Introduction to Convolutional
Neural Networks and
application to face recognition

Yaofeng Su, An Vu.

First, let us Identify cats

Conv. Module #1 Conv. Module #2 Classification

output: cat? (y/n)

conv2d maxpool conv2d maxpool fully fully
Input + RelLU + RelLU connected connected

Introducing Convolutional Neural Networks

A CNN progressively extracts higher- and higher-level representations of the image content. Instead of
preprocessing the data to derive features like textures and shapes, a CNN takes just the image's raw pixel data
as input and "learns" how to extract these features, and ultimately infer what object they are looking at.

The CNN receives an input feature map: a three-dimensional matrix where the size of the first two dimensions
corresponds to the length and width of the images in pixels. The size of the third dimension is 3 (corresponding to the
3 channels of a color image: red, green, and blue). The CNN comprises a stack of modules, each of which performs
three operations:(Convolution, Relu, Pooling).

Conv. Module #1 Conv. Module #2 Classification

output: cat? (y/n)

conv2d maxpool conv2d maxpool fully fully
Input + RelLU + RelLU connected connected

15t stage:The convolution operation

e A convolution extracts tiles of the input feature map, and applies

filters to them to compute new features, producing an output feature
map, or convolved feature (which may have a different size and depth

than the input feature map). Convolutions are defined by two

parameters: Size of the tiles that are extracted (typically 3x3 pixels),

The depth of the output feature map, which corresponds to the
number of filters that are applied.

 the filters(we call it-kernel) (matrices the same size as the tile size)
effectively slide over the input feature map's grid horizontally and
vertically, one pixel at a time, extracting each corresponding tile.

(NN Y=
= [=] [=

S|o Lo+

Rolo|m|e-
o (= (=]
OlRr|(kr|kL|O

O(OR|(O|O

Image

Convolved
Feature

A 3x3 convolution performed over a 5x5 input feature map,
. There are nine possible 3x3 locations to extract tiles from
the 5x5 feature map, so this convolution produces a 3x3
output feature map

Input Feature Map

3x1

5x0

2x0

8

91

=1

5x0

2x0

0=0

61

3+0+0+9+7+0+0+0+6

6

3

1

4

9

4
]
719
3

=N W| =

Qutput Feature Map

25

18

17

18

22

14

20

15

23

he math behind convolution:

* Find the location of a spaceship with a laser sensor. Our laser sensor provides a
output x(t). Now the, laser sensor is somewhat noisy. -> average together several
measurements.

* Since more recent measurements are more relevant to its current position,

we want: a weighted average such that it gives more weight to recent

measurements.

A weighting function w(a), where a is the age of a measurement. apply such a
weighted average operation at every moment, -> smoothed function s(t),
estimate of the position s of the spaceship:

s(t) = [.:ri_n"_lu'lfr a)da

)
s(t)=(r+w)(t) = Z r(a)w(t —a)

1=—00

S(i,j)= (I +*K)(i,j) = Z Z![m. n)K(i —m,j—n).

T mn

S, i) =(K =i, j) = ZZ}{E m,j—n)K({m,n).

m n

Sl g) =T +=K)i.j) = Z ZI{E Fm,j+n)K(m,n). the cross-correlation

m mn

Examples:

1/9 [1/9|1/9
Simple box blur |2 |1/9]1/9
1/9(1/9|1/9

Gaussian blur

0 |18 (64 (100| 64 |18 | O

5 | 32 (100|100(100| 32 | 5

0 |18 (64 (100| 64 |18 | O

A1
Line detection 2|32
-1 -1 -1
Horizontal lines
412
12 |1
2 |-1]1
45 degree Enes
-1 =1 -1
Edge detection T | 2 :
Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
-1] -1] -1 each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,

29 stage: Detector stage with Activation function.

 After, performing several convolutions in parallel to produce a QCthathﬂ Functions
set of linear activations, Inthe second stage, each linear activation is run through a nonlinear activation ‘

Sigmoid Leaky ReLU ‘
function. o(z) =) max(0.1z, x)
1+e—=*

We applies a Relu function to the convolved feature, in order to introduce nonlinearity into the model. tanh
Maxout
tﬂllh(.’l.‘) I max(u.‘}"r + by, uzfr + bs)

RelLU S |
max (0, z) {;:(rJ_1) ;33 : ‘

signmitl
Rel.l

soft Rel.l

-
———

Parametric ReLU: y=ax

The ReLU function and its variations.

(o= J TR N EVA
Elw|lRL|wv| i~
Ul ol oM

3

=

ool

[&)]

L= I - e s

3" stage: Pooling

 Max pooling operates in a similar fashion to convolution. We slide over the
feature map. For each tile, the maximum value is output to a new feature
map, and all other values are discarded.

 We downsample the convolved feature (to save computing time), reducing
the number of dimensions of the feature map, while still preserving the
most critical feature information.

 Max pooling operations take two parameters:
 Size of the max-pooling filter (typically 2x2 pixels)

e Stride: the distance, in pixels, separating each extracted tile. Unlike with convolution,
where filters slide over the feature map pixel by pixel, in max pooling, the stride
determines the locations where each tile is extracted. For a 2x2 filter, a stride of 2
specifies that the max pooling operation will extract all nonoverlappin= """ ==~ %=~
the feature map.

O B

o
oL~
3 |13 |17 | 11 | gt~

11 1 1 4

.'III
b=}
g/

:,,(\% i

T

13| 23

17

6 |13

Ing | g I35

4) Fully Connected Layers

e At the end of a convolutional neural network are one or more fully
connected layers (when two layers are "fully connected," every node
in the first layer is connected to every node in the second layer). Their
job is to perform classification based on the features extracted by the
convolutions. Typically, the final fully connected layer contains a
softmax activation function, which outputs a probability value from O
to 1 for each of the classification labels the model is trying to predict.

Conv. Module #1 Conv. Module #2 Classification

maxpool fully fully

Example 1- classification, regression of data
points

e http://playground.tensorflow.org/

o Epoch Learning rate Activation Regularization Regularization rate Problem type
>
000,000 0.03 Tanh None 0 Classification

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.515
you want to use? you want to feed in? Y= LY = Training loss 0.494

- 4 neurons 2 neurons
Ratio of training to D
test data: 50%

0
—_— The oulpuls are
Noise: 0 by the thickness of
. the lines.

Batch size: 10 .

This is the output
. from one neuron
Hover to see it 0
arger.
REGENERATE

Colors shows

data, neuronand | -I

weight values.

[Showtestdata [] Discretize output

http://playground.tensorflow.org/

Example 2 Face Recognition by MultiTask
Cascaded CNN (MT-CNN) and Faceness

* Reference 1: Zhang, Joint Face Detection and Alignment using Multi-
task Cascaded Convolutional Networks.

e Reference 2: FaceNet: A Unified Embedding for Face Recognition and
Clustering

Overal:

e MT-CNN does Alignment in real time, Faceness does classification.
e The MT-CNNs consist of three Networks:

Q1st, it produces candidate windows quickly through a shallow CNN.

O 27, it refines the windows to reject a large number of non-faces windows through a more complex
CNN.

319, it uses a more powerful CNN to refine the result and output facial landmarks positions.

* Thanks to this multi-task learning framework, the performance of the algorithm can be notably
improved and the result is real time detection.

o After MT-CNN, the identified face with be fed into Faceness, which give us a feature vector for
classification.

MTCNN

— Resize

A
Test image

Stage 1
P-Net

NMS &

v N

Bounding box regression

Stage 2
R-Net

NMS &
= Bounding box regression

Stage 3
0O-Net

L

Fig. 1. Pipeline of our cascaded framework that includes three-stage mul-
ti-task deep convolutional networks. Firstly, candidate windows are produced
through a fast Proposal Network (P-Net). After that, we refine these candidates
in the next stage through a Refinement Network (R-Net). In the third stage,
The Output Network (O-Net) produces final bounding box and facial land-
marks position.

Stage 1: We exploit a fully convolutional network, called Proposal
Network (P-Net), to obtain the candidate windows and their
bounding box regression vectors. Use the estimated bounding box
regression vectors to calibrate the candidates. Employ non-maximum
suppression (NMS) to merge highly overlapped candidates.

Stage 2: all candidates are fed to another CNN, called Refine
Network (R-Net), which further rejects a large number of false
candidates, performs calibration with bounding box regression, and
NMS candidate merge.

Stage 3: Output five facial landmarks’ positions.

B. CNN Architectures

pNet RN

Conv: 3x3 Cony: 3x3 Conv: 3x3 face classification

‘ face Conv: 3x3 Conv: 3X3Conv- 2x2 fully
MP: 3x3] c%assiﬁcatiﬂn MP: 3x3 MP: 3x3 connect| H
XX 2
B boundir.lg hox ._;‘ — = E :}U 'buundir.lg box
regression gregression

MPUTSIZE 5ysx10 3x3x16 Ix1x32\ [y Facial landmark - INPUESIZe pyyy108 4y4x48 3x3x64128 \[]Facial landmark
12x12x3 localization 24x24x3 -docalizaticun
1x1x10 I

Conv: 3x3 Conv: 3x3 Conv: 3x3 Conv: 2x2 tully) _
face classification

MP: 3 MP: 3 MP: connect ,i
= = = = ﬁ = |:|~ :bnundingbox regression

PULSIZE »3053%32 10x10x64 4xdx64 3x3x128 256 \UFacial landmark localization
| 48483 ~—~—— - - T]

]

Feed (Input layer)

Convolution Layer 1

Feed (Input layer) PRelu Layer 1

Maxpool layer

Feed (Input layer) Convolution Layer 1

Convolution Layer 2

PRelu Layer 1

Convolution Layer 1 PReLu Layer 2

Maxpool layer ,
PRelu Layer 1 5 y Maxpool layer

Convolution Layer 2 Convolution Layer 3

Maxpool layer
P y PRelu Layer 3

PRelLu Layer 2

Convolution Layer 2 Maxpool layer

Maxpool layer

PReLu Layer 2 Convolution Layer 4

Convolution Layer 3 PRelLu Layer 4
Convolution Layer 3

PRelLu Layer 3

PRelLu Layer 3 Fully Connected 1

Fully Connected Layer
PRelLu Layer 4 PRelLu Layer 5

Convolution 4-1 Convolution 4-2
Fully connected 1 Fully connected 2 Fully connected 1 Fully connected 2

Softmax -

Softmax

Image 5: P-Nat

Fully connected 3

image T- O-Met
Image &: R-Net

class ONet (Hetwork) :
def econfiglself]:

class Eifet (Network) : class D¥at (Network) - . " _ oo torwaal £
layer factory = LayerFactory(self)

def config(self): def cenfigiself layer factory.new fesd(name='data', layer shspe=(Neme, 48, 48, 31)

layer factory.nsw conv(name="comn
channals output=32, stride size=(l,

, kernel size=(3, 3],

leyer factory = LayerFactoryiself) Aeipre Fmineay = LErmdna e iy sl

layer factory.new feed(name="data', layer shape=(Hone, 24, 24, 3)) padding="VELID', relu=False)

[}

—

Heone, None, Nons,

layer factory.new feed(name='data", layer shape=

layer factory.new convi(name="convl', kernel size=(3, 3}, layer factory.new prelu(name='prelul’)
channels output=28, stride size=|

1", kernel size=(3, 3

'{.Erl'.El_Si ze={ 3_, 3} o layer factory.new max pool (name="peooll
stride size=(Z, Z])

layer factory.new conw (name="'conwl®,
channels puwtput=10, stride size=(l,

o padding="VALID',6 relu=False)
. R o . . layer factory.new conv{name='convi'
padding="VALID", relu=False) leyer factory.new prelu(name="prelul'] channels cutput=t4,

kernel size=(3, 3},

';err.el_size= 2, 2, padding="VRLID',K r=lu=F=zlse)

layer factory.new prelu(name='prelul®) layer factory.new max pool (neme="pooll
stride size=(2, Z))

layer factory. new prelu(name='prelud')
layer factory.new max pool (neme="pooll®, kernel size=(2, Z),

layer factory.new conviname='conv2®, kermel size=(3, 3},

St-Iid.E_EiZ_: (2, 21) s _ tput=4F. stride si layer factory.new maz pool (name='p ", kernel size=(3, 3},
BRSBTS, SEEEE SRS stride size=(2, 2], padding='VALID"]
R — - : _- ooo- S] . _ .
l"‘-l?e—_?a‘-":'r? slss) (Fray ':_1'5_:"-5_ . cn:w._? L :{EEEJ‘_EJ""E_ 2, 2, padding="VALID',6K relu=False) layer factory.new conviname='conv3', kernel size=(3, 3,
channels output=1&, stride size={1, 1], channels cutput=t4, ,
layer factory.new prelu(name='preluld')
. e —n I EyEr_ ¥ — B ’ padding="VALID', relu=False]
padding="VRLILD', relu=False)
layer factory.new max pool (name="pooll', kernel size=(3, 3), layer_factory.new _prelu(name='prelu3']
i =17 2 § e TTTRT T T
layer factory.new prelulname='prelul®) stride e=[2, 2], padding="VRLID")
layer factory.mew max pool (name="poold', kermel size=(2, 2},

layer factory.new conviname='conv3" } stride size=lz, Z1)

channels output=64, stride size=(l,
L) layer factory.nsw conviname='convs', kernel size=(2, 2},
channels cutput=138, stri size=(1, 1]

kernel size=(2, 2

layer factory.mew conwname='conw3", kernel size=(3, 3}
r r r

channels output=32, stride size=({l,

padding="VALID',K r=lu=Fal

padding="VRLILD', relu=False)

padding="VALID',6 relu=Fzls=e)
layer factory.new prelu(name="prelul')

layer factory.new prelu{name='prelul®) layer factory.new preluname='prelud')

layer factory.mew fully connected({name="fcl', cutput count=128,

relu=Fal layer factory.new fully connected{name="fel', cutput count=258,

relu=Fal

»

1, relu=

»

layer factory.new conw (name='conwd—
channels putput=2Z, stride size=(l,

kernel size=(1
False]

layer factory.mew prelu(name="prelud'] layer factory.new pralu(name='preluS')

layer factory.new softmax (neme="probl®, axis=3)

ly comnected{name="£c2-1", out;

t_count=2,

layer factory.mew fully connected{name="fc2-1", cutput count=2, layer factory.new :
relu=False] relu=Falss]

layer factory.new conv(name='conwi-2°, kermel size=(l, 1},

= 1o N ot o] : — 5 (T) layer factory.new softmax (name="probl®, axis=l1]
channels cutput=4, stride size=(1, 1], layer factory.new scftmax(nsme='probl', axis=l) - -

layer factory.new fully connected{name="£c2-2", cutput count—=%,
input layer neme="prelud', relu=Falsge) layer factory.nmew fully connected{name="fc2-2', output count=42, relu=False, input layer name="preluS')
relu=False, input layer name="prelud']
ctory.new fully connected (name="fe2-3', cutput count=10,

input layer name='prelut']

Training.

We leverage three tasks to train our CNN detectors:
face/non-face classification, bounding box regression, and
facial landmark localization.

1) Face classification: The learning objective is formulated as
a two-class classification problem. For each sample Xx;, we use
the cross-entropy loss:

Lt = —(yf log(py) + (1 — y*)(1 —log(py))) (1)

where p; is the probability produced by the network that indi-
cates a sample being a face. The notation y2¢t € {0,1} denotes
the ground-truth label.

2) Bounding box regression.: For each candidate window, we
predict the offset between it and the nearest ground truth (i.e.,
the bounding boxes” left top, height, and width). The learning
objective is formulated as a regression problem, and we employ
the Euclidean loss for each sample x;:

tior = gt =2 @

where §72°*

regression target obtfained from the network and
yPo% is the ground-truth coordinate. Thefe are four coordinates,
including left top, height and width, and thus y?°* € R*.
3) Facial landmark localization: Similar to the bounding box

regression task, facial landmark detection is formulated as a

regression problem and we minimize the Euclidean loss:

Llandmark — ||f~landmark
i

Vi - yil

andmark”; (3)

where y}2n4mark i the facial landmark’s coordinate obtained
from the network and y}@ndmark
There are five facial landmarks, including left eye, right eye,
nose, left mouth corner, and right mouth corner, and thus
ygandmark c]Rm_

4) Multi-source training. Since we employ different tasks in
each CNNs, there are different types of training images in the
learning process, such as face, non-face and partially aligned
face. In this case, some of the loss functions (i.e., Eq. (1)-(3))
are not used. For example, for the sample of background region,
we only compute L7, and the other two losses are set as 0.
This can be implemented directly with a sample type indicator.
Then the overall learning target can be formulated as:

S .
min ;=1 ¥ je(det,box landmark} “jﬁf L; 4)

where N is the number of training samples. ; denotes on the
task importance. We use (0tger = 1, Qpoxr = 0.5, Qandmark =
0.5) in P-Net and R-Net, while (Qgor =1, Qpox =
0.5, djgndmark = 1) in O-Net for more accurate facial land-
marks localization. ﬁi’i € {0,1} is the sample type indicator. In
this case, it is natural to employ stochastic gradient descent to
train the CNNs.

is the ground-truth coordinate.

5) Online Hard sample mining: Different from conducting
traditional hard sample mining after original classifier had been
trained, we do online hard sample mining in face classification
task to be adaptive to the training process.

In particular, in each mini-batch, we sort the loss computed
in the forward propagation phase from all samples and select
the top 70% of them as hard samples. Then we only compute
the gradient from the hard samples in the backward propagation
phase. That means we ignore the easy samples that are less

helpful to strengthen the detector while training. Experiments
show that this strategy yields better performance without
manual sample selection. Its effectiveness is demonstrated in
the Section IIL.

References:

e Refercence: Intro. CNN by Google
:https://developers.google.com/machine-learning/practica/image-
classification/convolutional-neural-networks

* Goodfellow, et al. Deep Learning. Chapter 9, Convolutional Networks.
e https://aishack.in/tutorials/image-convolution-examples/

e Zhang, Joint Face Detection and Alignment using Multi-task Cascaded
Convolutional Networks.

* FaceNet: A Unified Embedding for Face Recognition and Clustering

	Introduction to Convolutional Neural Networks and application to face recognition��
	Slide Number 2
	Introducing Convolutional Neural Networks�
	1st stage:The convolution operation
	The math behind convolution:
	Examples:
	2nd stage: Detector stage with Activation function.�	
	3rd stage: Pooling
	4) Fully Connected Layers�
	Example 1- classification , regression of data points
	Example 2 Face Recognition by MultiTask Cascaded CNN (MT-CNN) and Faceness
	Overal:
	MTCNN
	B. CNN Architectures �
	Slide Number 15
	Slide Number 16
	Training.
	References:�

