Covariance and correlation matrices
Covariance and Correlation

The **covariance** of two random variables X and Y is

$$\sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$

and their **correlation coefficient** is

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$
Given a sample consisting of pairs \(\{(x_i, y_i) : i = 1, \ldots, n\} \), the Pearson's correlation coefficient is

\[
r_{xy} = \frac{s_{xy}}{s_x s_y}
\]

where

\[
s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})
\]

\[
s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
\]

\[
s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2
\]
Covariance and Correlation

For random variables X and Y, ρ_{XY} measures linear dependence between X and Y. ρ_{XY} is bounded:

$$-1 \leq \rho_{XY} \leq 1$$

- $\rho_{XY} = -1$ implies perfect negative linear relationship
- $\rho_{XY} = 1$ implies perfect positive linear relationship
- $\rho_{XY} = 0$ implies no linear relationship

NOTE: Correlation does not imply causation, not independence ($\rho_{XY} = 0$ does not imply that X and Y are independent).
Covariance and Correlation

Property: ρ_{XY} is unaffected by linear transformations.

Suppose that $X' = aX + b$ and $Y' = cY + d$. Then

- $\rho_{X'Y'} = \rho_{XY}$ if $\text{sgn}(a) = \text{sgn}(c)$
- $\rho_{X'Y'} = -\rho_{XY}$ if $\text{sgn}(a) \neq \text{sgn}(c)$

This property can be proved directly using the definition of correlation.
Several sets of points with the corresponding Pearson correlation coefficient r_{xy}.

- r_{xy} reflects noisiness and direction of linear relationship (top row)
- it does not measure the slope of the relationship (middle row)
- it does not capture many aspects of nonlinear relationships (bottom row)
Example. The following survey reports several measurements collected by 5 instructors for students in their classes related to their nutrition education program. We want to explore the relationship between Sodium and Calories.

Data <- read.csv("C:/Users/student_survey.csv")

> head(Data)

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Grade</th>
<th>Weight</th>
<th>Calories</th>
<th>Sodium</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrendonSmall</td>
<td>6</td>
<td>43</td>
<td>2069</td>
<td>1287</td>
<td>77</td>
</tr>
<tr>
<td>BrendonSmall</td>
<td>6</td>
<td>41</td>
<td>1990</td>
<td>1164</td>
<td>76</td>
</tr>
<tr>
<td>BrendonSmall</td>
<td>6</td>
<td>40</td>
<td>1975</td>
<td>1177</td>
<td>76</td>
</tr>
<tr>
<td>BrendonSmall</td>
<td>6</td>
<td>44</td>
<td>2116</td>
<td>1262</td>
<td>84</td>
</tr>
<tr>
<td>BrendonSmall</td>
<td>6</td>
<td>45</td>
<td>2161</td>
<td>1271</td>
<td>86</td>
</tr>
<tr>
<td>BrendonSmall</td>
<td>6</td>
<td>44</td>
<td>2091</td>
<td>1222</td>
<td>87</td>
</tr>
</tbody>
</table>

...
Correlation - example

Here is the plot of the data showing the relationship between Calories (y) and Sodium (x).

```r
> plot(Calories ~ Sodium, data=Data, pch=16, ylab = "Calories", xlab = "Sodium")
```
Correlation - example

Compute correlation in R

Correlation coefficient can be computed using the functions cor() or cor.test()

- cor() computes the correlation coefficient
- cor.test() tests for association/correlation between paired samples. It returns both the correlation coefficient and the significance level (or p-value) of the correlation.

Commands formats are:

- cor(x, y, method = c("pearson", "kendall", "spearman"))
- cor.test(x, y, method=c("pearson", "kendall", "spearman"))
The Pearson’s correlation coefficient is a measure of linear association. The significance test works under the assumption that \(x \) and \(y \) are sampled from a bivariate normal distribution.

```r
> cor(Data$Sodium, Data$Calories, method = "pearson")
[1] 0.8489548
```

The Kendall and Spearman correlation coefficients are rank-based measure of association. This may be used if the data do not necessarily come from a bivariate normal distribution.

```r
> cor(Data$Sodium, Data$Calories, method = "kendall")
[1] 0.6490902

> cor(Data$Sodium, Data$Calories, method = "spearman")
[1] 0.8201766
```
Correlation - example

Correlation is very sensitive to outliers.

Here we modify a single point in the dataset
Here are the re-computed correlation coefficients; in parenthesis is the value we calculated above.

```r
> cor(Data2$Sodium,Data$Calories, method = "pearson")
[1] 0.6866076 (0.8489548)

> cor(Data2$Sodium,Data$Calories, method = "kendall")
[1] 0.5699824 (0.6490902)

> cor(Data2$Sodium,Data$Calories, method = "spearman")
[1] 0.7088825 (0.8201766)
```
Correlation - example

We want to test if there is a linear relationship between Calories \((Y)\) and Sodium \((X)\) at significance level \(\alpha = 0.01\).

Hypothesis testing problem:

\[
\begin{align*}
H_0 & : \quad \rho_{X,Y} = 0 \\
H_1 & : \quad \rho_{X,Y} \neq 0
\end{align*}
\]

If \((X, Y)\) follows a bivariate normal distribution with \(\rho_{X,Y} = 0\) and if the samples \(\{(x_i, y_i) : i = 1, \ldots n\}\) are i.i.d., then

\[
T = \frac{r_{xy}\sqrt{n-2}}{\sqrt{1 - r_{xy}^2}} \sim t_{n-2}
\]

Hence, we can reject \(H_0\) if \(|T| > t_{\alpha/2;n-2}\) where, as usual, \(t_{\alpha/2;n-2}\) is the critical value of the \(t\) distribution such that \(P(T \geq t_{\alpha/2;n-2}) > \alpha/2\).
Correlation - example

Under the assumption above, we can apply the Pearson’s correlation analysis

> cor.test(Data$Sodium, Data$Calories, method = "pearson")

Pearson’s product-moment correlation

data: Data$Sodium and Data$Calories
t = 10.534, df = 43, p-value = 1.737e-13
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.7397691 0.9145785
sample estimates:
cor
0.8489548

Since p-value = 1.737e-13, we reject the null hypothesis at significance level $\alpha = 0.01$ (or any other value above the p-value) and accept the alternative hypothesis that $\rho_{X,Y} \neq 0$.
Correlation - example

If the assumption that data come from a normal distribution cannot be satisfied, we can apply the **Spearman’s rho statistic** that estimates a rank-based measure of association.

```r
> cor.test(Data$Sodium, Data$Calories, method = "spearman")
```

Spearman's rank correlation rho

data: Data$Sodium and Data$Calories
S = 2729.7, p-value = 5.443e-12
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.8201766

Since p-value = 5.443e-12, we reject the null hypothesis at significance level \(\alpha = 0.01 \) (or any other value above the p-value) and accept the alternative hypothesis that \(\rho_{X,Y} \neq 0 \).
Non-parametric correlation

Spearman’s rho statistic measures a rank-based measure of association.

This test may be used if the data do not come from a bivariate normal distribution. It only requires that each variable at least be measured on the ordinal scale.

Spearman’s correlation determines the strength and direction of the monotonic relationship between your two variables rather than the strength and direction of the linear relationship between your two variables, which is what Pearson’s correlation determines.

Monotonicity is less restrictive than a linear relationship.

A monotonic relationship is a relationship that does one of the following: (1) as the value of one variable increases, so does the value of the other variable; or (2) as the value of one variable increases, the other variable value decreases.
Correlation test

If we want to test the more general hypothesis testing problem

\[H_0 : \quad \rho_{X,Y} = \rho_0 \]
\[H_1 : \quad \rho_{X,Y} \neq \rho_0 , \]

with \(\rho_0 \neq 0 \), the mathematical setting becomes more complicated since - still under the assumption that \((X, Y)\) follows a bivariate normal distribution and that the samples \(\{(x_i, y_i) : i = 1, \ldots n\} \) are i.i.d. - the formulation of the test statistic becomes more involved and can be solved using the Fisher’s z-transformation.
Correlation test - example

Example: we test \(H_0 : \rho_{X,Y} = 0.7 \) vs \(H_1 : \rho_{X,Y} \neq 0.7 \), with

We define the fisherz function

\[
\text{fisherz}=\text{function}(r,n,\text{rho0}=0)\{
+ z=\log((1+r)/(1-r))/2 \\
+ z0=\log((1+\text{rho0})/(1-\text{rho0}))/2 \\
+ zstar=(z-z0)\sqrt{n-3} \\
+ \text{pval}=2*(1-\text{pnorm(abs(zstar)))} \\
+ \text{list(pval=pval)}
\}
\]

In our example, setting \(n = 45 \) and \(\rho_0 = 0.7 \), we compute

\[
> \text{fisherz(corr(Data}\$\text{Sodium,Data}\$\text{Calories),45,rho0=0.7)}
\]

\[
pval = 0.01257023
\]
Data matrix

In applications, it may be useful to compute correlations for several pairs of variables.

Suppose we have a \(n \times p \) data matrix

\[
X = \begin{pmatrix}
x_{11} & x_{12} & \ldots & x_{1p} \\
x_{21} & x_{22} & \ldots & x_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \ldots & x_{np}
\end{pmatrix}
\]

- \(n \) items/subjects are listed as rows
- \(p \) variables are listed as columns
Example: mtcars (Motor Trend Car Road Tests)

The R data set mtcars was extracted from the 1974 Motor Trend magazine, and comprises fuel consumption and 10 aspects of car design and performance for 32 automobiles models from 1973-74.

Data frame consists of 32 observations on 11 variables.

[,1] mpg Miles/gallon
[,2] cyl Number of cylinders
[,3] disp Displacement (cu.in.)
[,4] hp Gross horsepower
[,5] drat Rear axle ratio
[,6] wt Weight (lbs/1000)
[,7] qsec 1/4 mile time
[,8] vs Engine (0 = V-shaped, 1 = straight)
[,9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburetors
We load the dataset. As remarked above, it consists of 32 observations of 11 variables.

```r
data(mtcars)
dim(mtcars)
[1] 32 11
head(mtcars)
```

<table>
<thead>
<tr>
<th></th>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>vs</th>
<th>am</th>
<th>gear</th>
<th>carb</th>
</tr>
</thead>
<tbody>
<tr>
<td>MazdaRX4</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.620</td>
<td>16.46</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>MazdaRX4Wag</td>
<td>21.0</td>
<td>6</td>
<td>160</td>
<td>110</td>
<td>3.90</td>
<td>2.875</td>
<td>17.02</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Datsun710</td>
<td>22.8</td>
<td>4</td>
<td>108</td>
<td>93</td>
<td>3.85</td>
<td>2.320</td>
<td>18.61</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Hornet4Drive</td>
<td>21.4</td>
<td>6</td>
<td>258</td>
<td>110</td>
<td>3.08</td>
<td>3.215</td>
<td>19.44</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>HornetSportabout</td>
<td>18.7</td>
<td>8</td>
<td>360</td>
<td>175</td>
<td>3.15</td>
<td>3.440</td>
<td>17.02</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Valiant</td>
<td>18.1</td>
<td>6</td>
<td>225</td>
<td>105</td>
<td>2.76</td>
<td>3.460</td>
<td>20.22</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Data matrix example - mtcars

One can explore some statistical properties of the dataset using `summary(mtcars)`.

```r
> summary(mtcars)

   mpg   cyl   disp    hp  drat    wt  qsec vs am gear carb
Min.   :10.40   Min.   :4.000  Min.   :71.1  Min.   :52.0  Min.   :2.760
1st Qu.:15.43   1st Qu.:4.000  1st Qu.:120.8  1st Qu.:96.5  1st Qu.:3.080
Median :19.20   Median :6.000   Median :196.3  Median :123.0  Median :3.695
Mean   :20.09   Mean   :6.188   Mean   :230.7  Mean   :146.7  Mean   :3.597
3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0  3rd Qu.:180.0  3rd Qu.:3.920
Max.   :33.90   Max.   :8.800   Max.   :472.0  Max.   :335.0  Max.   :4.930
```

```r
wt    qsec vs am gear
Min.   :1.513   Min.   :14.50   Min.   :0.0000  Min.   :0.0000  Min.   :3.000
1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000  1st Qu.:0.0000  1st Qu.:3.000
Median :3.325   Median :17.71   Median :0.0000  Median :0.0000  Median :4.000
Mean   :3.217   Mean   :17.85   Mean   :0.4375  Mean   :0.4062  Mean   :3.688
3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000  3rd Qu.:1.0000  3rd Qu.:4.000
Max.   :5.424   Max.   :22.90   Max.   :1.0000  Max.   :1.0000  Max.   :5.000
```

```r
carb
Min.   :1.000
1st Qu.:2.000
Median :2.000
Mean   :2.812
3rd Qu.:4.000
Max.   :8.000
```
Data matrix example - mtcars

You can also visually explore the dataset by visualizing the relationship for several pairs of variable

```R
> pairs(mtcars[, c("mpg", "hp", "wt")])
```
Data matrix - example

We will use this example to illustrate how to work with a data matrix in R.

Computation of **column means** (first 3 columns)

```r
> X <- as.matrix(mtcars)
> colMeans(X)[1:3]

    mpg     cyl    disp
 20.09062 6.18750 230.72188
```

This is an alternate way to carry out the same computation

```r
> apply(X,2,mean)[1:3]

    mpg     cyl    disp
 20.09062 6.18750 230.72188
```
One can similarly compute other statistical functions.

Computation of **column median** (first 3 columns)

```r
> apply(X,2,median)[1:3]

   mpg  cyl  disp
19.2  6.0 196.3
```

Computation of **column range** (first 3 columns)

```r
> apply(X,2,range)[,1:3]

   mpg  cyl  disp
[1,] 10.4  4  71.1
[2,] 33.9  8 472.0
```
Correlation matrix

Let X be a $n \times p$ data matrix, containing p vectors of length n ordered by columns.

The **correlation matrix** of X is the $p \times p$ symmetric matrix

$$R = \begin{pmatrix} 1 & r_{12} & \ldots & r_{1p} \\ r_{21} & 1 & \ldots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \ldots & 1 \end{pmatrix}$$

where the entries are the pairwise correlations $r_{ij} = r_{ji} = \frac{s_{ij}}{s_is_j}$ for $1 \leq i, j \leq p$ and $r_{ii} = 1$.

The matrix R contains all the pair-wise correlation coefficients between any column vectors in the matrix X.
Correlation matrix

We want to compute the correlation matrix of the mtcars matrix.

We first remove the categorical variables vs and am.

```r
library(tidyverse)
X <- mtcars %>% select(-vs, -am)
```

The new data matrix `X` has dimension 32×9

```r
> dim(X)
[1] 32 9
```

```r
> head(X)
   mpg  cyl  disp  hp drat  wt qsec gear carb
MazdaRX4 21.0   6  160  110  3.90 2.620 16.46   4   4
MazdaRX4Wag 21.0   6  160  110  3.90 2.875 17.02   4   4
Datsun710  22.8   4  108   93  3.85 2.320 18.61   4   1
Hornet4Drive 21.4   6  258  110  3.08 3.215 19.44   3   1
HornetSportabout 18.7   8  360  175  3.15 3.440 17.02   3   2
Valiant   18.1   6  225  105  2.76 3.460 20.22   3   1
```
Correlation matrix

We compute the correlation matrix of the modified \texttt{mtcars} matrix. For easier reading, correlation coefficients are rounded to 2 decimal digits.

\begin{verbatim}
> round(cor(X), digits = 2)

 mpg cyl disp hp drat wt qsec gear carb
mpg 1.00 -0.85 -0.85 -0.78 0.68 -0.87 0.42 0.48 -0.55
cyl -0.85 1.00 0.90 0.83 -0.70 0.78 -0.59 -0.49 0.53
disp -0.85 0.90 1.00 0.79 -0.71 0.89 -0.43 -0.56 0.39
hp -0.78 0.83 0.79 1.00 -0.45 0.66 -0.71 -0.13 0.75
drat 0.68 -0.70 -0.71 -0.45 1.00 -0.71 0.09 0.70 -0.09
wt -0.87 0.78 0.89 0.66 -0.71 1.00 -0.17 -0.58 0.43
qsec 0.42 -0.59 -0.43 -0.71 0.09 -0.17 1.00 -0.21 -0.66
gear 0.48 -0.49 -0.56 -0.13 0.70 -0.58 -0.21 1.00 0.27
carb -0.55 0.53 0.39 0.75 -0.09 0.43 -0.66 0.27 1.00
\end{verbatim}

The matrix is symmetric and has diagonal 1, as expected. This correlation matrix gives an overview of the correlations for all combinations of two variables in \(X \).

Note: we can compute in a very similar way the Spearman correlation matrix. The modified command is as follows:

\begin{verbatim}
> round(cor(X, method="spearman"), digits = 2)
\end{verbatim}
Correlation matrix

Interpretation of correlation matrix

<table>
<thead>
<tr>
<th></th>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>gear</th>
<th>carb</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpg</td>
<td>1.00</td>
<td>-0.85</td>
<td>-0.85</td>
<td>-0.78</td>
<td>0.68</td>
<td>-0.87</td>
<td>0.42</td>
<td>0.48</td>
<td>-0.55</td>
</tr>
<tr>
<td>cyl</td>
<td>-0.85</td>
<td>1.00</td>
<td>0.90</td>
<td>0.83</td>
<td>-0.70</td>
<td>0.78</td>
<td>-0.59</td>
<td>-0.49</td>
<td>0.53</td>
</tr>
<tr>
<td>disp</td>
<td>-0.85</td>
<td>0.90</td>
<td>1.00</td>
<td>0.79</td>
<td>-0.71</td>
<td>0.89</td>
<td>-0.43</td>
<td>-0.56</td>
<td>0.39</td>
</tr>
<tr>
<td>hp</td>
<td>-0.78</td>
<td>0.83</td>
<td>0.79</td>
<td>1.00</td>
<td>-0.45</td>
<td>0.66</td>
<td>-0.71</td>
<td>-0.13</td>
<td>0.75</td>
</tr>
<tr>
<td>drat</td>
<td>0.68</td>
<td>-0.70</td>
<td>-0.71</td>
<td>-0.45</td>
<td>1.00</td>
<td>-0.71</td>
<td>0.09</td>
<td>0.70</td>
<td>-0.09</td>
</tr>
<tr>
<td>wt</td>
<td>-0.87</td>
<td>0.78</td>
<td>0.89</td>
<td>0.66</td>
<td>-0.71</td>
<td>1.00</td>
<td>-0.17</td>
<td>-0.58</td>
<td>0.43</td>
</tr>
<tr>
<td>qsec</td>
<td>0.42</td>
<td>-0.59</td>
<td>-0.43</td>
<td>-0.71</td>
<td>0.09</td>
<td>-0.17</td>
<td>1.00</td>
<td>-0.21</td>
<td>-0.66</td>
</tr>
<tr>
<td>gear</td>
<td>0.48</td>
<td>-0.49</td>
<td>-0.56</td>
<td>-0.13</td>
<td>0.70</td>
<td>-0.58</td>
<td>-0.21</td>
<td>1.00</td>
<td>0.27</td>
</tr>
<tr>
<td>carb</td>
<td>-0.55</td>
<td>0.53</td>
<td>0.39</td>
<td>0.75</td>
<td>-0.09</td>
<td>0.43</td>
<td>-0.66</td>
<td>0.27</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The correlation between horsepower (hp) and miles per gallon (mpg) found above is -0.78, meaning that the 2 variables vary in opposite direction. This makes sense, cars with more horsepower tend to consume more fuel (and thus have a lower millage par gallon). On the contrary, from the correlation matrix we see that the correlation between miles per gallon (mpg) and the time to drive 1/4 of a mile (qsec) is 0.42, meaning that fast cars (low qsec) tend to have a worse millage per gallon (low mpg). This again make sense as fast cars tend to consume more fuel.
Correlation matrix

The R package `corrplot` provides a visual exploratory tool for the correlation matrix.

```r
> library(corrplot)
> corrplot(cor(X), method = "number")
```

![Correlation matrix image]
Correlation matrix

Since the matrix is symmetric, we only need to visualize the upper or lower half.

> corrplot(cor(X), method = "number", type = "upper")
Correlation matrix

Rather than displaying numerical values, one can use colors.

> corrplot(cor(X), method = "circle", type = "upper")
Correlation matrix

One important application of the correlation matrix is to investigate if there are patterns among specific groups of variables.

The package `corrplot` supports automatic variable reordering.

Four order algorithms are available: ’AOE’, ’FPC’, ’hclust’, ’alphabet’.

- ’AOE’ is for the angular order of the eigenvectors. It is calculated from the order of the angles corresponding to the largest two eigenvalues of the correlation matrix.
- ’FPC’ for the first principal component order.
- ’hclust’ for hierarchical clustering order, and ’hclust.method’ for the agglomeration method to be used. ’hclust.method’ should be one of ’ward’, ’ward.D’, ’ward.D2’, ’single’, ’complete’, ’average’, ’mcquitty’, ’median’ or ’centroid’.
- ’alphabet’ for alphabetical order.
Correlation matrix

The option ‘hclust’ draws rectangles around the plot of correlation matrix based on the results of hierarchical clustering.

```r
> corrplot(cor(X), order = 'hclust', addrect = 2)
```
Correlation matrix

Here we compute again the correlation matrix with the variables reordered based on the results of hierarchical clustering but we use the Spearman correlation.

> corrplot(cor(X, method="spearman"), order = 'hclust', addrect = 2)
Correlation matrix

Similar to the `cor()` command used to compute correlation for several pairs of variables in a matrix, the `rcorr()` function from the `Hmisc` package is useful to analyze the correlation matrix.

\[
\text{rcorr}(X, \text{type}=c("pearson","spearman"))
\]

It returns

1. the correlation matrix of \(X \)
2. the number of observation
3. the \(p \)-values for all pairwise correlations
Correlation matrix

```r
library(Hmisc)
X <- as.matrix(X) res <- rcorr(X)
> str(res)
List of 3
$r: num [1:11, 1:11] 1 -0.852 -0.848 -0.776 0.681 ... 
..- attr(*, "dimnames")=List of 2
 .. ..$ : chr [1:11] "mpg" "cyl" "disp" "hp" ... 
 .. ..$: chr [1:11] "mpg" "cyl" "disp" "hp" ... 
$n: int [1:11, 1:11] 32 32 32 32 32 32 32 32 32 32 ... 
..- attr(*, "dimnames")=List of 2
 .. ..$: chr [1:11] "mpg" "cyl" "disp" "hp" ... 
 .. ..$: chr [1:11] "mpg" "cyl" "disp" "hp" ... 
$ P: num [1:11, 1:11] NA 6.11e-10 9.38e-10 1.79e-07 1.78e-05 ... 
 ..- attr(*, "dimnames")=List of 2
 .. ..$: chr [1:11] "mpg" "cyl" "disp" "hp" ... 
 .. ..$: chr [1:11] "mpg" "cyl" "disp" "hp" ... 
- attr(*, "class")= chr "rcorr"
```
We are displaying only the matrix of \(p \) values, with 3 decimal digits

\[
\text{round(res}\$P, 3)
\]

<table>
<thead>
<tr>
<th></th>
<th>mpg</th>
<th>cyl</th>
<th>disp</th>
<th>hp</th>
<th>drat</th>
<th>wt</th>
<th>qsec</th>
<th>gear</th>
<th>carb</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpg</td>
<td>NA</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.017</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>cyl</td>
<td>0.000</td>
<td>NA</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.004</td>
<td>0.002</td>
</tr>
<tr>
<td>disp</td>
<td>0.000</td>
<td>0.000</td>
<td>NA</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.013</td>
<td>0.001</td>
<td>0.025</td>
</tr>
<tr>
<td>hp</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>NA</td>
<td>0.010</td>
<td>0.000</td>
<td>0.000</td>
<td>0.493</td>
<td>0.000</td>
</tr>
<tr>
<td>drat</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.010</td>
<td>NA</td>
<td>0.000</td>
<td>0.620</td>
<td>0.000</td>
<td>0.621</td>
</tr>
<tr>
<td>wt</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>NA</td>
<td>0.339</td>
<td>0.000</td>
<td>0.015</td>
</tr>
<tr>
<td>qsec</td>
<td>0.017</td>
<td>0.000</td>
<td>0.013</td>
<td>0.000</td>
<td>0.620</td>
<td>0.339</td>
<td>NA</td>
<td>0.243</td>
<td>0.000</td>
</tr>
<tr>
<td>gear</td>
<td>0.005</td>
<td>0.004</td>
<td>0.001</td>
<td>0.493</td>
<td>0.000</td>
<td>0.000</td>
<td>0.243</td>
<td>NA</td>
<td>0.129</td>
</tr>
<tr>
<td>carb</td>
<td>0.001</td>
<td>0.002</td>
<td>0.025</td>
<td>0.000</td>
<td>0.621</td>
<td>0.015</td>
<td>0.000</td>
<td>0.129</td>
<td>NA</td>
</tr>
</tbody>
</table>
Principal Components Analysis
Principal Components Analysis (PCA) is a statistical method designed to reduce data dimensionality. PCA extracts the most significant information from a set of multiple variables and represents this information as a set of new variables, called principal components, obtained as linear combinations of the original ones.

PCA allows one to identify a few principal components that can be visualized graphically with minimal loss of information.

The dominant principal components are the most important for explaining covariation in the data.
Principal Components Analysis

PCA differs from clustering which is also used for data interpretation.

- Clustering assumes that each data point is a member of one, and only one, cluster. Clusters are mutually exclusive.
- PCA assumes that each data point is a linear combination of multiple basic “ingredients” which are not mutually exclusive.
Principal Components Analysis

I will use dataset decathlon2 from the factoextra package to illustrate the use of PCA.

```r
> install.packages("factoextra")
> library("factoextra")
> data(decathlon2)
> head(decathlon2)
```

<table>
<thead>
<tr>
<th></th>
<th>X100m</th>
<th>L.jump</th>
<th>Shot.put</th>
<th>H.jump</th>
<th>X400m</th>
<th>X110m.hurdle</th>
<th>Discus</th>
<th>Pole.vault</th>
<th>Javeline</th>
<th>X1500m</th>
<th>Rank</th>
<th>Points</th>
<th>Competition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEBRLE</td>
<td>11.04</td>
<td>7.58</td>
<td>14.83</td>
<td>2.07</td>
<td>49.81</td>
<td>14.69</td>
<td>43.75</td>
<td>5.02</td>
<td>63.19</td>
<td>291.7</td>
<td>1</td>
<td>8217</td>
<td>Decastar</td>
</tr>
<tr>
<td>CLAY</td>
<td>10.76</td>
<td>7.40</td>
<td>14.26</td>
<td>1.86</td>
<td>49.37</td>
<td>14.05</td>
<td>50.72</td>
<td>4.92</td>
<td>60.15</td>
<td>301.5</td>
<td>2</td>
<td>8122</td>
<td>Decastar</td>
</tr>
<tr>
<td>BERNARD</td>
<td>11.02</td>
<td>7.23</td>
<td>14.25</td>
<td>1.92</td>
<td>48.93</td>
<td>14.99</td>
<td>40.87</td>
<td>5.32</td>
<td>62.77</td>
<td>280.1</td>
<td>4</td>
<td>8067</td>
<td>Decastar</td>
</tr>
<tr>
<td>YURKOV</td>
<td>11.34</td>
<td>7.09</td>
<td>15.19</td>
<td>2.10</td>
<td>50.42</td>
<td>15.31</td>
<td>46.26</td>
<td>4.72</td>
<td>63.44</td>
<td>276.4</td>
<td>5</td>
<td>8036</td>
<td>Decastar</td>
</tr>
<tr>
<td>ZSIVOCZKY</td>
<td>11.13</td>
<td>7.30</td>
<td>13.48</td>
<td>2.01</td>
<td>48.62</td>
<td>14.17</td>
<td>45.67</td>
<td>4.42</td>
<td>55.37</td>
<td>268.0</td>
<td>7</td>
<td>8004</td>
<td>Decastar</td>
</tr>
<tr>
<td>McMULLEN</td>
<td>10.83</td>
<td>7.31</td>
<td>13.76</td>
<td>2.13</td>
<td>49.91</td>
<td>14.38</td>
<td>44.41</td>
<td>4.42</td>
<td>56.37</td>
<td>285.1</td>
<td>8</td>
<td>7995</td>
<td>Decastar</td>
</tr>
</tbody>
</table>
The dataset `decathlon2` describes athletes’ performance during two sporting events (Desctar and OlympicG). It contains 27 athletes described by 13 variables (sport disciplines). For further analysis, I will subset active individuals (rows 1:23) and active variables (columns 1:10) from the `decathlon2` dataset, therefore I will create new dataset `decathlon2b` to conduct the principal component analysis.

```r
decathlon2b <- decathlon2[1:23, 1:10]
```

The `decathlon2b` dataset consists of 23 observations and 10 variables.

```r
> dim(decathlon2b)
[1] 23 10
```
Principal Components Analysis

The summary statistics below shows the distribution of observations.

>`summary(decathlon2b)`

<table>
<thead>
<tr>
<th></th>
<th>X100m</th>
<th>Long.jump</th>
<th>Shot.put</th>
<th>High.jump</th>
<th>X400m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>10.44</td>
<td>6.800</td>
<td>12.68</td>
<td>1.860</td>
<td>46.81</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>10.84</td>
<td>7.165</td>
<td>14.17</td>
<td>1.940</td>
<td>48.95</td>
</tr>
<tr>
<td>Median</td>
<td>10.97</td>
<td>7.310</td>
<td>14.65</td>
<td>2.010</td>
<td>49.40</td>
</tr>
<tr>
<td>Mean</td>
<td>11.00</td>
<td>7.350</td>
<td>14.62</td>
<td>2.007</td>
<td>49.43</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>11.23</td>
<td>7.525</td>
<td>15.14</td>
<td>2.095</td>
<td>50.02</td>
</tr>
<tr>
<td>Max.</td>
<td>11.64</td>
<td>7.960</td>
<td>16.36</td>
<td>2.150</td>
<td>51.16</td>
</tr>
<tr>
<td></td>
<td>X110m.hurdle</td>
<td>Discus</td>
<td>Pole.vault</td>
<td>Javeline</td>
<td>X1500m</td>
</tr>
<tr>
<td>Min.</td>
<td>13.97</td>
<td>37.92</td>
<td>4.400</td>
<td>52.33</td>
<td>262.1</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>14.17</td>
<td>43.74</td>
<td>4.610</td>
<td>55.40</td>
<td>268.8</td>
</tr>
<tr>
<td>Median</td>
<td>14.37</td>
<td>44.75</td>
<td>4.820</td>
<td>57.44</td>
<td>278.1</td>
</tr>
<tr>
<td>Mean</td>
<td>14.53</td>
<td>45.16</td>
<td>4.797</td>
<td>59.11</td>
<td>277.9</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>14.94</td>
<td>46.93</td>
<td>5.000</td>
<td>62.98</td>
<td>283.6</td>
</tr>
<tr>
<td>Max.</td>
<td>15.67</td>
<td>51.65</td>
<td>5.320</td>
<td>70.52</td>
<td>301.5</td>
</tr>
</tbody>
</table>
Principal Components Analysis

The R command to perform a principal components analysis on a data matrix \(x \) is the following

\[
\text{prcomp}(x, \text{retx} = \text{TRUE}, \text{center} = \text{TRUE}, \text{scale} = \text{FALSE}, \text{tol} = \text{NULL}, \ldots)
\]

- **retx**: A logical value indicating whether the rotated variables should be returned. The default is TRUE.

- **center**: A logical value indicating whether the variables should be shifted to be 0 centered. Alternately, a vector of length equal the number of columns of \(x \) can be supplied. The value is passed to scale. The default is TRUE.

- **scale**: A logical value indicating whether the variables should be scaled to have unit variance before the analysis takes place. The default is FALSE. In general, scaling is advisable.

- **tol**: a value indicating the magnitude below which components should be omitted. With the default NULL setting, no components are omitted.
Principal Components Analysis

> res.pca <- prcomp(decathlon2b, scale = TRUE)
> print(res.pca)

Standard deviations (1, .., p=10):

[1] 2.0308159 1.3559244 1.1131668 0.9052294 0.8375875 0.6502944 0.5500742
 [8] 0.5238988 0.3939758 0.3492435

Rotation (n x k) = (10 x 10):

PC1 PC2 PC3 PC4 PC5
X100m -0.418859080 0.13230683 -0.270899599 0.037088060 -0.2321476
Long.jmp 0.391064807 -0.207133200 0.171175191 -0.127469973 0.2783669
Shot.put 0.361388111 -0.062985900 -0.464977777 0.141918030 -0.2970589
High.jump 0.300413236 0.34309742 -0.296528050 0.159683423 0.4807859
X400m -0.345478567 -0.214007700 -0.254708397 0.475929686 0.1240569
X110m.hurdle -0.376265119 0.018246450 -0.403252541 -0.018664779 0.2676975
Discus 0.365965721 -0.03662510 -0.158579273 0.436363613 -0.4873988
Pole.vault -0.106985591 -0.595498620 -0.084495637 0.374473911 -0.2646712
Javeline 0.210864329 -0.28475723 -0.542707823 -0.366464632 0.2361698
X1500m 0.002106782 -0.57855747 0.197158845 0.494912810 0.3142987
 PC6 PC7 PC8 PC9 PC10
X100m 0.054398099 -0.16604375 -0.19988005 -0.76924639 0.12718339
Long.jmp -0.051865558 -0.28056361 -0.75850657 -0.13094589 0.08509665
Shot.put -0.368739186 -0.01797323 0.04649571 0.12129309 0.62263702
High.jump -0.437716883 0.05118848 0.16111045 0.28463225 0.38244596
X400m -0.075796432 0.52012255 -0.44579641 0.20854176 0.09784197
X110m.hurdle 0.004048005 -0.67276768 -0.01592804 0.41058421 0.04475363
Discus 0.305315353 -0.25946615 -0.07550934 0.03391600 0.49418361
Pole.vault -0.503563524 -0.01889413 0.06282691 0.06540692 0.39288155
Javeline 0.556821016 0.24281145 0.10086127 0.10268134 0.01103627
X1500m 0.064663250 -0.20245828 0.37119711 0.25950868 0.17991689
Principal Components Analysis

- The `prcomp()` function was set to center data around 0 by shifting the variables (`center = TRUE`) and to rescale the variance to 1 (`scale = FALSE`); data standarization is needed since variables were measured in different scales.
- The `prcomp()` function computed the 10 principal components which also correspond to the number of variables (10 sport disciplines) in the data. Recall that data matrix contains 23 observations (athletes) of 10 variables (sport disciplines).
- Each principal component (PC) explains a percentage of the total variance in the data set.
Principal Components Analysis

Each PC explains a percentage of the total variance in the data set.

```r
> summary(res.pca)
```

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
<th>PC6</th>
<th>PC7</th>
<th>PC8</th>
<th>PC9</th>
<th>PC10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation</td>
<td>2.0308</td>
<td>1.3559</td>
<td>1.1132</td>
<td>0.90523</td>
<td>0.83759</td>
<td>0.65029</td>
<td>0.55007</td>
<td>0.52390</td>
<td>0.39398</td>
<td>0.3492</td>
</tr>
<tr>
<td>Proportion of Variance</td>
<td>0.4124</td>
<td>0.1839</td>
<td>0.1239</td>
<td>0.08194</td>
<td>0.07016</td>
<td>0.04229</td>
<td>0.03026</td>
<td>0.02745</td>
<td>0.01552</td>
<td>0.0122</td>
</tr>
<tr>
<td>Cumulative Proportion</td>
<td>0.4124</td>
<td>0.5963</td>
<td>0.7202</td>
<td>0.80213</td>
<td>0.87229</td>
<td>0.91458</td>
<td>0.94483</td>
<td>0.97228</td>
<td>0.98780</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

- PC1 explains 41.24% of total variance, PC2 explains 18.39% of total variance and so on.
- The Cumulative Proportion section shows that the first 3 PCs explains about 72% of the total variance and the first 4 PCs explains about 80% of the total variance.
Principal Components Analysis

The amount of variation held by each principal component is associated with the **eigenvalues** of the PCA.

The eigenvalues are extracted by `get_eigenvalue()` function.

```r
> eig.val <- get_eigenvalue(res.pca)
> eig.val
```

<table>
<thead>
<tr>
<th></th>
<th>eigenvalue</th>
<th>variance.percent</th>
<th>cumulative.variance.percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim.1</td>
<td>4.1242133</td>
<td>41.242133</td>
<td>41.242133</td>
</tr>
<tr>
<td>Dim.2</td>
<td>1.8385309</td>
<td>18.385309</td>
<td>59.62744</td>
</tr>
<tr>
<td>Dim.3</td>
<td>1.2391403</td>
<td>12.391403</td>
<td>72.01885</td>
</tr>
<tr>
<td>Dim.4</td>
<td>0.8194402</td>
<td>8.194402</td>
<td>80.21325</td>
</tr>
<tr>
<td>Dim.5</td>
<td>0.7015528</td>
<td>7.015528</td>
<td>87.22878</td>
</tr>
<tr>
<td>Dim.6</td>
<td>0.4228828</td>
<td>4.228828</td>
<td>91.45760</td>
</tr>
<tr>
<td>Dim.7</td>
<td>0.3025817</td>
<td>3.025817</td>
<td>94.48342</td>
</tr>
<tr>
<td>Dim.8</td>
<td>0.2744700</td>
<td>2.744700</td>
<td>97.22812</td>
</tr>
<tr>
<td>Dim.9</td>
<td>0.1552169</td>
<td>1.552169</td>
<td>98.78029</td>
</tr>
<tr>
<td>Dim.10</td>
<td>0.1219710</td>
<td>1.219710</td>
<td>100.00000</td>
</tr>
</tbody>
</table>
Principal Components Analysis

The importance of PCs decreases rapidly with the dimension.

> fviz_eig(res.pca, col.var="blue")
Principal Components Analysis

The **Scree plot** displays the variance by each PC.

It always displays a downward curve. It typically starts high, then falls rather quickly and finally flattens out. This is because the first component usually explains much of the variability, the next few components explain a moderate amount, and the latter components only explain a small fraction of the overall variability.

The scree plot is useful to decide the number of PCs that are sufficient to provide a satisfactory approximation to explain the data. Scree plot criterion looks for the “**elbow**” in the curve and selects all components just before the line flattens out.

Note: it is called a ‘scree’ plot (in the PCA literature) because it often looks like a ‘scree’ slope, where rocks have fallen down and accumulated on the side of a mountain.
Principal Components Analysis

PCA results can be assessed with regard to **variables** (sport disciplines) and **observations/individuals** (athletes).

For that purpose, the function `get_pca_var()` provides a list of matrices containing all the results for the **variables**: coordinates, correlation between variables and axes, squared cosine, and contributions.

Similarly, the function `get_pca_ind()` provides a list of matrices containing all the results for the **observations/individuals**: coordinates, squared cosine, and contributions.
Principal Components Analysis

```r
> var <- get_pca_var(res.pca)
> var
Principal Component Analysis Results for variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>&quot;coord&quot; &quot;Coordinates for the variables&quot;</td>
</tr>
<tr>
<td>2</td>
<td>&quot;$cor&quot; &quot;Correlations between variables and dimensions&quot;</td>
</tr>
<tr>
<td>3</td>
<td>&quot;$cos2&quot; &quot;Cos2 for the variables&quot;</td>
</tr>
<tr>
<td>4</td>
<td>&quot;$contrib&quot; &quot;contributions of the variables&quot;</td>
</tr>
</tbody>
</table>
```

```r
> ind <- get_pca_ind(res.pca)
> ind
Principal Component Analysis Results for individuals

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>&quot;$coord&quot; &quot;Coordinates for the individuals&quot;</td>
</tr>
<tr>
<td>2</td>
<td>&quot;$cos2&quot; &quot;Cos2 for the variables&quot;</td>
</tr>
<tr>
<td>3</td>
<td>&quot;$contrib&quot; &quot;contributions of the individuals&quot;</td>
</tr>
</tbody>
</table>
```
We start by assessing PCA results with regard to variables.

In the list above:

- **Cos²** is called *square cosine* and shows the importance of a principal component for a given observation.
 - A low value means that the variable is not well represented by that component.
 - A high value, on the other hand, means a good representation of the variable on that component.

- **Contrib** indicates the *contribution* of the variables.
Principal Components Analysis

The code below computes the square cosine value for each variable with respect to the first two principal components PC1, PC2.

```r
> fviz_cos2(res.pca, choice = "var", axes = 1:2)
```

![Cos2 of variables to Dim-1-2](image)
Principal Components Analysis

From the plot, X100m, Long jump and Pole vault are the top three variables with the highest cos2, hence they are well represented in PC1 and PC2.
Principal Components Analysis

The code below shows variable contributions to PC1 and PC2.

```r
> a1 <- fviz_contrib(res.pca, choice = "var", axes = 1)
> a2 <- fviz_contrib(res.pca, choice = "var", axes = 2)
> library("gridExtra")
> grid.arrange(a1, a2, ncol=2, top='Contribution of the variables to the first two PCs')
```
Principal Components Analysis

The red dashed line on the graph above indicates the expected average contribution. A variable with a contribution exceeding this benchmark is considered as important in contributing to the PC. It can be seen that the variables X100m, Long.jump and Pole.vault contribute the most to both dimensions.
Principal Components Analysis

The *biplot* visualizes similarities/dissimilarities between variables.

> `fviz_pca_var(res.pca, col.var = "black")`
Principal Components Analysis

- Variables that are grouped together are positively correlated to each other and variables that are negatively correlated are displayed to the opposite sides of the biplot’s origin.
Principal Components Analysis

- The higher the distance between the variable and the origin, the better represented that variable is in the principal components PC1 and PC2.
Principal Components Analysis

The quality of representation of variables can be drawn on the plot.

```r
fviz_pca_var(res.pca, col.var = "cos2", gradient.cols = c("darkorchid4", "gold", "darkorange"), )
```
Principal Components Analysis

In the plot, cos2 values differ by gradient colors: variables with low cos2 values are colored “darkorchid4”, medium cos2 values - “gold”, high cos2 values - “darkorange”.

![Principal Components Analysis Diagram](image-url)
Principal Components Analysis

X100m, Long.jump and Pole.vault have high cos2 implying a good representation on the principal component. Variables are positioned close to the circumference of the correlation circle.
Principal Components Analysis

Javeline has the lowest cos2 indicating that the variable is not well represented by the PCs. The variable is close to the center of the circle, so it is less important for the first components.
Principal Components Analysis

We now similarly assess PCA results with regard to individuals using cos2.

> fviz_cos2(res.pca, choice = "ind", axes = 1:2)
Principal Components Analysis

The plot shows the athletes on the left are well represented in PC1, PC2.
Principal Components Analysis

We next assess PCA results for individuals using contrib.

> fviz_contrib(res.pca, choice = "ind", axes = 1:2)
Principal Components Analysis

The plot shows the athletes contributing the most to PC1, PC2.