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Abstract

Recent advances in the field of multiscale representations have spurred the emer-

gence of a new generation of powerful techniques for the efficient analysis of

images and other multidimensional data. These novel techniques enable the

quantification of essential geometric characteristics in complex imaging data

resulting in improved algorithms for image restoration, feature extraction and

classification. We discuss the application of these ideas in neuroscience imaging

and describe a novel method for the accurate and efficient identification of cel-

lular bodies of neurons in multicellular images. This method is instrumental to

the design of a novel algorithm for neuronal tracing.
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1. Introduction

Remarkable advances in fluorescent microscopy during the last decade have

created great opportunities for scientific investigation and discovery in neuro-

science by enabling fast acquisition of large volumes of high-resolution images.

However, to process such data efficiently and take advantage of the wealth of5
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information made available by new technologies, there is not only a need of

improved and highly specialized image processing algorithms but also of more

targeted and conceptually innovative strategies to interrogate the data.

To address such challenges, a major interdisciplinary effort is being under-

taken by the scientific community that brings together ideas from mathematics,10

statistics and computer science. As a result of this effort, several remarkable ini-

tiatives were launched in recent years aimed at tackling specific image processing

tasks in the field of neuroscience, including neuron segmentation, cell counting

and most prominently digital neuron reconstruction [1, 2, 3, 4, 5]. Digital neu-

ron reconstruction or neuronal tracing requires to automatically reconstruct15

neuronal morphology in an image by recovering the graph connectivity of the

neuronal processes and other shape characteristics (e.g., neurite length, neurite

diameter). By tracing neurons and extracting their fundamental morphometric

characteristics, researchers can understand neuronal structure and investigate

fundamental relationships between shape properties and neuronal function. Be-20

cause of the complexity of neuron morphology and the low signal-to-noise ratio

found in many images, digital neuron reconstruction is among the most difficult

tasks in computational neuroscience [6]. Despite the progress made in recent

years, significant challenges remain to be solved.

Due to their ability to capture structural information in images, directional25

multiscale methods emerged in recent years can be very effective in extracting

and quantifying critical information from images containing complex structures.

The competitive performance of these methods in problems of image denoising

and enhancement has been already demonstrated in the literature. The empha-

sis of this paper is the application of these ideas to quantify morphological prop-30

erties of neurons through a geometric descriptor called Directional Ratio. We

provide a novel theoretical analysis to show that this method precisely quantifies

the degree of local anisotropy of indicator functions of planar regions and that

this property can be applied to reliably separate neuronal sub-compartments in

microscopy images. We next discuss how this method for neuronal segmentation35

is instrumental to design an innovative algorithm of neuronal tracing. The code
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developed by the authors is released open source and freely available.

The rest of the paper is organized as follows. In Sec. 2, we briefly review the

application of advanced multiscale representations to process fluorescent images

of neurons. In Sec. 3, we analyze the properties of the Directional Ratio and40

illustrate its application for the separation of somas and dendrites in fluorescent

images of neurons. We briefly discuss how our method for the separation of

somas and dendrites is applied to designed an improved algorithm for neuron

sorting and tracing.

2. Fluorescent image processing45

Fluorescent microscopy plays a fundamental role in neuroscience imaging.

Spectacular advances in microscopy techniques and fluorescent probes during

the last decade have opened remarkable possibilities to monitor neuronal activ-

ity even at single-synapse resolution. Thanks to fluorochromes with separable

spectral properties and infocus image acquisition from selected depths (e.g., via50

confocal microscopy) fluorescence imaging enables the simultaneous, multichan-

nel visualization of specific macromolecular constituents of neurons at single cell

level and within brain circuits.

However, processing fluorescent images poses particular challenges due to

low signal-to-noise ratio, unequal staining as well as the complexity of struc-55

tures that need to be identified. Such challenges are particularly evident in

the problem of neuronal reconstruction where it is required to recover complex

structures occurring at various scales, including blob-like and tubular structures.

A variety of ideas of have been applied to the task of neuronal reconstruction

as illustrated in recent reviews [4, 6]. Traditional signal processing approaches,60

e.g., median filters and morphological operators, often perform poorly in pro-

cessing fluorescent images due to their limitations in recovering edges and deal-

ing with features occurring over multiple scales. To illustrate such challenges,

consider a typical confocal image of cultured neurons in Fig. 1. The image shows

that the application of intensity thresholding (i.e., the separation of points based65
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on their pixel intensity) is unable to effectively separate neurons from the back-

ground. In addition, it is not effective at separating cell bodies from neurites

since high intensity values may occur in both locations. We recall that neurons

are the main processing units of the central nervous system. Each neuron con-

sists of a cell body or soma, several processes called dendrites and one long and70

thin process called axon. The term neurite is used to refer to either a dendrite

or an axon.

Figure 1: (a) Confocal image of cultured neurons. Each neuron consists of a soma, several

processes called dendrites and one long process called axon. (b) Corresponding intensity

thresholded image and (c) segmented image using an SVM approach with shearlet features.

In Fig. 1(c), we show the segmentation result using a method based on Sup-

port Vector Machines (SVM) [7]. This supervised classification method maps

data by an embedding to a high dimensional Euclidean space Rn and through75

this embedding non-linear separation can be achieved using a linear classifier.

Although the implementation of an SVM algorithm is rather simple, very accu-

rate classification can be achieved by building appropriate feature vectors. In

the application shown in Fig. 1(c), feature vectors are based on the shearlet

tranform of the image (using the frequency-based shearlet filters from [8]) and80

this choice of feature vectors enables state-of-the-art segmentation performance

for segmentation of fluorescent images of neurons. We refer to [9, 10] for details

about this approach, its performance and the link to the numerical code.

Below, we briefly recall the main properties of the shearlet framework.
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2.1. Sparse image representations by shearlets85

Shearlets and curvelets were introduced during the last decade to overcome

limitations of traditional multiscale systems in dealing with multidimensional

data [11, 12, 13]. Both methods consist of systems of well-localized waveforms

defined not only over a range of scales and locations, like wavelets, but also

over multiple orientations and with highly anisotropic shapes. Due to their90

high directional sensitivity, they are especially efficient to approximate edges

and other elongated features in images.

In dimension n = 2, shearlets are generated by the action of anisotropic

dilations and shear transformations on a pair of generator functions ψ(ν) ∈

L2(R2), ν = 1, 2, that is,

ψ
(ν)
j,`,k(x) = 23j/2ψ(ν)(B`νA

j
νx− k),

for j ≥ 0, −2j ≤ ` ≤ 2j , k ∈ Z2, where A1 = ( 4 0
0 2 ) , A2 = ( 2 0

0 4 ) are the

anisotropic dilation matrices and B1 = ( 1 1
0 1 ) , B2 = Bt1 are the shear matrices

(see [14] for details). Hence the indices j, `, k are associated with a range of95

scales, orientations and locations, respectively. Curvelets have a different and

slightly more involved construction that involves anisotropic dilations, rotations

and (non-integer) translations [11].

By combining multiscale analysis and high directional sensitivity, shearlets

and curvelets provide highly sparse representations for a large class of mul-100

tidimensional data, outperforming conventional wavelets. One can prove that

shearlets or curvelets provide optimally sparse approximations in the model class

of carton-like functions outperforming wavelet-based approximations [11, 15].

Sparsity has implications not only for image restoration [8, 16, 17, 18] since

finding a sparse representation of an image usually entails capturing its domi-105

nant structures. As a result, shearlet-based features were recently employed to

identify and quantify geometric characteristics in fluorescent images of neurons

including the quantification of neurite orientations [19] and the segmentation of

neurons [20].
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In the next section, we discuss a method for neuronal reconstruction adapting110

ideas from the framework of directional multiscale representations.

3. Segmentation of fluorescent images of neurons

We consider here the problem of segmenting images of neurons containing

multiple cells and identifying their main sub-compartments, namely somas and

neurites. A related problem is to sort individual neurons in the image by auto-115

matically assigning each neurite to the respective cell. We will focus first on the

easier task of finding and segmenting each soma in the image. We will discuss

next how this is used to address the sorting and tracing problem.

Automated segmentation of somas in fluorescent images of neurons such

as Fig. 1 can be challenging due to the lack of selective markers and that large120

variability in shape and size. In fluorescent images of neurons, somas are usually

visualized in the channel marked by the MAP2 (microtubules associated protein

2) antibody staining which is diffusely distributed in both somas and dendrites.

While it is also possible to use a marker to visualized the cell nucleus, this organ

occupies only a relatively small region inside the soma so that also in this case125

further processing is needed to separate somas from neurites.

The simplest method for separating the two structures is to threshold the im-

age based on intensity values [21, 22]. However this approach is unreliable since

high-intensity regions are frequently found outside somas as shown in Fig. 1.

Algorithms based on morphological operators perform generally better but are130

very sensitive to parameter setting (e.g., size of structuring elements) [23, 24]

and their performance may decrease significantly when images contain multiple

cells and possibly clustered somas [25]. Methods based on machine learning were

also proposed [26] but they require a training stage, making their implementa-

tion computationally more involved and more sensitive to the specific neuronal135

subpopulation on which they are trained. To overcome such limitations, the au-

thors of this paper have recently introduced a new geometric descriptor called

Directional Ratio that relies on the geometric notion of local isotropy [27]. This
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method consists in applying this geometric descriptor to a segmented image of

neurons in order to separate somas from neurites and is illustrated in Sec. 3.4.140

Numerical studies by the authors in [25] have shown that this method performs

very competitively against other algorithms. Here we provide a proof of concept

of this new method using a simplified mathematical model.

Definition 1. A point x in a region A is a point of isotropy of A at scale s if

there is a ball of radius s/2 centered at x which is entirely contained in A.145

Intuitively, in an image containing blob-like and vessel-like regions, we ex-

pect to find a range of scales such that the points of local isotropy points are

located precisely inside the blob-like regions. Hence, somas and neurites could

be separate based on the local isotropy calculated over an appropriate range of

scales.150

3.1. Directional Ratio and soma detection

The Directional Ratio was introduced as an algorithmic and practical method

to identify points in an image based on local isotropy properties [10]. For its

definition, we need to consider a collection of multiscale directional filters, that

is, an appropriate set of functions {φa,θ : a > 0, θ ∈ [0, π)} ⊂ L2(R2), where a is155

a scale parameter and θ is a directional parameter. Hence the Directional Ratio

of a function f ∈ L2(R2) at scale a and location p ∈ R2 is defined as

Daf(p) =
minθ∈[0,π){|f ∗ φa,θ(p)|}
maxθ∈[0,π){|f ∗ φa,θ(p)|}

, (1)

where

f ∗ φa,θ(p) =

∫
R2

f(x)φa,θ(p− x) dx (2)

is the convolution of f and φa,θ. Note that Daf takes values in [0, 1].

In a nutshell, the function Daf(p) quantifies the degree of isotropy of f at160

a location p and scale a by taking the ratio of the smallest directional filter

response vs the largest one. If the filter response at p is independent of the

direction, then Daf(p) = 1; this indicates that p is a point of local isotropy of
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f at scale a. Points p for which Daf(p) < 1 correspond to locations with a lack

of isotropy at scale a - the closer to 0, the higher the anisotropy.165

A very simple choice of filters consists in taking rotated and rescaled ver-

sions of a rectangular window. That is, let φ = χQ, where Q is the rectangle

[−L/2, L/2] × [−1/2, 1/2], for a fixed parameter L ≥ 1. Next we define the

multiscale directional rectangular filters φa,θ = ∆aRθφ, where Rθ denotes the

2D rotation by an angle (−θ) and ∆a is the (anisotropic) dilation operator

∆af(x1, x2) = a−
1+α
2 f(a−1x1, a

−αx2), for a fixed α ∈ (0, 1]; the parameter α

controls the anisotropy of the scaling being applied (no anisotropy for α = 1,

increasingly more anisotropy as α approaches 0 ). That is, the filter φa,θ is the

indicator function of the oriented rectangular window Qa,θ obtained by rescaling

Q by a along the x direction and by aα along the y direction, and next rotating

the resulting rectangle by θ. In this case, the convolution (2) becomes simply

the integration

f ∗ φa,θ(p) =

∫
Qpa,θ

f(x) dx,

where Qpa,θ denotes the rectangle Qa,θ centered at p.

To assess the theoretical performance of the Directional Ratio for separating

regions of different local isotropy, we examine below its application where f

is the characteristic of a region including (i) a disk and (ii) a long and thin

rectangle - an assumption that makes the analytic computation of (1) easier.170

This choice of f is meant as an idealized model of the image of a cell body and

a vessel. While cell bodies found in experimental images can be more elongated

and vessels not necessarily straight, we will show that the predictions of the

theorem hold remarkably well in typical fluorescent images of neurons.

Theorem 1. Let f = χS∪N where S is a disk of radius R > 0 and N is a rect-175

angle of infinite length and width w, where S∩N = ∅. Let the Directional Ratio

be given by (1) with the multiscale directional rectangular filters φa,θ defined as

above.

(a) Assume L ≥ 2w. Then, for any p ∈ N , provided that a > 4w/L and

a1−α > 4/L, it follows that Daf(p) < 1/2.180
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(b) There exists a range of scales such that for all points p inside the disk of

radius 0.65R concentric with S we have Daf(p) > 1/2.

Figure 2: Computation of the Directional Ratio of the characteristic function of a disk of

radius R and center O at p = (0, y). (a) At small scales, when aL
2

≤ b (case 1 in narrative),

any oriented rectangle Qa,θ is contained inside the disk (here we show two rectangles at scale

a and orientations θ = 0, π/2). (b) At larger scales, c < aL
2

≤ 2c− b (case 3 in narrative), the

area of the region of overlap of the disk and Qa,θ depends on θ.

Proof. (a) Without loss of generality, suppose that the rectangle N is centered

at the origin, with the long axis parallel to the x2 coordinate. We start by

observing that185

Daf(p) ≤ |f ∗ φa,0(p)|
|f ∗ φa,π/2(p)|

=

∫
Qpa,0∩N

dx∫
Qp
a,π/2

∩N dx
. (3)

We consider first the numerator in (3) and the rectangle Qpa,0 associated with

the filter φa,0. Since L ≥ 2w, the integral
∫
Qpa,0∩N

dx is the same for any p ∈ N ;

that is,
∫
Qpa,0∩N

dx = waα. For the denominator in (3), we observe that the

integral
∫
Qp
a,π/2

∩N dx depends on the value of the first coordinate of p. Its value

is minimized when p = (w/2, x2) (i.e., p at the boundary of N), in which case∫
Qp
a,π/2

∩N dx = aα

2 aL. If aα ≤ w (width of filter less or equal than w), using
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the assumption that a > 4w/L, it follows that, for any p ∈ N

Daf(p) ≤ waα

aα

2 aL
=

2w

aL
<

1

2
.

Otherwise, if aα > w (width of filter larger than w),
∫
Qp
a,π/2

∩N dx ≥ w
2 aL so

that, using the assumption that a1−α > 4/L, we have

Daf(p) ≤ waα

w
2 aL

=
2aα

aL
<

1

2
.

(b) Without loss of generality, let us assume that the disk S is centered at

the origin and p is located on the vertical axis, i.e., p = (0, y), 0 ≤ y ≤ 0.65R.

Also, let us assume aα ≤ 1
5R. We can write

Daf(p) =
minθ∈[0,π)

∫
Qpa,θ∩S

dx

maxθ∈[0,π)

∫
Qpa,θ∩S

dx
. (4)

If p is at the origin, i.e., y = 0, then
∫
Qpa,θ∩S

dx is independent of θ and

hence from (4) we observe that Daf(p) = 1. If p is not at the origin, then let b190

and c be given as in Fig. 2(a); that is, they denote the half-length of the longest

vertical and horizontal rectangles, respectively, centered at p and fully contained

inside the disk. We discuss below several cases. Note that, since y ≤ 0.65R and

R > 5aα, it follows that b > aα.

Case 1. aL
2 ≤ b. Note that b ≤ c. Hence the rectangles Qpa,θ of length L are195

fully contained inside S for all orientations θ; hence Daf(p) = 1.

Case 2. b < aL
2 ≤ c. Since b ≤ c, the integral

∫
Qpa,θ∩S

dx is maximal when

θ = 0 and minimal when θ = π/2. We denote by Aε the area of the circular

segment whose lower boundary is the line x2 = b and the upper boundary is the

boundary of the disk S (see Fig. 2(b)). Hence

Daf(p) =
(b+ aL

2 )aα +Aε

Laaα
=

b

La
+

1

2
+

Aε
Laaα

>
1

2
.

Case 3. c < aL
2 ≤ 2c − b. The integral

∫
Qpa,θ∩S

dx is still minimal when

θ = π/2 while the maximal response occurs for an angle 0 ≤ θ̄ < π/2.

We consider first the case where θ̄ = 0. Denoting by Aδ the area of region

of intersection of the rectangle Qpa,0 and the disk S for x1 > c (see Fig. 2(b)) we

10



have

Daf(p) =
(b+ aL

2 )aα +Aε

2caα + 2Aδ
.

Next we observe that Aδ < δaα, where δ =
√
R2 − (y − aα

2 )−
√
R2 − (y + aα

2 ).

We can estimate δ as

δ ≤ 2yaα√
R2 − (y − aα

2 ) +
√
R2 − (y + aα

2 )
≤ 2yaα

2
√
R2 − (y + aα

2 )
=
yaα

c
.

From the last observation, using the fact that b > aα and 2c < aL, it follows

that200

Daf(p) ≥
(b+ aL

2 )aα

2caα + 2ya
α

c aα
=

1

2

2b+ aL

2c+ 2yca
α
>

1

2

aL+ 2aα

aL+ 2yca
α
. (5)

Let y = βR, with 0 < β ≤ 1. Observe that R2 = (y + aα

2 )2 + c2 so that

c2 = R2 − (y + aα

2 )2. Hence we can write

y2

c2
=

β2R2

(1− β2)R2 − βRaα − a2α

4

≤ β2R2

(1− β2)R2 − β
5R

2 − 1
100R

2
=

β2

99
100 − β2 − β

5

.

The above quantity is less than one if β < 0.65. Hence, using the observation

that y
c < 1 in (5), it follows that Daf(p) > 1

2 .

If θ̄ 6= 0, then either the rectangle Qp
a,θ̄

overlaps the boundary of the disk at

both ends or one of the two ends is fully contained inside the disk. In the first

case, the same estimate used in (5) will imply that Daf(p) > 1
2 . In the second

case, we have

Daf(p) =
(b+ aL

2 )aα +Aε

(c′ + aL
2 )aα +Aδ′

,

where c′ and Aδ′ are shown in Fig. 2(b). Since c′ < aL
2 and Aδ′ ≤ Aδ, arguing

as above we have

Daf(p) ≥
(b+ aL

2 )aα

aLaα +Aδ
=

1

2

2b+ aL

aL+ y
ca
α
>

1

2

aL+ 2aα

aL+ y
ca
α
>

1

2
.

Remark 1. The analysis of part (b) of Theorem 1 can be carried over for larger

values of a but the detailed discussion would become very technical. We note

that, for ‘very large’ values of a, approximately if aL > 4R − 2b, no rectangles
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Figure 3: Numerical estimation of the Directional Ratio Daf(p) as a function of the scale

a (measured in pixels) where f is the characteristic function of a disk of radius R centered

at O. We display the result for several locations p = (0, y) where 0.5R ≤ y ≤ R using (a)

rectangular filters and (b) anisotropic Gaussian filters. As predicted by Theorem 1 and 2,

away from the boundary of the disk the values of Daf(p) is above 1
2

for a range of scales. To

generate these plots we set R = 200, L = 130 and H = 33 pixels.

Qpa,θ is contained in S and the directional ratio becomes a constant function of

a, namely

Da(p) =

∫
Qpa,0∩S

dx∫
Qp
a,π/2

∩S dx
≈ c

R
.

We also remark that the value of y in the proof of Theorem 1(b) such that

Daf(p) > 1
2 can be made larger than 0.65R even though one cannot get too

close to R. If p is selected very close to the boundary of S, the value of Daf(p)205

can become very small. Figure 3(a) displays the values of Directional Ratio

computed on a synthetic image f = χS where S is a disk of radius R centered

at the origin, as a function of the scale, for representative locations p. The figure

shows that the behavior is consistent with the theoretical prediction and that

there exists a range of scales such Da(p) > 1
2 even for p close to the boundary.210

Remark 2. As mentioned above, Theorem 1 is motivated by the problem of

separating neurites from somas in microscopy images. Let us be more specific

about the dimensions found in typical experimental images.
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In a primary rat hippocampal neuron – a frequent animal model – a soma

is typically between 10 and 20 µm in diameter, while neurites have diameters215

between 0.5 and 1.5 µm [28, 29]. Hence in a typical confocal fluorescent image

such as Figure 1, where resolution is about 0.25 µm per pixel, a soma is about

40 to 80 pixels in diameter and a neurite is about 2 to 6 pixels in diameter.

Below we verify that the assumptions of Theorem 1 are satisfied in typi-

cal images of neurons and show that we can find a range of scales where the220

computed values of the Directional Ratio separate somas from neurites. For

simplicity, we assume that α = 1/2.

Based on the dimensions indicated above, we model a neurite as a long

rectangle of width w = 6. Hence, by choosing L = 13 the assumption of

Theorem 1(a) is satisfied and Daf(p) < 1/2 for a > 24/13. Next we model a225

soma as a disk S of radius R = 20. According to Theorem 1(b), we need to

impose
√
a ≤ R

5 , that is, a ≤ 4. Hence, for y = 0.65R, we find that b ≈ 0.35R,

c ≈ 0.76R so that Case 1 holds for a ≤ 1.08, Case 2 holds for 1.08 < a ≤ 2.34

and Case 3 holds for 2.34 < a ≤ 3.60. For y = 0.50R, we find that b ≈ 0.50R,

c ≈ 0.87R so that Case 1 holds for a ≤ 1.54, Case 2 for 1.54 < a ≤ 2.68, Case 3230

for 2.68 < a ≤ 3.82.

3.2. Multiscale anisotropic Gaussian filters

There are other choices of directional filters in (1) offering other potential ad-

vantages. An important example are the oriented anisotropic Gaussian functions

– a class of functions originally introduced for problems of edge detection [30].235

They are obtained by scaling a 2D Gaussian using different factors σ1 and σ2

in the x1 and x2 directions, respectively, as

g0(x1, x2;σ1, σ2) =
1

2πσ1σ2
exp

(
−1

2

(
x2

1

σ2
1

+
x2

2

σ2
2

))
,

and next rotating the coordinate axes by an angle θ, obtaining:

gθ(x1, x2;σ1, σ2) =
1

2πσ1σ2
exp

(
−1

2

(
(x1 cos θ + x2 sin θ)2

σ2
1

+ 54
(−x1 sin θ + x2 cos θ)2

σ2
2

))
.
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One of the most useful properties of these functions is the existence of a very

efficient numerical algorithm to implement their convolution in a separable

form [31]. That is, the convolution with the anisotropic Gaussian gθ(x1, x2;σ1, σ2)240

can be expressed as the composition of a 1D convolution with a Gaussian filter

in the x1 direction followed by another 1D convolution with a Gaussian filter in

a non-orthogonal direction, namely:

gθ(x1, x2;σ1, σ2) =
1

2πσ1σφ
exp

(
−1

2

x2
1

σ2
1

)
∗ exp

(
−1

2

t2

σ2
φ

)
,

where t = x1 cosφ+ x2 sinφ and φ is an appropriate functions of θ. We remark

that this property does not hold in the case of rotated rectangular filters since245

these functions are not separable except for very special angles of rotation. Ad-

ditionally, one can implement a convolution with a Gaussian using a recursive

approximation. Using these observations one obtains a convolution algorithm

that is numerically accurate and significantly faster than a FFT-based 2D con-

volution1 In [25], the authors of this paper have adapted this idea to obtain a250

very fast algorithm for the computation of the Directional Ratio. In particular,

they have shown that, for a typical image of 512×512 pixels, the computing time

of the algorithm for soma detection based on the Directional Ratio is reduced

of about a factor of 4 when the 2D convolution of rectangular filters is replaced

by the separable convolution of Gaussian filters (going from 0.86s to 0.21s using255

a MacBook with Intel Core i5 2.4GHz processor and 16 GB RAM). Using this

routine, we can detect somas faster than using standard morphological operators

and with much higher accuracy.

Theorem 1 can be carried over to the case of anisotropic Gaussian filters

yielding a similar result. In the statement below, we set σ2 = a, where a > 0260

is the scale variable and set σ1 = Hσy = H = a, where H > 1 is a fixed

parameter. We display the plot of the Directional Ratio as a function of the

1For an image of size N ×N , convolution implemented by FFT requires logN2 multiplica-

tions per pixel; separable convolution requires only 4L multiplications per pixel, where L×L

is the filter size; separable convolution and recursive approximation improves further [31].
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Figure 4: Soma segmentation using Directional Ratio. (a) Confocal image of cultured neurons

stained with soma-dendritic (MAP2) marker. Image size 512×512 pixels (1 pixel = 0.25 µm)

(b) Segmented binary image. (c) Directional Ratio computed inside the segmented region

(white region in Panel B) with values between 0 and 1. For this computation: a = 2,

L = 24. Soma region is obtained by thresholding the Directional Ratio with threshold 0.5 (d)

and next applying the Level Set method (e). Computation is repeated by thresholding the

Directional Ratio with threshold 0.9 (g) and applying the Level Set method (H). Segmented

somas overlapping the segmented image for the two runs of the algorithm are shown in (f)

and (i).
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scale using anisotropic Gaussian filters in Figure 3(b).

Theorem 2. Let f = χS∪N where S is a disk of radius R > 0 and N is

a rectangle of infinite length and width w, where S ∩ N = ∅. Let the Di-265

rectional Ratio be given by (1) with the multiscale anisotropic Gaussian filters

φa,θ(x1, x2) = gθ(x1, x2; aH, a).

(a) Let M > 0. For any p ∈ N , if Ma ≤ w ≤ a, provided H > M/0.4 it

follows that Daf(p) < 1/2.

(b) Let H < 40. There exists a range of scales such that for all points p270

inside the disk of radius 0.65R concentric with S we have Daf(p) > 1/2.

Proof. The proof follows the main ideas of Theorem 1. In a nutshell we

will approximate the anisotropic Gaussian function g0(x1, x2; aH, a) with the

characteristic function of the rectangle 4aH × 4a. In the following, it may be

convenient at times to write

φa,0(x1, x2) = g0(x1, x2; aH, a) = γ(x1, aH) γ(x2, a),

where γ(x1, σ) = 1√
2πσ

exp(− x2
1

2σ2 ).

(a) Without loss of generality, suppose that the rectangle N is centered at the

origin, with the long axis parallel to the x2 coordinate. We start by observing

that275

Daf(p) ≤ |f ∗ φa,0(p)|
|f ∗ φa,π/2(p)|

=

∫
N
φa,0(x− p) dx∫

N
φa,π/2(x− p) dx

. (6)

The numerator in (6) is maximized when p is on the x2 axis and the denominator

is minimized when p is on the boundary of the set N ; without loss of generality,

we can choose p = (0, 0) for the numerator and p = (−w, 0) for the denominator.
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Hence

Daf(p) ≤
∫ ∫

N
γ(x1, aH) γ(x2, a) dx1 dx2∫ ∫

N
γ(x1 + w, a) γ(x2, aH) dx1 dx2

=

∫ w/2
−w/2 γ(x1, aH) dx1∫ w

0
γ(x1, a) dx1

= 2

∫ w/2
0

γ(x1, aH) dx1∫ w
0
γ(x1, a) dx1

= 2

∫ w/2H
0

γ(x1, a) dx1∫ w
0
γ(x1, a) dx1

.

Using the assumption that Ma ≤ w ≤ a and that M < 0.4H we conclude that

Daf(p) ≤ 2

∫ aM/2H

0
γ(x1, a) dx1∫ a

0
γ(x1, a) dx1

<
1

2
.

(b) Without loss of generality, we assume that the disk S is centered at the280

origin and p is located on the vertical axis, i.e., p = (0, y), 0 ≤ y ≤ 0.65R.

We also assume R > 20a (note: R > 5(4a)R and compare with R > 5aα in

Theorem 1 ). We can write

Daf(p) =
minθ∈[0,π)

∫
S
φa,θ(x− p) dx

maxθ∈[0,π)

∫
S
φa,θ(x− p) dx

. (7)

If p is at the origin then
∫
S
φa,θ(x − p) dx is independent of θ and from (7)

it follows that Daf(p) = 1. If p is not at the origin, then let b and c denote285

the half-length of the longest vertical and horizontal rectangles, respectively, of

width 4σ2 = 4a centered at p and fully contained inside the disk. With this

understanding, one can interpret Fig. 2 as illustrating the essential support of

the anisotropic Gaussian function, that is, the support accounting of about 95%

of its area.290

We discuss below several cases. Note that, since y ≤ 0.65R and R > 20a, it

follows that b > 4a.

Case 1. 2aH ≤ b. We have

Daf(p) =

∫
S
φa,π/2(x− p) dx∫
S
φa,0(x− p) dx

≥
∫
S

φa,π/2(x− p) dx =

∫
S+p

φa,π/2(x) dx > 0.9,

where the last inequality is due to the fact the region of integration S+p contains

the rectangle [−2a, 2a]× [−2aH, 2aH] (recall that σ2 = a, σ1 = aH).
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Case 2. b < 2aH ≤ 2c. Since b ≤ c, again the integral
∫
S
φa,θ(x − p) dx is

maximal when θ = 0 and minimal when θ = π/2 so that

Daf(p) =

∫
S
φa,π/2(x− p) dx∫
S
φa,0(x− p) dx

≥
∫
S

φa,π/2(x− p) dx =

∫
S+p

φa,π/2(x) dx.

Since b > 4a and 2aH ≤ 2c then the rectangle [−2a, 2a]×[−2aH, 4a] is contained295

in the region of integration S + p. Since 2La = 2σ1 and H ≤ 40, then 4a >

0.1Ha = 0.1σ1 and
∫
S+p

φa,π/2(x) dx > 1/2.

For 2aH > 2c the integral
∫
S
φa,θ(x − p) dx is still minimal when θ = π/2

while the maximal response occurs for an angle 0 ≤ θ̄ < π/2. As a increases

further, however, the angle of maximal response becomes θ = π/2 and the angle300

of minimal response θ = 0. In fact, for 2aH � R and p inside S, we can think

φa,0(x− p) and φa,π/2(x− p) as essentially constant along the lines x2 = y and

x1 = 0 respectively. As in theorem 1, for 2aH � R we will find that Da(p) ≈ c
R .

3.3. Effect of noise

So far we have analyzed the computation of the Directional Ratio in the305

absence of noise. If the image f is corrupted by noise, the value of the Directional

Ratio might be affected due to the impact of noise on the convolution |f ∗

φa,θ| that could potentially modify the angle θ at which this quantity attains

its maximum or minimum. We argue below that the effect of the noise is

not expected to be significant because the convolution with a Gaussian (or310

rectangular) kernel has the effect of reducing the impact of the noise in the

image.

Let us examine the situation where a digital image f(i, j) with values i, j ∈

N×N is corrupted by additive white Gaussian noise, that is, at each pixel (i, j),

we observe the values

fn(i, j) = f(i, j) + n(i, j)

where the noise n(i, j) is i.i.d. with zero mean and standard deviation σn.

If φ is a Gaussian kernel of standard deviation h, the standard deviation

of the noise in fn → fn ∗ φ is reduced. Namely, let the number of samples k315

of the noise in an interval of size h be k = h/δ. Then one can show that the
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standard deviation of the noise (that can be interpreted as the noise amplitude)

is multiplied by 1
k
√

8π
(cf. Theorem 2.2 in [32]).

Figure 5 shows that the effect of additive white Gaussian noise on the esti-

mation of the Directional Ratio is negligible even for relatively high values of320

the standard deviation of the noise. Tests run using Poisson noise (not reported

here) show that also in that case the impact is negligible.

Figure 5: Numerical estimation of the Directional Ratio Daf at p = (0, 0.9R), as a function

of the scale a measured in pixels, in the presence of noise using (a) Rectangular and (b)

Anisotropic Gaussian filters. The characteristic function f of the disk of radius R centered

at O with amplitude 255 is corrupted by white Gaussian noise with standard deviation σ =

50, 70, 90. Values of R,L,H are set as in Fig. 3.

3.4. Soma segmentation and neurite separation

As described above, the evaluation of the Directional Ratio of an image is

designed to provide quantitative information useful to separate blob-like regions325

from vessel-like structures. A direct application of this idea to separate somas

from neurites in an image of a neurons is illustrated in Fig. 4 and consists of

the following steps.

1. Segmentation. The image is first segmented using the SVM method dis-

cussed in Sec. 2 (Fig. 4(b)). This method generates a binary image iden-330

tifying a region that contains both somas and neurites.
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2. Directional Ratio. Directional Ratio is computed at an appropriate scale

using as a mask the segmented region computed in step 1 (Fig. 4(c)).

3. Thresholding. The Directional Ratio plot is thresholded using as threshold

value 1
2 hence identifying a region corresponding to somas and a comple-335

mentary region corresponding to neurites (Fig. 4(d)).

As the figure shows, the method based on the Directional Ratio finds the

somas in the image very reliably. In addition, thanks to the fast implementation

of the anisotropic Gaussian filters, the computing time is faster than standard

morphological operators [25]. This implementation has however some limita-340

tions due to the simplifying assumptions of our model. In experimental images,

somas are not necessarily circular but may be rather elongated with irregular

boundaries. To improve the algorithm, a relatively simple refinement consists

in the following modification. Following step 3, possibly with a higher threshold

value (resulting in the detection of a smaller region as shown in Fig. 4(g)), we345

apply the classical Level Set algorithm [33] to grow the detected region with a

growth speed controlled by the Directional Ratio. The final result displayed in

Fig. 4(h-i) shows that this refined version of the algorithm segments the somas

with high accuracy. Extensive numerical demonstration of this algorithm includ-

ing a comparison with competing algorithms can be found in [25]; the numerical350

code is available at https://github.com/cihanbilge/SomaExtraction.

We remark that the selection of the scale parameter at which to compute

the Directional Ratio can be automatized by estimating the ‘dominant scale’ of

the image using the principles of automated scale selection [25, 34].

3.5. Digital neuron reconstruction355

As observed in Sec. 1, despite the significant progress made by the scientific

community, digital neuron reconstruction remains a challenging problem and

existing algorithms have still significant limitations. In particular, even though

there are tracing algorithms that perform competitively, they are typically de-

signed to process images containing single neurons or multiple neurons that are360

separated [6, 35, 36]. If multiple cells with non-separated neurons are present,
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these methods are usually unable to automatically sort traces into neuronal

arbors corresponding to individual neurons [37]. As shown in Fig. 4, even in im-

ages of neuronal cultures with relatively low density it is common to see neurites

that appear to overlap. Automatically sorting neuronal trees in these images is365

not a trivial problem in general.

Figure 6: Neuronal tracing. (a) Confocal image of cultured neurons labelled with anti-MAP2

antibody and (b) corresponding digital reconstruction where somas are segmented and separate

individual trees are extracted for each neuron.

We outline below a strategy for neuronal tracing that is designed to sort

individual neuronal trees found in two-dimensional images where neurites from

different neurons may overlap. This method relies critically on the soma seg-

mentation method described above as it assigns the root of each neuronal tree370

corresponding to the soma location. The algorithm consists of the following

steps:

1. Segmentation and soma detection. This is the algorithm presented in

Sec. 3.4. It identifies somas and neurites.

2. Path initialization. It finds the initial location and orientation of each375

path emanating from a soma into a neurite.

3. Tracing. After generating seed points along the neurites using an appro-
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priate distance function, it progressively compute paths along each neurite

emanating from each soma. Intersecting neurites are solved by following

the path with minimal change in orientation.380

The application of this method to compute individual trees for each neuron in an

image of a neuronal culture is illustrated in Fig. 6, showing that neuronal trees

are accurately separated. The numerical code to generate this image is available

at https://github.com/cihanbilge/AutomatedTreeStructureExtraction.

By computing separate traces for each neuron, this algorithm facilitates the385

computation of multiple morphometric characteristics corresponding to each

neuron in the image. One main advantage of this approach is that each neu-

rotic trace provides a local coordinate system that is useful to measure local

expression levels of analytes visualized in the fluorescent image by computing

their local intensity. A more detailed description and illustration of this algo-390

rithm is beyond the scope of this paper and will be discussed in future work.
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