true mean is less than 140

95 percent confidence interval:

-Inf 134.3253

sample estimates:

mean of x

130

Again, since p-value $ α, then we reject H0.



Hypothesis Testing for the Mean using R

Suppose we know the standard deviation to be σ � 20.
In this case, we need to run a z test.

# Calculate sample mean and total sample size

xbar<-mean(x)

n<-55

# Set mean value under the null hypothesis

mu0<-140

# Set known sigma

sigma<-20

# Calculate test statistic and p-values

z<-sqrt(n)*(xbar-mu0)/sigma = -3.708099
p value 2tail=2*pnorm(-abs(z)) = 0.0002088208
p value lefttail=pnorm(z) = 0.0001044104

Again, since p-value $ α, then we reject H0.



Hypothesis Testing for the Mean using R
We can solve the last problem using z.test from the library
TeachingDemos

> library(TeachingDemos)

> stdev=20

> z.test(x, mu = 140, stdev,alternative = "less",

conf.level = 0.95)

One Sample z-test

data: x

z = -3.7081, n = 55.0000, Std. Dev. = 20.0000, Std.

Dev. of the sample

mean = 2.6968, p-value = 0.0001044

alternative hypothesis: true mean is less than 140

95 percent confidence interval:

-Inf 134.4358

sample estimates:

mean of x

130



Hypothesis Testing for the proportion using R
Example. We would like to check whether a coin is fair or biased.
We toss the coin 100 times and observe 60 heads. Is there enough
evidence to support the hypothesis that the coin is biased and that
P�head� % 1

2
(use α � 0.05)?

> prop.test(x = 60, n = 100, p = 0.5, , alternative =

"greater", correct = FALSE)

1-sample proportions test without continuity correction

data: 60 out of 100, null probability 0.5

X-squared = 4, df = 1, p-value = 0.02275

alternative hypothesis: true p is greater than 0.5

95 percent confidence interval:

0.5178095 1.0000000

sample estimates:

p

0.6

Since p-value $ α, then we reject H0.



Hypothesis Testing: Power of the test

Consider an hypothesis testing problem where the p-value
computed from the data was 0.12. As a result, one would fail to
reject the null hypothesis because 0.12 % 0.05.
However, there still exist two possible cases for which we failed to
reject the null hypothesis H0:

1 H0 is a reasonable conclusion;

2 the sample size is not large enough to either accept or reject
H0, i.e., additional samples might provide additional evidence.

Power analysis is a procedure to determine if the test contains
enough power to make a reasonable conclusion.

The power of a hypothesis test is the probability that the test
rejects the null hypothesis H0 when a specific alternative
hypothesis H1 is true - i.e., it indicates the probability of avoiding a
type II error. Power = 1- P(type II error) = 1 � β.
Recall: the type II error corresponds to the event that we accept
H0 when H0 is false and H1 is true.



Hypothesis Testing: Power of the test

Example. Let X denote the height of a randomly selected UH
student. Assume that X is normally distributed with unknown
mean and standard deviation σ � 9.
We collect a random sample of n � 25 students, so that, after
setting the probability of committing a Type I error at α � 0.05,
we can test the hypothesis testing problem

H0 � µ � 170;

H1 � µ % 170.

What is the power of the hypothesis test if the true population
mean were µ � 175?



Hypothesis Testing: Power of the test
The 90% confidence interval of the mean about x̄ � 170 is

170 � 1.645
9Ó
25
� 170 � 2.961

So, we should reject H0 when the observed sample mean is larger
or equal than 172.961.
Power of the test

P�x̄ % 172.961¶µ � 175� � P�Z '
172.961 � 175

9©Ó5 � � 0.8713

We have a 87.13% chance of rejecting H0 in favor of H1 if the true
unknown population mean is µ � 175.



Hypothesis Testing: Power of the test

If the sample size is fixed, as shown by the plot, decreasing Type I
error will increase Type II error.
To decrease both errors, then one has to increase the sample size.

To calculate the smallest sample size needed for specified α, β, µ1,
(µ1 is the likely value of at which you want to evaluate the power)
then we choose

One-tailed test: n �
σ
2�zα � zβ�2�µ0 � µ1�2

Two-tailed test: n �
σ
2�zα©2 � zβ�2�µ0 � µ1�2



Hypothesis Testing: Power of the test

Example. Let X denote the height of a randomly selected UH
student. Assume that X is normally distributed with unknown
mean and standard deviation σ � 9. We are interested in solving at
significance level α � 0.05 the hypothesis testing problem

H0 � µ � 170;

H1 � µ % 170.

Find the sample size n that is necessary to achieve 0.90 power at
the alternative µ1 � 175.

In this case, zα � z0.05 � 1.645, zβ � z0.10 � 1.28. Then

n �
9
2�1.645 � 1.28�2�170 � 175�2 � 27.72

Hence we need to choose n � 28 to achieve the desired level of α
and β when we choose µ1 � 175 as alternative value of µ.



Hypothesis Testing: Power of the test

We now compute the critical value C for the test, and state an
appropriate decision rule. To find C , we may substitute known
numerical values into either

C � 170 � 1.645
9Ó
28
� 172.798

or

C � 175 � 1.280
9Ó
28
� 172.823

The difference is due to rounding error.

The new decision rule is now as follows. Select a sample of size
n � 28 and compute X̄ . If X̄ ' 172.798, then H0 is rejected. If
X̄ $ 172.798, we do not reject H0.



Hypothesis Testing: Two sample means

In many hypothesis testing problems, one wants to compare two
treatments or populations and determine if there is a difference.

It is important to be able to distinguish between an independent
sample or a dependent sample.

Independent sample. The samples from two populations are
independent if the samples selected from one of the populations
have no relationship with the samples selected from the other
population.

Dependent sample. The samples are dependent (also called
paired data) if each measurement in one sample is matched or
paired with a particular measurement in the other sample. Another
way to consider this is how many measurements are taken off of
each subject. If only one measurement, then independent; if two
measurements, then paired.



Hypothesis Testing: Two sample means

The following are examples to illustrate the two types of samples.

Example: Gas Mileage. We want to compare the gas mileage of
two brands of gasoline.
Independent samples: Randomly assign 12 cars to use Brand A
and another 12 cars to use Brand B.
Dependent samples: Using 12 cars, have each car use Brand A and
Brand B. Compare the differences in mileage for each car.

Example: Soft drink comparison. We want to compare whether
people give a higher taste rating to Coke or Pepsi. To avoid a
possible psychological effect, the subjects should taste the drinks
blind (i.e., they don’t know the identity of the drink)
Independent samples: Randomly assign half of the subjects to
taste Coke and the other half to taste Pepsi.
Dependent samples: Allow each subject to rate both Coke and
Pepsi with the drinks given in random order. The same subject’s
ratings of the Coke and the Pepsi form a paired data set.



Hypothesis Testing: Two sample means (independent)
We assume that we have 2 independent random samples
X1, . . . ,Xn1 from a distribution with mean µ1 and variance σ

2
1 and

Y1, . . . ,Yn2 from a distribution with mean µ2 and variance σ
2
2.

Our goal is to make inference about the mean of the distributions
µ1 and µ2.

We consider three possible hypothesis testing problems.

Case 1: two-sided test, two-tailed

H0 � µ1 � µ2;
H1 � µ1 j µ2;

Case 2: one-sided test, left-tailed

H0 � µ1 ' µ2;
H1 � µ1 $ µ2;

Case 3: one-sided test, right-tailed

H0 � µ1 & µ2;
H1 � µ1 % µ2;



Hypothesis Testing: Two sample means (independent)

To solve the hypothesis testing problem, we proceed as in the
one-sample case by introducing a test statistic.
If n1, n2 are large (above 30), by the central limit theorem we have
that

X̄ � N�µ1,
σ
2
1

n1
�, Ȳ � N�µ2,

σ
2
2

n2
�

The statement above also holds for any n1, n2 if the samples are
taken from normal distributions.
We define the test statistic as

W �
X̄ � Ȳ×
σ2
1

n1
�

σ2
2

n2

Under the null hypothesis that µ1 � µ2, we have that W � N�0, 1�
Note: if σ1 and σ2 are unknown, they can be replaced by their
estimates s1 and s2.



Hypothesis Testing: Two sample means (independent)

Once we have computed the value of test statistic W , we can
apply the z-test method as in the one-sample case.

Case 1: H0 � µ1 � µ2; H1 � µ1 j µ2

Reject H0 if ¶W ¶ % zα
2

Case 2: H0 � µ1 ' µ2; H1 � µ1 $ µ2

Reject H0 if W $ �zα

Case 3: H0 � µ1 & µ2; H1 � µ1 % µ2

Reject H0 if W % zα



Hypothesis Testing: Two sample means (independent)

Example. We want to compare the Systolic Blood Pressure in two
random samples of adult men and adult women:

n1 � 1, 623, X̄ � 128.2, S1 � 17.5; n2 � 1, 911, Ȳ � 126.5,S2 � 20.1

Use α � 0.05.
We test the hypothesis

H0 � µ1 � µ2;

H1 � µ1 j µ2;

Test statistic

W �
128.2 � 126.5Ö

17.52

1622
�

20.12

1910

� 2.688

Since W % z0.025 � 1.960, we reject H0.

Also, p-value = 2Φ��2.688� � 0.00718814



Hypothesis Testing: Two sample means
If the sample size is small, we cannot apply the central limit
theorem.
In this case, under the assumptions that the two populations are
normally distributed, we introduce the test statistic

W �
X̄ � Ȳ

sp
Ö

1
n1
�

1
n2

where sp is the pooled standard deviation

sp �

Ø
s21�n1 � 1� � s22�n2 � 1�

n1 � n2 � 2

and W obeys a t-distribution with n1 � n2 � 2 degrees of freedom.

When the sample sizes are small, the sample variances may not be
that accurate and one gets a better estimate by pooling the data
from both populations.



Hypothesis Testing: Two sample means (independent)

In this case, we apply the t-test method as in the one-sample case.

Case 1: H0 � µ1 � µ2; H1 � µ1 j µ2

Reject H0 if ¶W ¶ % tα
2
,n1�n2�2

Case 2: H0 � µ1 ' µ2; H1 � µ1 $ µ2

Reject H0 if W $ �tα,n1�n2�2

Case 3: H0 � µ1 & µ2; H1 � µ1 % µ2

Reject H0 if W % tα,n1�n2�2



Hypothesis Testing: Two sample means

Example. A new drug is proposed to lower total cholesterol. A
randomized controlled trial is designed to evaluate the efficacy of
the medication in lowering cholesterol. Thirty participants are
enrolled in the trial and are randomly assigned (without knowing)
to receive either the new drug or a placebo. Each participant is
asked to take the assigned treatment for 6 weeks. At the end of 6
weeks, each patient’s total cholesterol level is measured and the
sample statistics are as follows.

New Drug n1 � 15, x̄ � 195.9, s1 � 28.7

Placebo n2 � 15, ȳ � 227.4, s2 � 30.3

We set up hypotheses: H0 � µ1 � µ2; H1 � µ1 $ µ2. Set α � 0.05
We compute sp � 29.5 and W �

195.9�227.4

29.5
Ö

1
15
�

1
15

� �2.92

We find that W � �2.92 $ �1.701 � �t0.05,28 (-qt(0.95,28))
Thus we reject H0 and accept H1.
p-value = P�W $ �2.92� � 0.0034 (pt(-2.92,28))



Hypothesis Testing: Two sample means

Solution using R.

t.test(x, y, alternative = "two.sided", paired =

FALSE, var.equal = FALSE, conf.level = 0.95)

alternative: it specifies the alternative hypothesis, must be one
of ”two.sided” (default), ”greater” or ”less”.

paired: a logical indicating whether you want a paired t-test or
not. If paired = FALSE, the two samples are assumed to be
independent

var.equal: a logical variable indicating whether to treat the two
variances as being equal. If TRUE then the pooled variance is used
to estimate the variance otherwise the Welch approximation to the
degrees of freedom is used

conf.level: confidence level of the interval.



Hypothesis Testing: Two sample means

Example. Two rubber compounds were tested for tensile strength
and the following values were found

x �32; 30; 33; 32; 29; 34; 32

y �33; 35; 36; 37; 35

Under the assumption that the data are drawn from normal
distributions, test the hypothesis that the average tensile strength
of the two rubber compounds is different.
We test the hypothesis

H0 � µx � µy ;

H1 � µx j µy .



Hypothesis Testing: Two sample means
Assume same variance.
> x <- c(32, 30, 33, 32, 29, 34, 32)

> y <- c(33, 35, 36, 37, 35)

> t.test(x,y,alternative = "two.sided", paired = FALSE,

var.equal = TRUE, conf.level = 0.95)

Two Sample t-test

data: x and y

t = -3.6758, df = 10, p-value = 0.004276

alternative hypothesis: true difference in means is not

equal to 0

95 percent confidence interval:

-5.598649 -1.372779

sample estimates:

mean of x mean of y

31.71429 35.20000



Hypothesis Testing: Two sample means
Assume different variance.
> x <- c(32, 30, 33, 32, 29, 34, 32)

> y <- c(33, 35, 36, 37, 35)

> t.test(x,y,alternative = "two.sided", paired = FALSE,

var.equal = FALSE, conf.level = 0.95)

Welch Two Sample t-test

data: x and y

t = -3.7698, df = 9.4808, p-value = 0.004025

alternative hypothesis: true difference in means is not

equal to 0

95 percent confidence interval:

-5.561344 -1.410084

sample estimates:

mean of x mean of y

31.71429 35.20000



Hypothesis Testing: Two sample means
Assume same variance. H1 � µx $ µy
> x <- c(32, 30, 33, 32, 29, 34, 32)

> y <- c(33, 35, 36, 37, 35)

> t.test(x,y,alternative = "less", paired = FALSE,

var.equal = TRUE, conf.level = 0.95)

Two Sample t-test

data: x and y

t = -3.6758, df = 10, p-value = 0.002138

alternative hypothesis: true difference in means is less

than 0

95 percent confidence interval:

-Inf -1.766965

sample estimates:

mean of x mean of y

31.71429 35.20000



Hypothesis Testing: Paired-sample t test

A paired t-test is used to compare two population means where
you have two samples of the same size in which observations in
one sample can be paired with observations in the other sample.

Examples of where this might occur are: Before-and-after

observations on the same subjects, such as a medical evaluation or
the performance of a student/worker before and after taking a
course.

In a typical experiment, we select a random sample consisting of n
pairs of observations �X1,Y1�, . . . , �Xn,Yn�, where each
observation �Xi ,Yi� is a pair and the variables Xi ,Yi are not
independent.

We definee the differences Di � Xi � Yi , i � 1, . . . , n. The random
variables D1, . . . ,Dn are a random sample of size n from a
distribution with mean µ1 � µ2 and variance σ

2
D .



Hypothesis Testing: Paired-sample t test

Under the assumption that the distribution of the variable Di is
normal, we define the test statistic

W �
D̄

SD©Ón ,
where D̄ is the sample mean 1

n
<n

i�1Di and S
2
D is the sample

variance. W satisfies a t-distribution with n� 1 degrees of freedom

We solve hypothesis testing problems about paired samples as we
did in the case of independent samples:

Case 1: H0 � µ1 � µ2; H1 � µ1 j µ2

Reject H0 if ¶W ¶ % tα
2
,n�1

Case 2: H0 � µ1 ' µ2; H1 � µ1 $ µ2

Reject H0 if W $ �tα,n�1

Case 3: H0 � µ1 & µ2; H1 � µ1 % µ2

Reject H0 if W % tα,n�1



Hypothesis Testing: Paired-sample t test

Example. 10 randomly selected students in an engineering class
are tested about their knowledge on basic statistical concepts
before and after attending a course in statistics. Knowledge is
measured based on a scale �0, 100� and the experiment results in
the following data:
Before x � 43, 82, 77, 39, 51, 66, 55, 61, 79, 43
After y � 51, 84, 74, 48, 53, 61, 59, 75, 82, 48
We want to test H0 � µx ' µy vs H1 � µx $ µy at significance level
α � 0.05.

Solution. We have d̄ � x̄ � ȳ � �3.9, s
2
d � 31.21.

We compute the test statistic W �
3.9Ô

31.21©10 � �2.21
Since W � �2.21 $ �t�0.05, 9� � �1.833, we reject H0.



Hypothesis Testing: Paired-sample t test

Here is the solution using R

> x <- c(43, 82, 77, 39, 51, 66, 55, 61, 79, 43)

> y <- c(51, 84, 74, 48, 53, 61, 59, 75, 82, 48)

> t.test(x,y,alternative = "less", paired = TRUE,

var.equal = TRUE, conf.level = 0.95)

Paired t-test

data: x and y

t = -2.2075, df = 9, p-value = 0.02733

alternative hypothesis: true difference in means is

less than 0

95 percent confidence interval:

-Inf -0.6615005

sample estimates:

mean of the differences

-3.9



Hypothesis Testing: two independent samples, proportions

Here we consider the situation where there are two independent
comparison groups and the outcome of interest is binary, e.g.,
success/failure.

The goal of the analysis is to compare proportions of successes
between the two groups.
The relevant sample data are the sample sizes in each comparison
group (n1 and n2) and the sample proportions (p̂1 and p̂2) which
are computed by taking the ratios of the numbers of successes to
the sample sizes in each group

p̂1 �
X1

n1
, p̂2 �

X2

n2



Hypothesis Testing: two independent samples, proportions

If the sample size is sufficiently large, the binomial random variables
X1 and X2 can be approximated by normal random variables and
p̂i �

Xi

ni
are approximately N�pi , pi�1 � pi�©ni�, i � 1, 2.

It follows that

Z �
p̂1 � p̂2Ö

p1�1�p1�
n1

�
p2�1�p2�

n2

follows approximately a N�0, 1� distribution.
Since p1, p2 are unknown, we replace then with the sample
proportions. If the null hypothesis is H0 � p1 � p2 � p, we replace
the common p by the pooled value p̂ � X1�X2

n1�n2
. Hence we define

the test statistic

W �
p̂1 � p̂2Ö

p̂�1 � p̂�� 1
n1
�

1
n2
�

Hypothesis testing is then carried out using the usual z test.



Hypothesis Testing: two independent samples, proportions

Example: A randomized trial is designed to evaluate the
effectiveness of a newly developed pain reliever. The trial compares
the new pain reliever to the pain reliever currently in use. A total
of 100 patients agreed to participate in the trial. Patients were
randomly assigned to receive either the new pain reliever or the
standard pain reliever following a medical procedure and were blind
to the treatment assignment. Before receiving the assigned
treatment, patients were asked to rate their pain on a scale of 0-10
with higher scores indicative of more pain. Each patient was then
given the assigned treatment and after 30 minutes was again asked
to rate their pain on the same scale. We counted the number of
patients indicating a pain reduction of 3+ points:
New Pain Reliever: n1 � 50, x1 � 23
Old Pain Reliever: n2 � 50, x2 � 11
Is there a statistically significant difference in the proportions of
patients reporting a meaningful pain reduction? Use α � 0.05



Hypothesis Testing: two independent samples, proportions

We test the hypothesis

H0 � p1 � p2;

H1 � p1 j p2.

From the data, we compute p̂1 � 0.46, p̂2 � 0.22 and
p̂ � X1�X2

n1�n2
�

34
100

� 0.34

To apply the central limit theorem, we check that the sample size
is adequate, i.e., min�n1p̂1, n1�1 � p̂1�, n2p̂2, n2�1 � p̂2�� ' 5.
In this example, we have min(50(0.46), 50(1-0.46), 50(0.22),
50(1-0.22)) = min(23, 27, 11, 39) = 11.
Sample size is adequate so the following formula can be used

W �
0.46�0.22Ö

0.34�1�0.34�� 1
50
�

1
50
� � 2.533

Since W � 2.533 % z0.025 � 1.960, we reject H0.
p-value = 2*(1-pnorm(2.533)) = 0.0113091



Hypothesis Testing: two independent samples, proportions

Solution using R

> prop.test(x=c(23,11),n=c(50,50),alternative =

"two.sided",conf.level = 0.95, correct = FALSE)

2-sample test for equality of proportions without

continuity correction

data: c(23, 11) out of c(50, 50)

X-squared = 6.4171, df = 1, p-value = 0.0113

alternative hypothesis: two.sided

95 percent confidence interval:

0.06036633 0.41963367

sample estimates:

prop 1 prop 2

0.46 0.22



Test for normality

As we observed above, many statistical tests require that the data
follow a normal distribution or the result of the test will not be
meaningful.

There are four commonly used methods to test that the data
follow a normal distribution:

1 Histogram (visual)

2 Q-Q plot (visual)

3 Shapiro-Wilk Test

4 Kolmogorov-Smirnov Test



Histogram plot
Histogram are useful to approximate probability density functions.

A visual inspection can separate a dataset that is normally
distributed (hence, bell-shaped) from a dataset that is not.

# generate a normally distributed dataset

set.seed(1)

dataset1 <- rnorm(100)

# generate an exponentially distributed dataset

dataset2 <- rexp(100, rate=3)

hist(dataset1, col=’steelblue’, main=’Normal’)

hist(dataset2, col=’steelblue’, main=’Exponential’)



Q-Q plot

A Q-Q (quantile-quantile) plot is a plot of the quantiles of two
distributions against each other.
If the two distributions being compared are similar, the points in
the Q–Q plot will approximately lie on the line y � x . As a result,
the pattern of points in the plot is useful to compare the two
distributions.
A Q–Q plot is generally a more powerful approach to compare
distributions than the comparison of the histograms of two
samples.



Q-Q plot
Here we use R to generate the normal Q-Q plots comparing the
dataset generated above to a standard normal population.

# create Q-Q plot for both datasets

qqnorm(dataset1, main=’Normal’)

qqline(dataset1)

qqnorm(dataset2, main=’Exponential’)

qqline(dataset2)



Statistical Tests for normality

The two most common normality tests are the Shapiro-Wilk test
and the Kolmogorov-Smirnov test.
Both tests address the same hypotheses, that is:

H0 � the data follow a normal distribution

H1 � the data do not follow a normal distribution

p-value % 0.05 implies that we do not reject the null hypothesis so
that the data follow a normal distribution.

Shapiro-Wilk test is recommended for normality test as it provides
better power than Kolmogorov-Smirnov test.



Shapiro-Wilk Test

In R, the Shapiro-Wilk test is implemented with the command
shapiro.test

shapiro.test(dataset1)

Shapiro-Wilk normality test

data: dataset1

W = 0.9956, p-value = 0.9876

According to the test, since the p value is above 0.05 then the
data is normally distributed.



Shapiro-Wilk Test

shapiro.test(dataset2)

Shapiro-Wilk normality test

data: dataset2

W = 0.91505, p-value = 7.759e-06

According to the test, since the p value is less than 0.05 then the
data is not normally distributed.



Kolmogorov-Smirnov Test

In R, the Kolmogorov-Smirnov test is implemented with the
command ks.test

ks.test(dataset1,’pnorm’)

One-sample Kolmogorov-Smirnov test

data: dataset1

D = 0.094659, p-value = 0.3317

alternative hypothesis: two-sided

According to the test, since the p value is above 0.05 then the
data is normally distributed.



Kolmogorov-Smirnov Test

ks.test(dataset2,’pnorm’)

One-sample Kolmogorov-Smirnov test

data: dataset2

D = 0.50269, p-value < 2.2e-16

alternative hypothesis: two-sided

According to the test, since the p value is less than 0.05 then the
data is not normally distributed.

Note that the Kolmogorov-Smirnov test is not specific for the
normal distribution but can be used more generally to decide if a
sample comes from a population with any specific distribution.
This explains the presence of parameter ’pnorm’ in the R
command ks.test.



Statistical Tests for normality

Remark. Normality tests are often considered as too conservative
in the sense that for large sample size (n % 50), a small deviation
from the normality may cause the normality condition to be
violated.
Since a normality test is a hypothesis test, as the sample size
increases their capacity of detecting smaller differences increases.
So as the number of observations increases, the Shapiro-Wilk and
the Kolmogorov-Smirnov tests become very sensitive even to a
small deviation from normality. As a consequence, the normality
test might indicate that data do not follow a normal distribution
although the departures from the normal distribution is negligible.
For this reason, it is often the case that the normality condition is
verified based on a combination of multiple methods including
visual inspections (with histograms and QQ-plots) and a formal
inspection (with the Shapiro-Wilk test for instance).
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