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Abstract Despite the significant advances in the develop-
ment of automated image analysis algorithms for the de-
tection and extraction of neuronal structures, current soft-
ware tools still have numerous limitations when it comes
to the detection and analysis of dendritic spines. The prob-
lem is especially challenging in in vivo imaging, where the
difficulty of extracting morphometric properties of spines is
compounded by lower image resolution and contrast levels
native to two-photon laser microscopy. To address this chal-
lenge, we introduce a new computational framework for the
automated detection and quantitative analysis of dendritic
spines in vivo multi-photon imaging. This framework in-
cludes: (i) a novel preprocessing algorithm enhancing spines
in a way that they are included in the binarized volume pro-
duced during the segmentation of foreground from back-
ground; (ii) the mathematical foundation of this algorithm,
and (iii) an algorithm for the detection of spine locations
in reference to centerline trace and separating them from
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the branches to whom spines are attached to. This frame-
work enables the computation of a wide range of geometric
features such as spine length, spatial distribution and spine
volume in a high-throughput fashion. We illustrate our ap-
proach for the automated extraction of dendritic spine fea-
tures in time-series multi-photon images of layer 5 cortical
excitatory neurons from the mouse visual cortex.

Keywords Image processing · Automated neural image
segmentation · Automated dendritic spine detection ·
two-photon microscopy

1 Introduction

Dendritic spines are micrometer-sized protrusions occurring
on the surface of dendrites. They appear in a variety of shapes,
and undergo activity-dependent structural remodeling so that
they can also appear and disappear over time. Neurophysi-
ological studies have shown that morphological changes at
the level of dendritic spines are highly correlated with cog-
nitive function, including mechanisms of learning and mem-
ory. Spines play a critical role in neuronal information pro-
cessing, as electrical signals from other neurons are trans-
mitted to dendrites via synaptic gateways located at spines.
Dendritic spine morphology is closely correlated with synap-
tic strength and experimental results show that abnormal
spine morphology is prevalent in many brain disorders Pen-
zes et al (2011). Therefore, there is a crucial need to effi-
ciently detect spines and accurately quantify their morpho-
logical properties. In the present paper, we propose an algo-
rithm for the automated, accurate spine detection and count
applicable to both high and lower resolution fluorescence
microscopy images, acquired, even in vivo. The proposed
algorithm works genuinely in 3D and is suitable for high
throughput image analysis acquired with two-photon laser
microscopy or other higher resolution microscopes. Our main
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novelty is the introduction of a preprocessing step which
acts as a directional filter of the input image sensitive to 3-D
orientations other than the main centerline and perpendic-
ular to spine necks. Thus, this step enhances details of the
dendritic surface, indicative of the presence of spines. As
part of this study, we discuss a model for intensity distribu-
tion in the vicinity of spines and using this model we math-
ematically justify why our image preprocessing enhances
spines. The automation of the method is inherited from the
multiscale one-class classification segmentation algorithm
of Hernandez-Herrera et al (2016). This algorithm contains
an automated method for selecting the training set that does
not require human intervention. User guidance is only needed
to set the threshold for the minimum spine length, so that
they can be separated from small dendritic branches. As part
of this paper, we also include a method for extacting and
separating spines from dendritic branches so that we can
compute spine volume and potentially other shape charac-
teristics.

The ultimate goal of spine analysis is the discovery of
the specific structure-function relationship linking spine mor-
phology to synaptic strength Donohue and Ascoli (2011).
The problem is even more challenging in in-vivo imaging,
where the difficulty of extracting morphometric properties
of spines is compounded by lower image resolution and higher
noise levels and tissue motion due to blood circulation. Un-
der those constraints several other researchers made numer-
ous contributions in neuronal imaging and in the imaging of
spines.

Digital representation of neuronal morphology has tradi-
tionally relied on manual or semi-manual tracing, e.g., Neu-
rolucida Glaser and Glaser (1990), AutoNeuron Meijering
(2010); Donohue and Ascoli (2011), Imaris. However, this
approach is not only labor-intensive and prone to subjective
errors, but also very impractical for the analysis of volumet-
ric data. Neurolucida’s AutoSpine MBF Bioscience (2011)
only provides qualitative or limited quantitative information
in reference to sub-neuronal structures Scorcioni R. (2008)
including spines, and requires a significant manual interven-
tion. Recently published research limits the use of semi-
automated tools for spine detection to single branch sec-
tions using head measurements made with simple threshold-
ing filters, implemented on an Imaris or AutoNeuron plat-
form Swanger et al (2011). Spine populations are tracked
globally within a region of interest and not on a spine-to-
spine basis. As a consequence, other methods for spine de-
tection and analysis were proposed in the literature in recent
years. Existing automated methods include 2D algorithms
Bai et al (2007); Cheng et al (2007), where the analysis
is conducted on maximally intensity projection (MIP) im-
ages, that is, microscopy image voxels with maximum in-
tensity are projected onto a 2D plane perpendicular to the
rays of illumination. This method is released as the Neu-

ronIQ freeware. However, 2-D methods may miss a signifi-
cant amount of information since spines that are orthogonal
or near-orthogonal to the imaging plane may be lost in the
projection. Even for the spines that are detected, such meth-
ods cannot guarantee accurate morphological reconstruction
and spine tracking in general (two-dimensional methods may
be suitable for cultured neurons since their dendrites develop
primarily horizontally and the available resolution is higher
than in two-photon microscopy). To overcome these draw-
backs, a number of 3D-based algorithms were proposed:

In Rodriguez et al (2008), dendrites are segmented and
candidate spine voxels are identified using a classification
approach based on voxel clustering; spines are detected by
clustering candidate spine voxels based on connectivity prop-
erties. It includes a routine to reattach spine stems to spine
heads when spine neck is missed during segmentation and a
Rayburst method to classify spines. It is applied to confocal
image stacks and implemented in Neuronstudio.

In Janoos et al (2009) a method based on skeletonization,
which extracts the backbone of the neuron and identifies the
spines as the shorter lines of the skeletonized data, is pro-
posed. The method is time consuming and not very reliable
in detecting spines.

In Zhang et al (2010), dendrites are extracted using a
centerline extraction-based approach. Preprocessing is ap-
plied to remove noise and improve image quality; gradi-
ent vector tracking and feature point detection are used to
find the neuronal backbone and detect candidate spine lo-
cations; a method based on eigen-analysis (eigen-analysis
of the Hessian matrix) is applied to feature points to detect
spines and spines are segmented using the fast marching ap-
proach. It is applied to confocal image stacks.

In Li and Deng (2012) data are preprocessed with me-
dian filter (to remove noise) and top-hat filter (to correct
uneven illumination); fuzzy C-mean clustering is used to
cluster image into background, weak spines, dendrites with
strong spines; marching cubes algorithm is used to recon-
struct 3D surface of neuron. Rayburst sampling algorithm is
used to compute the dendrite backbone. Spines are detected
using a combination of geometric features (distance to den-
drite backbone, surface curvature and orientation). They also
propose a method to separate touching spines. It is applied
to confocal image stacks.

In Shi et al (2014) dendrites are segmented using an
adaptive thresholding method (as in Cheng et al (2007)),
followed by morphological operators to fill possible holes
and smooth boundaries. The backbone of the dendrites is ex-
tracted using a Rayburst-type approach; spines are detected
as in Rodriguez et al (2008) by clustering candidate voxels
from the tip points and then segmented according to the re-
sponse of a wavelet-based filter. Spines are classified using
semi-supervised learning.
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Boundary characteristics of dendritic spine structures are
used in He et al (2012a,b) to detect spines by finding their
tips. Such a distinctive tip feature is identified using the min-
imal cross-sectional curvatures on the surface of the spine as
it significantly larger than those on other locations. Spines
are then segmented using a region growing strategy. It is ap-
plied to confocal image stacks.

Curvilinear structure detection methods are used in Fan
et al (2009) to detect the medial axis of the dendritic arbor,
followed by spine detection based on adaptive local binary
fitting. This work presents some of the highest spine detec-
tion rates reported in the literature. Input images have been
acquired with a multiphoton microscope. This work in addi-
tion presents a very interesting method for spine tracking in
time-lapse images.

In summary, the main differences between these meth-
ods and ours is that we use binary segmentations of the den-
dritic volume including spines which is the basis of our in-
ferences and essentially the elimination of the requirement
for training which are particularly sensitive to variations of
the dendritic surface. We entirely avoid denoising and inten-
sity thresholding and instead introduce a spine enhancing
preprocessing step. We contend that the special sensitivity
of our algorithm can be attributed to the fact that the pre-
processing step we apply acts as directional filtering which
automatically sets the orientation sensitive to surface vari-
ations to be parallel to spines. Apart from this novel direc-
tionally sensitive preprocessing step, other contributions of
our work are the development of:

1. An integrated algorithm which only requires minimal
parameter tuning in order to automatically detect and count
spines;

2. A mathematical model for fluorescent intensity dis-
tribution in the vicinity of spines. Although, our algorithm
does not evaluate spine volume with high accuracy, it does
give an estimate of it.

3. A natively 3-D method that works even for low reso-
lution laser microscopy images, such as two-photon.

We envision that our work will provide a core tool for
the automated, accurate 3-D analysis of fine structures in
neurons that might facilitate the understanding of structure-
function relationships at the base of synaptic plasticity.

2 Methods

In this paper we focus on data acquired in vivo using two-
photon imaging.

Our spine detection and segmentation algorithm is orga-
nized according to the pipeline illustrated in Figure 1. Af-
ter fluorescent image stacks are acquired, data sets are seg-
mented to separate neurons from background after a prepro-
cessing step which we discuss in detail in Subsection 2.1.

Image Acquisition

Generate Volume of Sec-
ond in Order of Mag-
nitude H f Eignevalue

Segmentation of
Eigenvalue Volume

Centerline Tracing

End-point Detec-
tion Including Spines

Spine Segmentation
and Spine Tip Pruning

Completion of Spine Detection

Fig. 1: Pipeline of the proposed automatic spine detection
algorithm.

The segmented data are then processed to detect the end-
points of the tubular structures and to extract the centerline.
Using this information, the algorithm then proceeds to detect
spines. A byproduct of the final step of spine detection is an
estimation of their volume. In the following, we describe in
detail each step of the algorithm and we discuss the mathe-
matical justification of the image preprocessing step.

2.1 Image segmentation and preparation for spine detection

Several algorithms were proposed in the literature for the
segmentation of fluorescent images of neuronal structures.
These algorithms typically rely on the notion of tubular struc-
tures to represent the vessel-like systems found in the im-
ages of neurons. We must clarify that we do not refer here
to centerline extraction algorithms for which it is sufficient
only to detect the presence of a tubular structure (vesselness)
but the the identification of the entire neuronal structure.

Neuronal segmentation algorithms use deterministic or
probabilistic approaches to accomplish their goal. For exam-
ple, Jiménez et al (2013); Jiménez et al (2015); Santamaria-
Pang et al (2015) use a set of multiscale isotropic Lapla-
cian filters to segment tubular structures. Other segmenta-
tion methods are based on probabilistic approaches, e.g. Schaap
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et al (2007) where a Bayesian-based method for centerline
extraction is proposed and, Agam and Wu (2005), where a
probabilistic vessel enhancement method is developed; Tyrrell
et al (2007) introduces a deformable framework based on
super-ellipsoids for the segmentation of vessel-like struc-
tures.

The drawback of these tubular segmentation methods
is that, while they effectively segment neurites and other
vessel-like structures, they are usually not sufficiently sen-
sitive to resolve fine scale structures on dendritic surfaces,
such as dendritic spines. As mentioned above, fluorescent
images of neurons and two-photon images especially are
typically very noisy, and most neurite segmentation algo-
rithms are not expected to resolve subdendritic structures
and details of dendritic surfaces. To address this problem, we
adopt a novel preprocessing step designed to enhance den-
dritic spines and other fine details of the dendritic surface
as we explain below, before we even apply a neurite seg-
mentation algorithm. The method on which this preprocess-
ing step is based on is inspired by tubular structure detec-
tion eigenvalue-based methods originally proposed in Kris-
sian et al (2000). This method was experimentally discov-
ered and was first reported in the doctoral thesis of one us
Herrera-Hernandez (2015). Here, we take this method one
step further and provide a mathematical justification about
why it works.

In a nutshell, the application of this method to a 3D im-
age containing dendritic branches generates a new 3D im-
age where small protrusions emanating from the dendritic
surface are enhanced. As a first step, we filter the raw im-
age with a suitable Gaussian 3D-isotropic filter in order to
smooth it. We emphasize that the size of this Gaussian win-
dow must be fine enough to include the bandwidth in which
spines live. Otherwise, spines and other fine surface struc-
tures will be truncated. The smoothness of the generated
image enables the numerical computation of second-order
partial derivatives which are needed to compute the Hes-
sian of the input image. Our new derivative image is ob-
tained b replacing the intensity of each voxel by the second
in order of magnitude eigenvalue of the Hessian matrix of
the (smoothed) raw image. Finally, on this new 3D deriva-
tive image we apply the segmentation algorithm proposed in
Hernandez-Herrera et al (2014) to obtain the binary volume
of the dendrite including its spines. This volume will be used
for spine detection as described below in Subsection 2.2.

Next, we wish to explain the role in spine detection and
spine enhancement of the second in order of magnitude eigen-
value of the Hessian matrix of the low-pass filtered raw im-
age. To do so, we recall, that the Hessian matrix defines the
second order differential of the filtered raw image f , hence
it is the differential of ∇ f . Consequently, if H f (x0) is the

Hessian matrix of f at x0, then we must have

lim
v→0

‖∇ f (x0 + v)−∇ f (x0)−H f (x0)(v)‖
‖v‖

= 0.

In this case H f (x0) is a 3× 3 matrix and v ∈ R3. To make
everything work seamlessly, we need the assumption that
all second order partial derivatives of f are continuous in a
neighborhood of x0. Now, assume that the point x0 is at the
axis of a spine. Then it is reasonable to assume that the level
surface of f containing x0 is such that the axis of the spine
coincides with the direction of the normal vector of the level
surface at x0. Typical examples of such level surfaces arise
from elliptical paraboloids. This model for intensity value
distribution can also account for the anisotropy of the sam-
pling grid known as z-smear. We assume that this is true as

Fig. 2: A longitudinal view of the surface of the 3D synthetic
dendritic branch and spine prototype model used to illustrate
our theoretical analysis on the significance of the second in
order of magnitude eigenvalue of H f . The image has been
produced by applying Gaussian blurring to the synthetic im-
age of two cylinders, one representing a dendritic branch and
the smaller one representing a spine neck.

x0 traverses the axis of the spine, which we assume that it is
a straight line segment. Recall that gradients are perpendicu-
lar to level surfaces. Our intensity spatial distribution model
postulates that, when x0 is close to the base of the spine neck,
the gradient of the intensity f is relatively smaller than when
x0 has moved closer to the tip of the spine, because intensity
drops gradually but faster when x0 is closer to the tip of a
spine. Figures 3 and 4 show how intensity varies inside a
synthetic 3-D image of an idealized dendritic branch con-
taining a spine .

According to our remarks above, if n is the unit vector
parallel to the axis of the spine, then ∇ f (x0) = ι(x0 · n)n,
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Fig. 3: Intensity values inside a longitudinal cross-section of
the synthetic dendritic branch-spine 3-D image

Fig. 4: Intensity values inside a coronal cross-section of the
synthetic dendritic branch-spine 3-D image

where ι is a real-valued function defined exclusively on the
spine axis. Here, x0 ·n is the coordinate of x0 in reference to
the spine axis (we can also use x0 instead, but that should
not obscure the fact that ι is an one-variable function only).
Keep in mind that the gradient of f at x0 and the normal vec-
tor n have opposite directions, because intensity is typically
decreasing as x0 traverses the spine axis toward its tip.

Fig. 5: A longitudinal cross-section of the the second in or-
der of magnitude eigenvalue of H f . Note how significant its
values are along the axis of the spine just as our theoretical
analysis predicts.

Now, if v = hn, where h ∈ R, then

0 = lim
v→0

‖∇ f (x0 + v)−∇ f (x0)−H f (x0)(v)‖
‖v‖

= lim
h→0

∥∥∥∇ f (x0 +hn)−∇ f (x0)

h
−H f (x0)(n)

∥∥∥
=
∥∥∥ lim

h→0

ι(x0 ·n+h)n− ι(x0 ·n)n
h

−H f (x0)(n)
∥∥∥ .

Since f is twice differentiable, we have that ι is differen-
tiable at x0 ·n and therefore

0 = lim
h→0

∥∥∥∇ f (x0 +hn)−∇ f (x0)

h
−H f (x0)(n)

∥∥∥
= ‖ι ′(x0 ·n)n−H f (x0)(n)‖,

which implies ι ′(x0 ·n)n = H f (x0)(n). Thus, n is an eigen-
vector of H f (x0). So, the other two eigenvectors of H f (x0)

are both perpendicular to n. Our model postulates that when
x0 is close to the base of the spine neck, it is expected that
intensity f around this point and along the spine axis decays
slowly enough, so that the smallest eigenvalue of the Hes-
sian of f at x0 should correspond to the eigenvector n. The
exact opposite should be true when x0 is closer to the tip of a
spine. Therefore, closer to the base of a spine neck or to the
tip of a spine, the second in magnitude eigenvalue of H f (x0)

corresponds to an eigenvector which is perpendicular to the
spine axis. This is also true at the branching points of the
dendritic arbor. On the other hand, the 3D-image of the sec-
ond in order of magnitude eigenvalue of H f is the function
defined by the matrix multiplication

x→ u(x)T H f (x)u(x) ,

where u(x) is the unit eigenvector corresponding to the sec-
ond in order of magnitude eigenvalue of H f (x). We remark
that u(·) acts as a directional filter generating the 3D-image
of the second in order of magnitude eigenvalue of H f . At the
neck or the tip of a spine, u(·) reorients itself automatically
and perpendicularly to the spine neck, preferentially enhanc-
ing the spine neck and its tip. As x0 slides on the spine axis
in a direction opposite to the spine and inside the dendritic
branch to which the spine neck is attached, intensity f level
sets become cylindrical, oriented parallel to the branch axis.
Thus, we can reasonably expect that the eigenvector corre-
sponding to the smallest in magnitude eigenvalue of H f (x0)

(which is actually equal to zero) is parallel to the dendritic
branch axis. However, n is always an eigenvector of H f (x0)

and as intensity decays faster inside the dendritic branch in
an orientation other than n, we conclude, that the eigenvec-
tor corresponding to the second in order of magnitude eigen-
value of H f (x0) is now parallel to n. In Fig. 5, the reader can
see that close to the base of the spine the second in order of
magnitude eignevalue of H f (x0) still gives some significant
values, yet not as strong as on the spine axis which is inside
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Fig. 6: A longitudinal cross-section of the the second in order of magnitude eigenvalue of H f . Note how significant its values
are along the axis of the spine just as our theoretical analysis predicts.

the spine. Any absolute value difference between the values
of the second in magnitude eigenvalue of H f (x0) in these
neighboring locations of x0 creates a contrast expected to
enhance the detail of the spine neck. This type of enhance-
ment cannot be achieved with the Laplacian of f . As it is
equal to the sum of the eigenvalues of H f , he Laplacian of
f is always influenced by the eigenvalue of H f (x0) with the
highest absolute value, especially when the other eigenval-
ues are much smaller.

We remark that the 3D-image of the second in order of
magnitude eigenvalue of H f generates an input for the one-
class classification segmentation algorithm in Hernandez-
Herrera et al (2014) which considers the background as one
class and the dendritic structure as the outlier (set-theoretic
complement of the background class). Our experimental re-
sults verify that this combination of features and classifica-
tion scheme can effectively incorporate in the binary volume
fine-scale surface details, such as spines. We conjecture the
that sensitivity of the system to spine presence relies on the
fact that the 3D-image of the second in order of magnitude
eigenvalue of H f is the result of an essentially directional
representation sensitive to the details of the dendritic sur-
face.

We wish to emphasize that this preprocessing step is not
intended for accurate spine segmentation. This can actually
be verified from Fig. 5. The sole purpose of the preprocess-

ing step is to enable accurate and robust spine detection (see
Subsection 2.2). In fact, our arguments predict that the sec-
ond in order of magnitude eigenvalue of H f does not neces-
sarily have enough sensitivity to spine surfaces. The output
of this preprocessing step is then used for volume segmenta-
tion, executed by a one-class classification segmentation al-
gorithm proposed in Hernandez-Herrera et al (2014, 2016).
This algorithm extracts global parameters for the segmenta-
tion. This forces the accuracy of the segmentation of a spine
to not depend on local parameters but, instead, to depend
on the global classification parameters derived for the en-
tire volume by the segmentation algorithm of Hernandez-
Herrera et. al. This algorithm is used twice, and since it pro-
vides automatic volume segmentation, we conclude that our
method for detecting spines inherits the same level of autom-
atization. In fact, in the experiment described in Table 3 be-
low, we see how the automated extraction of the global clas-
sification parameters from the entire data volume required
by the algorithm of Herrera-Hernandez et.al, Hernandez-
Herrera et al (2016), influences the accuracy of spine de-
tections.

We close this discussion by noting that the above math-
ematical model may seem restrictive since the spine axis is
assumed to be perpendicular to the branch axis. We use this
assumption to simplify the mathematical arguments of our
analysis. The experimental results indicate that the applica-
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Fig. 7: Pictorial illustration of the final step of spine detection and identification: The right hand side of the figure is an
example of dendritic endpoint and on the left hand side of the figure shows the way we extract the spine. This bounding
sphere does not lead to an accurate spine segmentation, but it eliminates multiple spine tip designations on the surface of the
same spine.

bility of the second in order of magnitude eigenvalue of H f
as a spine detector exceeds the domain of the above spine
axis perpendicularity assumption, showing that this use of
H f gives a reliable spine detector.

In order to demonstrate pictorially why the second in or-
der of magnitude eigenvalue of the Hessian of the filtered
raw image enhances spines and visually illustrate the previ-
ous analysis, we generated a synthetic 3D image modeling
a dendrite with a spine on it. One can easily see that the sig-
nificant values of this eigenvalue (positive or negative) in a
spine neighborhood occur close to the its neck or parallel
to its axis (Fig. 5). With regards to the influence of scale of
the smoothing Gaussian filter used to pretreat the raw image
before computing the Hessian, we remark that, since spines
can be considered as fine-scale image details, the use of mul-
tiple scales may not be effective to improve detection. In
fact, we are not creating features to be used by a classifica-
tion scheme for detecting spines, but instead we produce a
new image in which spines are enhanced and we apply the
binary segmentation code on that image in order to extract a
binary volume of the dendritic arbor including its spines. In
Fig. 6 we show how the second in order of magnitude eigen-
value of the Hessian of the filtered raw image enhances de-
tails of the dendritic surface including spines and helps the
segmentation algorithm include them in the volume.

2.2 Dendrite centerline extraction and spine detection

Geometric analysis of 3D irregularly shaped objects is dif-
ficult. One of the widely used methods to analyze the ge-
ometry of objects is to determine and study their centerline.
Several methods have been proposed for centerline extrac-
tion using the distance transform Bas and Erdogmus (2011);
Koh (2001); Zhou and Toga (1999); Meijering (2010); Mor-

rison and Zou (2006). For this task, we use the algorithm
developed by Jiménez et al (2015) to extract the centerline
because it uses as input the binary volume of the dendritic
arbor produced by the previous steps of our algorithm. Cen-
terline extraction is important because it delivers the graph
structure of the dendrite which serves as a natural coordi-
nate system to track spines. First, we extract the centerline
of the segmented volume and identify branching points and
falsely identified minute branches. We use a simple length
thresholding to prune unlikely branches and treat the rest of
the centerline as the dendritic centerline.

Spine detection is carried out by identifying spine tip
points after having extracted the dendritic centerline. Those
points are identified by a voxel coding algorithm Zhou et al
(1998); Zhou and Toga (1999) which, simply speaking, as-
signs a unique distance hierarchy rank from a given, manu-
ally selected, seed point for each voxel in the dendritic vol-
ume. Although this type of algorithm has the flavor of front-
propagation or deformable model algorithms, voxel coding
distance hierarchy assigns to each voxel an integer value in-
dicating the discrete time step at which the algorithm reaches
a certain voxel after initializing from a given seed point.
Points with maximal rank whose every immediate neighbor
has a smaller rank are classified as terminal points. Those
points are either dendritic branch terminal points or spine
tips. The distance of the latter from the closest centerline
point is typically significantly smaller than the length of
even small branches. Branch terminal points can be identi-
fied by their proximity to the end points of the extracted cen-
terline. This criterion distinguishes spine from branch termi-
nal points, thus completing the detection of spines. However,
on each spine we may end up with more than one tip points,
usually forming a cluster. This potential conflict is solved
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Fig. 8: 2D projected view of the steps of spine extraction: (a)detail of the region of interest; (b) tip voxel obtained shown on
a particular spine; (c) region on the spine when the radius of the sphere is 2 units; (d) region on the spine when the radius
of the sphere is 3 units; (e) region on the spine when the radius of the sphere is 4 units; (f) approximately extracted spine
volume.

by using our spine segmentation algorithm described below
which avoids multiple detections of the same spine.

2.3 Spine extraction

For each spine tip voxel T , a sequence {St}t of spheres with
center T is generated (see figure 7 for a 2D illustration).
Consider T fixed. The region of interest RT

t around T is the
intersection of the segmented volume V and the sphere St
with center T . We find the radius of the sphere which inter-
sects the main centerline for the very first time step t, say at
the point P, and denote it by rT

0 . If the angle between the line
segment PT and a small segment of the centerline contain-
ing P is relatively small, we classify such a tip voxel to be as-
sociated with a dendrite and not with a spine. Otherwise, the
tip voxel T is classified as a spine tip point. In this case, we
must identify the region of interest Rt containing all voxels
belonging to the spine with T as its tip. Since the region of
interest (ROI) is determined by the selection of St , we must
find the optimal radius of the sphere centered at T which
contains the minimum number of voxels not belonging to T .
To this end, we estimate the local thickness of the dendrite
rT

1 utilizing the centerline information. Thus, the ROI for the
spine having T as a tip voxel is the intersection of the sphere
with center T and radius rT = rT

0 − rT
1 and the spine is the

connected component containing the ROI curved out using
the voxel T as the center (see figure 8 for a projected view
of the spine extraction procedure). Any other tip voxels be-

longing to this ROI will be ignored. So, the algorithm will
proceed with spine tip voxels outside the previously iden-
tified ROI. The spine volume is roughly estimated by the
number of voxels in this ROI. We do not claim that this is
an accurate volumetric estimation process, since those ROIs
are curved out by intersecting approximations of spheres in
the digital domain with small radii with the binary volume
of the dendritic arbor. However, it is reasonable to assume
that each of these connected components corresponds to a
single spine. Therefore, the number of the identified con-
nected components is the total number of spines detected in
the dendritic volume. Moreover, we can associate each spine
with the point P on the centerline identified in the spine seg-
mentation process and thus give a centerline coordinate to
each spine which can be used for tracking spines. To avoid
false detections, primarily due to noise we set a threshold
for the minimum number of voxels in a spine. In our exper-
iments we set this number equal to 10, which is a relatively
small number given that spine axes range anywhere between
5 to 8 voxels minimum. So, below this threshold we antici-
pate not to have spines but imaging artifacts or random vari-
ations of the shape of dendritic branches.

3 Experiments and Results

Cranial windows are implanted in ketamine/xylazine anes-
thetized adult GFP-M transgenic mice (age at surgery, 80−
100 days), which express enhanced GFP under the thy-1 pro-
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moter. The skull overlying the right visual cortex was re-
moved and replaced with a cover-glass window, leaving the
dura intact. Animals recovered from surgery for at least 30
days before imaging started. Live two-photon imaging was
carried out using a custom-built microscope and a mode-
locked Ti:sapphire laser (Mai Tai, Newport/Spectra Physics,
Santa Clara, CA) at 912nm through a 40x water immersion
objective (0.8 NA, Olympus, Tokyo, Japan). Scanning and
image acquisition were controlled by ScanImage; the aver-
age power delivered to the brain was < 50 mW . Imaging was
carried out at high resolution−1024×1024 pixels, 0.08 µm
per pixel, 0.5 µm z step size. We validated the performance
of our method on the detection of spines using five data sets
that we denote as Set 1, 2, 3, 4, 5. Sets 1 and 2 have sizes
469× 453× 38, set 3 has size 512× 512× 96. Volumes 1
through 3 were provided to us by Professor Tara Keck. of the
MRC Center for Developmental Neurobiology of the King’s
College, London, UK.

Data sets 4, 5 have also been acquired with a two-photon
microscope. They are 512× 512× 90 and 512× 512× 57
image stacks respectively. Voxel sizes in both of them are
0.166× 0.166× 0.5µm3. These data sets were acquired by
Dr. Mari Sajo of the Department of Psychiatry of the Mount
Sinai Hospital in New York, NY with the purpose to com-
pare spine turnover rate between WT mice and Lynx1KO
mice Sajo et al (2016). Data sets 4 and 5 are from the WT
mice. In this experiment Thy1-M line male mice (purchased
from the Jackson Laboratory [B6.Cg-Tg (Thy1-EGFP) Mrs./J])
, 7 months old. Image stacks are from cells in the visual cor-
tex binocular zone, Layer 5 pyramidal neurons. Two-photon
imaging was performed with a Prairie Technologies Ultima
microscope and PrarieView software. All images were taken
with 20× water-immersion objective (Zeiss W Plan-
APOCHROMAT, 1.0 numerical aperture). A mode-locked
Ti:sapphire laser (Chameleon Ultra II; Coherent) was used
to generate two-photon excitation. Dendritic spine images
were acquired up to a depth of 100 µm at a magnification of
6 zoom.

Evaluation of performance for the first four data sets
differs from that of the fifth set. For all five sets automati-
cally counted spine numbers were compared against manu-
ally counts. For volumes 1 through 4 we first performed a
selection of subvolumes described in Subsection 3.2. Auto-
matic spine counts were compared with manual spine counts
in each of these subvolumes. The fifth volume was used in
its entirety. Below, we discuss the details of spine counts.

3.1 Spine counts

Manual spine counts in a large 3D volume data set is highly
impractical (in addition to being a tedious) task and is sub-
jected to the non-uniform error propensity of the human ex-
pert who performs the count. To reduce the number of errors,

we decided to select randomly extracted non-overlapping
sub-volumes from the entire set and perform the validation
on each such subvolume. This trick statistically technically
increases the number of data volumes we have, allowing us
to extract estimates of accuracy which we cannot do if we
use the five volumes we have in their entirety. A sample of
five is not enough for estimation of detection accuracy. On
the other hand, this estimation would be influenced by the
inconsistent errors of the human operator. It is not hard to
see that if there is an erroneous detection in a subvolume, the
impact of this error in the detection accuracy is much higher
when this error is counted in the subvolume instead of the
entire volume. After algorithmic spine detections are com-
pleted, then we select the sub-volumes to carry out manual
spine counts and compare them with those performed by our
algorithm. We chose to perform the count of the fifth volume
in its entirety to cross validate the performance estimates ex-
tracted from the subvolumes of data sets 1 through 4. For
those volumes, we used the semi-automated tools Neuron-
studio and Neurolucida to count spines and compare our
spine detection rates with those of Neuronstudio and Neu-
rolucida. We remark that the proposed algorithm’s accuracy
rates (precision and recall) are the statistically the same with
those obtained from the fifth volume. This implies that per-
formance empirical success rates, although differently eval-
uated for the 5th volume, have not been influenced by the
choice of using subvolumes to assess system performance.

3.2 Sub-volume selection

Here, we describe how we randomly selected the small sub-
volumes from a given 3D image stack.

The goal is to select non-overlapping 3D boxes of the
same size containing each a relatively reasonable number of
spines, so that manual count is simpler to perform. In aver-
age, those 3D sub-volumes contain between 6-9 spines. In
order to select such boxes, we first computed the 2D pro-
jection of the centerline perpendicularly to the z-direction.
Then we randomly selected points on the centerline and com-
puted boxes of size 70× 70 with those points as their cen-
ters. We then sequentially discarded overlapping boxes until
no more of such boxes existed. We eliminate overlapping
boxes in order to maintain sampling independence. We also
maintain equal subvolume sizes in order to avoid the vari-
ability of human count accuracy. By doing so, we selected
a total of 63 boxes from the 4 data sets provided to us by
Professor Tara Keck. of the MRC Center for Developmental
Neurobiology of the King’s College, London, UK. Specifi-
cally the non-overlapping number of boxes are 21, 20, 11,
11 for the sets 1, 2, 3, 4, respectively. Figure 9 illustrates
the process of the selection of these 3D sub-volumes. This
figure shows the centerline and the randomly selected non-
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overlapping square boundaries on the xy-plane projections
of the selected sub-volumes from the four data sets.

Fig. 9: Non-overlapping boxes along centerline: 2D pro-
jected view of the centerline and selection of sixty three ran-
dom non-overlapping squares with their centers on the cen-
terlines of the segmented volumes.

3.3 Statistical analysis

We assess the performance of our spine detection algorithm
using the standard statistical metrics of precision and recall.

Precision is defined as the ratio of the number of rele-
vant records retrieved to the total number of irrelevant and
relevant records retrieved. Recall is the ratio of the number
of relevant records retrieved to the total number of relevant
records in the database. Precision and recall are usually ex-
pressed in terms of percentages. More formally:

Precision =
T P

T P+FP

Recall =
T P

T P+FN

where

– TP: True Positive, that is, there is a spine and we detect
it as a spine

– FP: False Positive, that is, there is not a spine, but we
detect it as a spine

– FN: False Negaitive, that is, there is a spine, but we do
not detect it as a spine

Fig. 10: Sub-volume selection and spine detection in sub-
volume: A random point on the centerline is chosen and
then a box of size 70×70×n is drawn, where n is the num-
ber of z stacks. Top left, the entire volume along with a ran-
domly selected sub-volume. Top right, zoom in the selected
sub-volume. Bottom left: The detected terminal points by
voxel scoring inside the sub-volume. Bottom right, Small
spheres drawn at each of the detected spine associated end-
point. These small balls mark spines. Note: The sub-volume
figures give the impression that there is a missed spine close
to the top left corner. The terminal point associated with this
spine is not shown because it belongs to part of the spine
lying outside the selected sub-volume.

In the validation process, we ignore potential spine can-
didates that are very close to the boundaries of these sub-
volumes. Usually, when we say ‘very close’ to the bound-
aries, we mean 1 to 3 voxels in length, but there are cases
when we are 3 to 10 voxels away from the boundary and
still cannot decide just by considering the sub-volume if a
detected endpoint is on a spine or on a branch coming from
outside the sub-volume. In the description of the method,
we mention that dendritic protrusions whose axis forms a
shallow angle with the dendritic centerline, below a certain
angular threshold, should not be considered as spines. In our
experiments, though, we did not apply this angular thresh-
old.

The following table summarizes our experimental find-
ings. For data sets 1-4, where we used the subvolume method
to evaluate accuracy, we report the mean detection preci-
sion and recall from the randomly selected subvolumes from
each data set.

To compare our method with other standard methods, we
processed volume number 5 with NeuronStudio and Neu-
rolucida 360. Neuronstudio traces the centerline. When the
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Data set No Nr of Subvolumes TP FP FN Precision(%) Recall(%)
1 21 139 13 14 91.45 90.85
2 20 97 15 12 86.60 88.99
3 11 82 4 6 94.95 94.00
4 11 94 5 6 95.35 93.18
5 1 64 8 3 88.9 95.50

Table 1: Accuracy of proposed algorithm on 63 small sub-
volumes and one entire image stack

voxel thickness and spine size range are provided (so the
system knows the amount of z-smear) it finds 50 spines out
of the 67 present in the volume. When the user chose isotropic
voxels then Neuronstudio found only 29 spines. Neurolu-
cida 360 performs in a satisfactory way and in par with our
method, if the proper mininum and maximum spine heights
are specified. Noise is another issue for Neurolucida. It also
appears to be very sensitive to the specified range of length
of spines, see Fig. 12. By varying those maximum and min-
imum lengths we detected without denoising a number of
spines ranging from 42 up to 70, and after denoising of the
raw data between 56 and 89 spines. We remark that volume
number 5 has 67 spines per our expert manual analysis. In
contrast to Neurolucida, our spine detection algorithm does
not depend on the manual setting of their proper size range,
but, only on the maximum spine length, above which a spine
will be considered as a small dendritic branch. For our ex-
periments, this threshold was set to 15 voxels.

We also performed one more experiment to compare the
performance of Neurolucida with the proposed method for
spine detection. In this experiment we used certain long den-
drites with several spines obtained from the adult GFP-M
transgenic mice. We used three dendritic segments from Vol-
ume 1, and 4 from Volume 3 above. The latter segments have
no overlap with the 11 subvolumes of Volume 3 in Table 1.
We stress that binary segmentation was performed using the
herein proposed algorithm applied on each of the dendritic
segments listed in Table 2. We selected 4 dendritic segments
from Volume 3 above, from a mainly low intensity, small
dynamic range region of this volume, in order to test the per-
formance of Neurolucida 360 and of our algorithm in chal-
lenging conditions. Volume 6 in Table 2, comes from the
dendrite imaged in Volume 2, in Table 1 above, but acquired
at a different time instance. We chose this volume in order
to enhance the variety of the experimental data set.

Stack 2, dendrites 1, 2, and Stack 3, dendrites 1, 2 show
very low fluorescent intensity and small dynamic range (ap-
proximately 50). It seems that the low intensity yields a sig-
nificant number of false positives for both NL 360 and the
proposed method. However, the proposed method appears
to be less prone to give big numbers of false positives in
such extreme cases. In general, the average number of er-
rors in spine counts is less for our method than for Neu-
rolucida 360. In all of those counts we used for Neurolu-

Fig. 11: Data set nr. 3 analyzed with Neurolucida. Upper im-
age shows the intensity thresholded volume with the manu-
ally traced centerline. Lower image shows spine detections
with different colors indicating different spine types.

Fig. 12: Spine count monotonicity does not behave as antic-
ipated. It initially increases as spine length range decreases

cida the same settings for spine head diameters (outer radius
for spine detection, 2µm, minimum spine detection radius
0.3µm, minimum spine size 15 voxels; 100% sensitivity;
image noise filter on). Those settings are dictated by the
anatomy of the imaged neurons. Neurolucida spine detec-
tions were performed by our expert neurobiologist. These
series of experiments revealed other very interesting aspects.
First, Neurolucida 360 seems to be sensitive in the geomet-
ric settings required for spine detections. These need to be
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Data set No Expert’s count NL 360 count PM Errors PM Errors NL 360
Stack 1, dend. 1 10 9 10 0 1
Stack 1, dend. 2 20 18 14 6 2
Stack 1, dend. 3 8 9 7 1 1
Stack 2, dend. 1 17 78 20 3 61
Stack 2, dend. 2 14 65 17 3 51
Stack 2, dend. 3 9 20 10 1 11
Stack 3, dend. 1 9 40 45 36 31
Stack 3, dend. 2 13 13 38 25 0
Stack 3, dend. 3 13 6 18 5 7
Stack 3, dend. 4 9 12 13 4 3

Table 2: Performance comparison of Neurolucida 360 and
proposed algorithm. PM abbreviates Proposed Method.
Stack 2 dendrites 1, 2 and Stack 3, dendrites 1, 2 show very
low fluorescent intensity and small dynamic range (approx-
imately 50).

Data set No Expert’s count NL 360 count PM Errors PM Errors NL 360
Stack 3, dend. 1 9 40 31 22 31
Stack 3, dend. 2 13 13 26 13 0
Stack 3, dend. 3 13 6 17 4 7
Stack 3, dend. 4 9 12 13 4 3

Table 3: Performance comparison of Neurolucida 360 and
proposed algorithm on Stack 3. In Stack 3, dendrites 1,
2 show very low fluorescent intensity and small dynamic
range (approximately 50). This time the binary segmenta-
tion used by the proposed method was performed on the en-
tire stack and not in subvolumes as in the experiment whose
results are shown in Table 2.

adjusted for each dendrite. We saw this in Stack 3 dendr.
3, which is thicker than what Neurolucida 360 anticipated.
This resulted in false negatives. On the other hand, our algo-
rithm seems to be more robust, as it was not influenced by
the variability of dendritic branch thickness. However, the
proposed method seems to require the binary segmentation
step performed according Hernandez-Herrera et al (2016),
to be carried out on the entire image stack generated by the
second in order of magnitude eigenvalues of the entire fil-
tered volume. This happens because our algorithm requires
a variety of training examples for the correct automatic clas-
sification of the background voxels. This segmentation step
in the experiment using Stacks 1,2,3 summarized in Table 2,
was performed locally in each of these subvolumes. When
we performed this particular binary segmentation step using
the entire image stack nr. 3 our numbers of spine detections
significantly improved. The results are shown on Table 3.
Figs. 13 and 14 shown the segmentation of dendrite nr. 1 of
Stack 3 when the entire stack is used to extract the global
settings for the binary segmentation of the entire stack. No-
tice how well the segmented volume overlays on the low
intensity low dynamic range raw volume.

Fig. 13: Stack 3, Dendrite 1 in Table 2 shown as original max
projection image along with color map shown the dymanic
range of original fluoresent intensities

Fig. 14: Stack 3, Dendrite 1 in Table 2 shown with binary
segmentation overlaid on the original image of the dendrite

4 Information Sharing Statement

We provide our entire source code written in Matlab at the
link:
https://github.com/pankajmath/SpineDetectionAndExtraction

This link contains the binary segmentation, centerline trac-
ing and spine detection source codes in Matlab. We also in-
clude a subvolume of test data set nr. 5 (in Table 1). The
user can use it to test the code, as well as a trial demo and
to verify that code is executed correctly. The reader should
feel free to incorporate our code in their application/source
code by giving the appropriate credits. Please, keep in mind
that this source code has not been optimized for speed and
use of RAM.
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5 Discussion

We have introduced a novel automated algorithm for spine
detection and 3D segmentation, and validated its performance
on in vivo fluorescent images of neurons acquired using two-
photon microscopy.

The numerical results reported in the paper show that the
performance of our method is very competitive since preci-
sion and recall can average above 90%. The average pre-
cision and recall percentages are equal to 91.25 and 92.50,
respectively, for all five test volumes considered (Table 1).
These rates are among the highest reported in the literature
for similar studies (see Blumer et al (2015); Zhang et al
(2010); Fan et al (2009)). We also outperform two of the
standard tools for spine detection (NeuronStudio and Neu-
rolucida 360, see Tables 1 and 2). However, this high aver-
age performance may drop when the fluorescent intensity is
low with a relatively high dynamic range. We see this in Ta-
bles 2 and 3, where our average accuracy drops to 79%. In
the same dataset Neurolucida 360 becomes even more unsta-
ble. Below, we attempt to explain the drop of performance
of our algorithm.

This proposed algorithm exploits the properties of the
Hessian matrix to increase the prominence of structures emerg-
ing from the surface of tubular structures and on spine necks,
in particular. Even though numerical evidence indicates that
this property holds rather generally, we provide a theoretical
justification of this enhancement approach only in the the
idealized case of spines which are perpendicular to the den-
dritic backbone. This initial detection step works very well
unless the fluorescent intensity is low resulting in a low dy-
namic range. The extraction of the eigenvalues of the Hes-
sian matrix requires that the fluorescent intensity function
has some smoothness, otherwise the high local variability of
intensity values may lead to false detections. This does not
always happen as we see in Table 2. Moreover, a more de-
tailed theoretical analysis, or even a different model, may be
required to address the general case of fine-scale structures
emerging from a tubular structure at a variety of angles, not
only at 90 degrees and the cases where fluorescent inten-
sity lacks smoothness. Perhaps, such a more general model
may require other types of 3D filters beyond just the second
in order of magnitude eigenvalue of the Hessian to perform
feature extraction for spine detections.

With respect to other methods found in the literature, an-
other advantage of our spine detection and segmentation al-
gorithm is that it requires setting three parameters only: the
minimum length of a dendritic branch, the minimum angle
of a spine axis with respect to the axis of the dendritic branch
to which the spine is attached to, and the minimum number
of voxels in a spine. The latter threshold may affect the ac-
curacy of detections but we as we see this happened only
once in all of our experiments (Table 2, Stack 2, dendrite 2,

where the spine count increased by 2 when that threshold
was dropped). The image segmentation step is fully auto-
mated as all training is carried out automatically. Hence, we
can consider our method as an automatic method for spine
detection, natively executed in 3-D. Our algorithm can pro-
cess entire dendrites and not just selected segments as Neu-
rolucida 360, Neuronstudio and Imaris do, because in such
software one needs to specify the anticipated size of spines
and this quantity is not constant throughout a dendritic ar-
bor. As a result, these three commonly used software tools
require significant manual interventions to perform well, as
also indicated by the numerical tests discussed previously.
Among all three of them Nuerolucida 360, seems to require
the least amount of human intervention. However, the req-
uisite manual tracing of dendritic branches is an additional
costly step which our algorithm does not require, making
it possible to test images with several dendritic branches. In
summary, the very small number of parameters the user must
preset, the high level of automation of the entire process,
make our algorithm make the proposed method suitable for
high throughput 3D spine counts for entire dendrites and not
just branches. If one wishes to observe spine populations in
specific branches then, she (he) can use the metadata ex-
tracted by our algorithm which give locations of spines on
each dendritic branch.

In contrast to the three competing algorithms mentioned
above, our algorithm does not provide spine classification
into stubby, filopodia and mushroom types. From conversa-
tions with domain experts we found that many neuroscien-
tists disagree with classification into rigid spine type classes.
The segmented spine volumes computed by our algorithm
can be easily processed to generate parameters associated to
their shape properties.
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