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Abstract

Recent advances in the field of multiscale representations have introduced a

new generation of powerful techniques with great potential for the analysis of

images and other multidimensional data. These novel techniques enable the

quantification of essential geometric characteristics in complex imaging data

resulting in improved algorithms for images denoising, feature extraction and

classification. In this paper, we present selected applications of these ideas to

problems of neuroscience imaging with special attention to the problem of digital

neuron reconstruction.
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1. Introduction

Remarkable advances in fluorescent microscopy during the last decade have

created great opportunities for scientific investigation and discovery in neuro-

science by enabling fast acquisition of large volumes of high-resolution images.

However, to process such data efficiently and take advantage of the wealth of5

information made available by new technologies, there is not only a need of
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improved and highly specialized image processing algorithms but also of more

targeted and conceptually innovative strategies to interrogate the data.

To address such challenges, a major interdisciplinary effort is being under-

taken by the scientific community that brings together ideas from mathematics,10

statistics and computer science. As a result of this effort, several remarkable ini-

tiatives were launched in recent years aimed at tackling specific image processing

tasks in the field of neuroscience, including neuron segmentation, cell counting

and most prominently digital neuron reconstruction [1, 2, 3, 4, 5]. Digital neu-

ron reconstruction or neuronal tracing requires to automatically reconstruct15

neuronal morphology in an image by recovering the graph connectivity of the

neuronal processes and other shape characteristics (e.g., neurite length, neurite

diameter). By tracing neurons and extracting their fundamental morphometric

characteristics, researchers can understand neuronal structure and investigate

fundamental relationships between shape properties and neuronal function. Due20

to the high complexity of neuron morphology and the low signal-to-noise ratio

found in many images however, digital neuron reconstruction is among the most

difficult tasks in computational neuroscience [6]. Despite the progress made in

recent years, significant challenges remain to be solved.

In this paper, we illustrate the impact of emerging ideas from the area of25

multiscale analysis to applications in neuroscience imaging, with particular at-

tention to problems of segmentation and feature extraction that are relevant

in digital neuron reconstruction. By combining multiscale analysis and direc-

tional sensitivity, directional multiscale methods can be more effective than

conventional methods in extracting critical information from images containing30

complex structures. The excellent performance of these methods when applied

to image denoising and enhancement has been already demonstrated in the lit-

erature. One novel contribution of this paper is the application of these ideas

to detect morphological properties of neurons through a geometric descriptor

called Directional Ratio. We provide a novel theoretical analysis to show that35

this method precisely quantifies the degree of local anisotropy of indicator func-

tions of planar regions and that this property can be applied to reliably separate
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neuronal sub-compartments in microscopy images. We also discuss how this

method for neuronal segmentation is combined with other ideas to design an

innovative algorithm for neuronal tracing.40

The rest of the paper is organized as follows. In Sec. 2, we review the

application of advanced multiscale representations to image denoising. In Sec. 3,

we analyze the properties of the Directional Ratio and illustrate its application

for the separation of somas and dendrites in fluorescent images of neurons. In

Sec. 4, we discuss how our method for the separation of somas and dendrites is45

applied to designed an improved algorithm for neuron sorting and tracing.

2. Image preprocessing

In order to take best advantage of instrumentation and remove unwanted ar-

tifacts, image acquired using fluorescent microscopy are typically preprocessed

to remove noise and blur or to enhance specific features in preparation of further50

processing. Edges in particular play a prominent role in biomedical images as

they separate organs and other structures of interest. Unfortunately, standard

approaches to image restoration, e.g., median filtering and low-pass filtering,

but also conventional wavelet thresholding may perform poorly especially in

very noisy situations. By contrast, schemes based on advanced multiscale rep-55

resentations such as curvelets and shearlets lead to generally better performing

algorithms due to their ability to preserve edge information.

2.1. Shearlets and curvelets

Shearlets and curvelets were introduced during the last decade as refinements

of conventional wavelets with the aim to overcome the limitations of traditional60

multiscale systems in dealing with multidimensional data [7, 8, 9]. Both methods

consist of systems of well-localized waveforms defined not only over a range of

scales and locations, like wavelets, but also over multiple orientations and with

highly anisotropic shapes. Due to their high directional sensitivity, they are

especially efficient to approximate edges and other elongated features in images.65
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In dimension n = 2, shearlets are generated by the action of anisotropic

dilations and shear transformations on a pair of generator functions ψ(ν) ∈

L2(R2), ν = 1, 2, that is,

ψ
(ν)
j,`,k(x) = 23j/2ψ(ν)(B`νA

j
νx− k), (1)

for j ≥ 0, −2j ≤ ` ≤ 2j , k ∈ Z2, where A1 = ( 4 0
0 2 ) , A2 = ( 2 0

0 4 ) are the

anisotropic dilation matrices and B1 = ( 1 1
0 1 ) , B2 = Bt1 are the shear matrices.70

Hence the indices j, `, k are associated with a range of scales, orientations and

locations, respectively.

By appropriately choosing the generators and adding an appropriate coarse

scale system ψ̃−1,k = φ(·−k), k ∈ Z2, (see [10] for details), one obtains a smooth

Parseval frame of shearlets for L2(R2). With compact notation, we denote this75

system as

{ψ̃µ, µ ∈M}, (2)

where ψ̃j,`,k,ν = ψ
(ν)
j,`,k and M = MC ∪ MF are the indices associated with

coarse-scale and fine-scale shearlets, respectively; that is, MC = {(j, k) : j =

−1, k ∈ Z2}, MF = {(j, `, k, ν) : j ≥ 0, |`| < 2j , k ∈ Z2, ν = 1, 2)}. We have the

following result from [10]:80

Theorem 1. The system of shearlets (2) is a Parseval frame for L2(R2). That

is, for any f ∈ L2(R2), we have the reproducing formula

f =
∑
µ∈M
〈f, ψ̃µ〉 ψ̃µ, (3)

with convergence in the L2-norm. All elements {ψ̃µ, µ ∈ M} are C∞ and

compactly supported in the Fourier domain.

Curvelets have a different and slightly more involved construction that in-85

volves anisotropic dilations, rotations and (non-integer) translations. Also in

this case, one obtains a Parseval frame of L2(R2) [7].

By combining multiscale analysis and high directional sensitivity, shearlets

and curvelets provide highly sparse representations for a large class of multi-
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dimensional data, outperforming conventional wavelets. The superior approxi-90

mation properties of these methods is well illustrated by considering the class

of cartoon-like functions, a function space that is frequently used to model an

idealized class of images with edges. Roughly speaking, this space consists of

functions that are C2 regular away from C2 edges [11]. One can prove that

shearlets or curvelets provide (nearly) optimally sparse approximations in the95

class of carton-like functions [11].

Theorem 2. Let f ∈ E2, the class of carton-like functions in R2, and fN be

its N -term approximation obtained by taking the N largest coefficients in the

shearlet representation of f . Then:

‖f − fN‖22 ≤ C N−2(logN)3. (4)

Curvelets achieve the same type of approximation rate [7].100

Ignoring the log factor, this result yields the optimal decay rate (no other

basis or frame can achieve faster decay rate than N−2). By contrast, wavelet

approximations produce an error rate that is of order N−1.

2.2. Image denoising

A classical implication of sparsity is statistical estimation.105

Consider the problem of recovering an image f from noisy observations. We

adopt the assumption that the image f to be recovered is a cartoon-like image

and that the noise is additive white noise with level σ, that is, we observe

y = f + n where n is a Gaussian random process with zero mean and standard

deviation σ. It then follows from the sparse approximation result that a standard

image restoration strategy based on the shrinkage of representation coefficients

yields an estimator f̃ whose Mean Squared Error (MSE) obeys (ignoring log-like

factors)

sup
f∈F

E‖f − f̃‖2 � σ4/3, as σ → 0.

This is the optimal rate of convergence as the minimax rate scales like σ4/3.

There are no other estimating procedure which gives better MSEs in an asymp-

totic sense [7, 11]. Note that, since the wavelet approximation rate is lower,
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then wavelet shrinkage methods only achieve a MSE which scales like σ asymp-

totically as σ → 0.110

3. Soma segmentation

Even though there are several types of specialized neurons, each cell typically

consists of a cell body or soma, several processes called dendrites and one long

and thin process called axon. The term neurite is used to refer to either a

dendrite or an axon.115

In many applications, it is important to accurately detect and segment neu-

ronal sub-compartments. However, to carry over such tasks automatically can

be challenging due to the lack of selective markers and the large variability in

shape and size of such structures. In fluorescent images of neuronal cultures,

somas are usually visualized in the channel marked by the MAP2 (microtubules120

associated protein 2) antibody staining which is diffusely distributed in somas

and dendrites. It is also possible to use a marker to visualized the cell nucleus

but this organ occupies only a relatively small region inside the soma. In any

case, further processing is needed to separate somas from neurites.

The simplest method for separating the two structures is to threshold the125

image based on local intensity values [12, 13]. However this approach performs

rather poorly since high-intensity regions are frequently found outside somas.

Algorithms based on morphological operators perform significantly better but

are very sensitive to parameter setting (e.g., size of structuring elements) and

require significant manual intervention to perform reliably [14, 15]. Performance130

of these methods may decrease significantly when images contain multiple cells

and somas are clustered together [16]. To overcome existing limitations in prob-

lems of soma detection and segmentation, the authors of this paper have recently

introduced a new geometric descriptor called Directional Ratio that relies on the

geometric notion of local isotropy [17].135

Definition 1. A point x in a region A is a point of isotropy of A at scale s if

there is a ball of radius s/2 centered at x which is entirely contained in A.
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Intuitively, in an image containing both blob-like and vessel-like regions, we

expect to find a range of scales such that the points inside the blob-like regions

are points of local isotropy whereas this is not true for the points inside the140

vessels. Hence, we can discriminate somas from neurites by finding regions of

local isotropy over an appropriate range of scales.

3.1. Directional Ratio and soma detection

The Directional Ratio was introduced as an algorithmic and practical method

to identify points in an image based on local isotropy properties [18]. For that,145

we need to consider a collection of multiscale directional filters, that is, an ap-

propriate set of functions {φa,θ : a > 0, θ ∈ [0, π)} ⊂ L2(R2), where a is a scale

parameter and θ is a directional parameter. Hence the Directional Ratio of a

function f ∈ L2(R2) at scale a and location p ∈ R2 is given by

Daf(p) =
minθ∈[0,π){|f ∗ φa,θ(p)|}
maxθ∈[0,π){|f ∗ φa,θ(p)|}

. (5)

Daf(p) quantifies the degree of isotropy of f at location p and scale a by com-150

paring the smallest directional filter response vs the largest one. If the filter

response is independent of the direction, then Daf(p) = 1 and this indicates

that p is a point of local isotropy of f at scale a. Values Daf(p) < 1 describe

the degree of anisotropy of f at p at scale a.

A very simple choice of filters consists in choosing rotated and rescaled ver-155

sions of a rectangular window. That is, we set φ = χQ, where Q is the rectangle

[−L/2, L/2] × [−1/2, 1/2], for a fixed parameter L ≥ 1. Next we define the

multiscale directional rectangular filters φa,θ = DaRθφ, where Rθ denotes the

2D rotation by an angle (−θ) and Da is the (anisotropic) dilation operator

Daf(x1, x2) = a−
1+α
2 f(a−1a1, a

−αx2), for a fixed α ∈ (0, 1]; the parameter α160

controls the anisotropy of the scaling being applied (no anisotropy for α = 1,

increasingly more anisotropy as α approaches 0 ). Hence, the filters φa,θ are

indicator functions of oriented rectangular windows Qa,θ obtained by rescaling

Q by a along the x direction and by aα along the y direction, and next rotating

the resulting rectangle by θ.165
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To assess the theoretical performance of the Directional Ratio for separating

regions of different local isotropy, we examine below its application to the char-

acteristic of a disk and a long and thin rectangle. This function is meant to be

a highly idealized model of the image of a cell body and a vessel. In practice,

cell bodies found in experimental images can be rather elongated and vessels are170

usually not straight. However, we will show that the predictions of the theorem

hold remarkably well in more realistic images.

Theorem 3. Let f = χS∪N where S is a disk of radius R > 0 and N is a rect-

angle of infinite length and width w, where S∩N = ∅. Let the Directional Ratio

be given by (5) with the multiscale directional rectangular filters φa,θ defined as175

above.

(a) Assume L ≥ 2w. Then, for any p ∈ N , provided that a > 4w/L and

a1−α > 4/L, it follows that Daf(p) < 1/2.

(b) There exists a range of scales such that for all points p inside the disk of

radius 0.65R concentric with S we have Daf(p) > 1/2.180

Proof. (a) Without loss of generality, suppose that N is centered at the origin,

with the long axis parallel to the y coordinate. We start by observing that

Daf(p) ≤ |f ∗ φa,0(p)|
|f ∗ φa,π/2(p)|

.

We consider first the case θ = 0, where the rectangle Qa,0 associated with

the filter φa,0 is horizontal. In this case, since L ≥ 2w, the convolution is

the same for any p ∈ N ; hence, f ∗ φa,0(p) = a−
1+α
2 waα. When θ = π/2,

the convolution depends on the value of the x coordinate of p. Its value is

minimized when p = (w/2, y) (i.e., p at the boundary of N), in which case

f ∗ φa,π/2(p) = a−
1+α
2

aα

2 aL. If aα ≤ w (width of filter less or equal than w),

using the assumption that a > 4w/L, it follows that, for any p ∈ N

Daf(p) ≤ a−
1+α
2 waα

a−
1+α
2

aα

2 aL
=

2w

aL
<

1

2
.

Otherwise, if aα > w (width of filter larger than w), f ∗ φa,π/2(p) ≥ a− 1+α
2

w
2 aL
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Figure 1: Computation of the Directional Ratio of the characteristic function of a disk of

radius R and center O at p = (0, y). (a) At small scales, when aL
2

≤ b (case 1 in narrative),

any oriented rectangle Qa,θ is contained inside the disk (here we show two rectangles at scale

a and orientations θ = 0, π/2). (b) At larger scales, c < aL
2

≤ 2c− b (case 3 in narrative), the

area of the region of overlap of the disk and Qa,θ depends on θ.

so that, using the assumption that a1−α > 4/L, we have

Daf(p) ≤ a−
1+α
2 waα

a−
1+α
2

w
2 aL

=
2aα

aL
<

1

2
.

(b) Without loss of generality, let us assume that S is centered at the origin

and p is located on the vertical axis, i.e., p = (0, y), 0 ≤ y ≤ 0.65R. Also, let us

assume aα ≤ 1
5R.

If p is at the origin, i.e., y = 0, then f ∗φa,θ(p) is independent of θ and hence

Daf(p) = 1. If p is not at the origin, then let b and c be given as in Fig. 1(a); that185

is, they denote the half-length of the longest vertical and horizontal rectangles,

respectively, centered ap P and fully contained inside the disk. We discuss below

several cases. Note that, since y ≤ 0.65R and R > 5aα, it follows that b > aα.

Case 1. aL
2 ≤ b. Note that b ≤ c. Hence the rectangles Qa,θ of length L

centered at p are fully contained inside S for all orientations θ and Daf(p) = 1.190

Case 2. b < aL
2 ≤ c. Since b ≤ c, the filter response |f ∗ φa,θ(p)| is maximal
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when θ = 0 and minimal when θ = π/2. We denote by Aε the area of region

of intersection of the rectangle Qa,π/2 and the disk S for y > b (see Fig. 1(b)).

Hence

Daf(p) =
(b+ aL

2 )aα +Aε

Laaα
=

b

La
+

1

2
+

Aε
Laaα

>
1

2
.

Case 3. c < aL
2 ≤ 2c − b. The filter response |f ∗ φa,θ(p)| is still minimal

when θ = π/2 while the maximal response occurs for an angle 0 ≤ θ̄ < π/2.

We consider first the case where θ̄ = 0. Denoting by Aδ the area of region

of intersection of the rectangle Qa,0 and the disk S for x > c (see Fig. 1(b)) we

have

Daf(p) =
(b+ aL

2 )aα +Aε

2caα + 2Aδ
.

Next we observe that Aδ < δaα, where δ =
√
R2 − (y − aα

2 )−
√
R2 − (y + aα

2 ).

We can estimate δ as

δ ≤ 2yaα√
R2 − (y − aα

2 ) +
√
R2 − (y + aα

2 )
≤ 2yaα

2
√
R2 − (y + aα

2 )
=
yaα

c
.

From the last observation, using the fact that b > aα and 2c < aL, it follows

that

Daf(p) ≥
(b+ aL

2 )aα

2caα + 2ya
α

c aα
=

1

2

2b+ aL

2c+ 2yca
α
>

1

2

aL+ 2aα

aL+ 2yca
α
. (6)

Let y = βR, with 0 < β ≤ 1. Observe that R2 = (y + aα

2 )2 + c2 so that

c2 = R2 − (y + aα

2 )2. Hence we can write

y2

c2
=

β2R2

(1− β2)R2 − βRaα − a2α

4

≤ β2R2

(1− β2)R2 − β
5R

2 − 1
100R

2
=

β2

99
100 − β2 − β

5

.

The above quantity is less than one if β < 0.65. Hence, using the observation195

that y
c < 1 in (7), it follows that Daf(p) > 1

2 .

If θ̄ 6= 0, then either the rectangle Qa,θ̄ overlaps the boundary of the disk at

both ends or one of the two ends is fully contained inside the disk. In the first

case, the same estimate used in (7) will imply that Daf(p) > 1
2 . In the second

case, we have

Daf(p) =
(b+ aL

2 )aα +Aε

(c′ + aL
2 )aα +Aδ′

,
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where c′ and Aδ′ are shown in Fig. 1(b). Since c′ < aL
2 and Aδ′ ≤ Aδ, arguing

as above we have

Daf(p) ≥
(b+ aL

2 )aα

aLaα +Aδ
=

1

2

2b+ aL

aL+ y
ca
α
>

1

2

aL+ 2aα

aL+ y
ca
α
>

1

2
. (7)

Figure 2: Numerical estimation of the Directional Ratio Daf(p) as a function of the scale

a where f is the characteristic function of a disk of radius R centered at O. We display the

result for several locations p = (0, y) where 0.5R ≤ y ≤ R. As predicted by Theorem 3, away

from the boundary the values of Daf(p) remain above 1
2

for a range of scales. To generate

this image, we have set R = 200 pixels and L = 130 pixels. The scale is measured in pixels.

Remark 1. The analysis of part (b) of Theorem 3 can be carried over for larger

values of a but the detailed discussion would become very technical. We note

that, for ‘very large’ values of a, approximately if aL > 4R − 2b, no rectangles

Qa,θ is contained in S and the directional ratio becomes a constant function of

a, namely

Da(p) =
|f ∗ φa,0(p)|
|f ∗ φa,π/2(p)|

≈ c

R
.
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We also remark that the value of y in the proof of Theorem 3(b) such that

Daf(p) > 1
2 can be made larger than 0.65R even though one cannot get too close200

to R. If p is selected very close to the boundary of S, the value of Daf(p) can

become very small. Figure 2 displays the values of Directional Ratio computed

on a synthetic image f = χS where S is a disk of radius R centered at the origin,

as a function of the scale, for representative locations p. The figure shows that

the behavior is consistent with the theoretical prediction and that there exists205

a range of scales such Da(p) > 1
2 even for p close to the boundary.

Remark 2. As mentioned above, Theorem 3 is motivated by the problem of

separating neurites from somas in microscopy images. Let us be more specific

about the dimensions found in typical experimental images.

In a primary rat hippocampal neuron – a frequent animal model – a soma210

is typically between 10 and 20 µm in diameter, while neurites have diameters

between 0.5 and 1.5 µm [19, 20]. Hence in a typical confocal fluorescent image

such as Figure 3, where resolution is about 0.25 µm per pixel, a soma is about

40 to 80 pixels in diameter and a neurite is about 2 to 6 pixels in diameter.

Below we verify that the assumptions of Theorem 3 are satisfied in typi-215

cal images of neurons and show that we can find a range of scales where the

computed values of the Directional Ratio separate somas from neurites. For

simplicity, we assume that α = 1/2.

Based on the dimensions indicated above, we model a neurite as a long

rectangle of width w = 6. Hence, by choosing L = 13 the assumption of220

Theorem 3(a) is satisfied and Daf(p) < 1/2 for a > 24/13. Next we model a

soma as a disk S of radius R = 20. According to Theorem 3(b), we need to

impose
√
a ≤ R

5 , that is, a ≤ 4. Hence, for y = 0.65R, we find that b ≈ 0.35R,

c ≈ 0.76R so that Case 1 holds for a ≤ 1.08, Case 2 holds for 1.08 < a ≤ 2.34

and Case 3 holds for 2.34 < a ≤ 3.60. For y = 0.50R, we find that b ≈ 0.50R,225

c ≈ 0.87R so that Case 1 holds for a ≤ 1.54, Case 2 for 1.54 < a ≤ 2.68, Case 3

for 2.68 < a ≤ 3.82.
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Figure 3: Soma segmentation based on the Directional Ratio. (A) Confocal image of cultured

neurons stained with soma-dendritic (MAP2) marker. Image size 512×512 pixels (1 pixel =

0.25 µm) (B) Segmented binary image. (C) Directional Ratio computed inside the segmented

region (white region in Panel B). Values range between 0 and 1. For this computation: a = 2,

L = 24. Soma region is obtained by thresholding the Directional Ratio with threshold 0.5 (D)

and next applying the Level Set method (E). This computation is repeated by thresholding the

Directional Ratio with threshold 0.9 (G) and applying the Level Set method (H). Segmented

somas overlapping the segmented image from the two versions of the algorithm are shown in

(F) and (I).
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3.2. Multiscale anisotropic Gaussian filters

There are other possible choices of directional filters in (5). An important

class of examples are the oriented anisotropic Gaussian functions – a class of230

functions originally introduced for problems of edge detection [21]. They are

obtained by scaling a 2D Gaussian using different factors σx and σy in the x

and y directions, respectively, as

g0(x, y;σx, σy) =
1

2πσxσy
exp

(
−1

2

(
x2

2σ2
x

+
y2

2σ2
y

))
,

and next rotating the coordinate axes by an angle θ, obtaining:

gθ(x, y;σx, σy) =
1

2πσxσy
exp

(
−1

2

(
(x cos θ + y sin θ)2

σ2
x

(−x sin θ + y cos θ)2

σ2
y

))
.

One of the most useful properties of these functions is the existence of a very

efficient numerical algorithm to implement their convolution in a separable235

form [22]. That is, the convolution with the anisotropic Gaussian gθ(x, y;σx, σy)

can be expressed as the composition of a 1D convolution with a Gaussian filter

in the x direction followed by another 1D convolution with a Gaussian filter in

a non-orthogonal direction, namely:

gθ(x, y;σx, σy) =
1

2πσxσφ
exp

(
−1

2

x2

σ2
x

)
∗ exp

(
−1

2

t2

σ2
φ

)
,

where t = x cosφ+ y sinφ and φ is an appropriate functions of θ. Additionally,240

one can implement the 1D Gaussian convolutions using a recursive approxi-

mation yielding an algorithm that is numerically accurate and faster than a

FFT-based 2D convolution, as it requires only O(1) multiplications per pixel.

In [16], the authors of this paper have adapted this idea to obtain a very fast

algorithm for the computation of the Directional Ratio. In particular, we have245

shown in [16] that, for a typical image of 512×512 pixels, the computing time of

the algorithm for soma detection based on the Directional Ratio is reduced of

about a factor of four when the 2D convolution of rectangular filters is replaced

by the separable convolution of Gaussian filters going from 0.86s to 0.21s (using

a MacBook with Intel Core i5 2.4GHz processor and 16 GB RAM).250
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3.3. Soma segmentation

As described above, the evaluation of the Directional Ratio of an image is

designed to provide quantitative information useful to separate blob-like regions

from vessel-like structures. A direct application of this idea to separate somas

from neurites in an image of a neurons is illustrated in Fig. 3 and consists of255

the following steps: (1) the image is segmented (Fig. 3(b)); (2) the Directional

Ratio is computed at an appropriate scale using as a mask the segmented image

(Fig. 3(c)); (3) by setting a threshold on the Directional ratio plot, two regions

are found within the segmented image corresponding to somas and neurites

(Fig. 3(d)). As the figure shows, the method based on the Directional Ratio260

works rather well. This implementation has however some limitations due to the

simplifying assumptions of our model. In experimental images, somas are not

circular but may be elongated with irregular boundaries. In addition, our model

did not consider that somas and neurites do intersect. To improve the algorithm,

a relatively simple refinement is also illustrated in Fig. 3 and consists in the265

following steps: after computing the Directional Ratio on the segmented image,

the threshold is set at a higher value resulting in the detection of a smaller region

(Fig. 3(g)) that is successively extended using the classical Level Set algorithm

(Fig. 3(h)). The final result displayed in Fig. 3(i) shows that this method

accurately segments the somas. A more extensive numerical demonstration of270

this algorithm including a comparison with competing algorithms can be found

in [16]. We remark that the selection of the scale parameter at which to compute

the Directional Ratio can be automatized by estimating the ‘dominant scale’ of

the image using the principles of automated scale selection [16, 23].

4. Digital neuron reconstruction275

As mentioned above, despite the many initiatives and the significant progress

made by the scientific community, digital neuron reconstruction remains a chal-

lenging problem and existing algorithms have still significant limitations. In

particular, most methods are still focused on single-neuron reconstruction. Even
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though there are tracing algorithms that perform competitively even on images280

containing multiple neurons [6, 24, 25] they are not designed to automatically

sort traces into neuronal arbors corresponding to individual neurons unless the

neurons are well separated in the image [26]. However, even in images of neu-

ronal cultures where cells have low density as in Fig. 3, it is common to have

neurites that appear to overlap and cannot be reliably sorted by current trac-285

ing algorithms. Removing this limitation is highly desirable in applications of

neuronal profiling and high-content screening where it is required to extract

multiple characteristics of individual neurons.

Figure 4: Neuronal tracing. (a) Confocal image of cultured neurons labelled with anti-MAP2

antibody and (b) corresponding digital reconstruction where somas are segmented and separate

individual trees are extracted for each neuron.

We outline below a strategy for neuronal tracing that is designed to sort

individual neuronal trees found in two-dimensional images where neurites from290

different neurons may overlap. This method is not attempting to trace any

possible neurite in the image but only those that can be reliably attributed to

a neuron. It relies critically on the soma segmentation method described above

to identify each neuron and set the root of each neuronal tree. It consists of the

following steps: (i) it preprocesses the image to remove noise and blur; (ii) it295
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segments the image and separates somas from neurites as described in Sec. 3;

(iii) starting from the segmented somas, it compute paths along the neurites

emanating from each soma; intersecting neurites are solved by following the

path with minimal change in orientation. The application of this method to

compute individual trees for each neuron in an image of a neuronal culture is300

illustrated in Fig. 4.

By computing separate traces for each neuron, this algorithm enables the

computation of multiple morphometric characteristics corresponding to each

neuron in the image. Additionally, each computed trace provides a local coor-

dinate system to compute local expression levels of analytes visualized in the305

fluorescent image. The detailed description and illustration of this algorithm

goes beyond the scope of this paper and will be discussed in future work.
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