TEST #1

No books or notes allowed. Please, write clearly and justify all your steps, to get proper credit for your work.

(1)[3 Pts] (i) State the definition of orthogonal complement of an inner product space V.

(ii) Let $V = \mathbb{R}^3$ and consider the subspace of V given by

$$V_0 = \text{span}\{(1, 0, 2), (-1, -1, 1)\}.$$

Find the orthogonal complement of V_0 in V.

(2)[3 Pts] Consider the inner product space $V = L^2([0, 1])$. Compute the orthogonal projection of the function $f(x) = x^2$, for $x \in [0, 1]$, onto the subspace $V_0 = \text{span}\{\phi, \psi\}$, where

$$\phi(x) = \begin{cases} 1 & 0 \leq x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

$$\psi(x) = \begin{cases} 1 & 0 \leq x < \frac{1}{2} \\ -1 & \frac{1}{2} \leq x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

(3)[3 Pts] Consider the sequence of functions (f_n) defined by

$$f_n(x) = \begin{cases} nx & 0 \leq x < \frac{1}{n} \\ 1 & \frac{1}{n} \leq x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Draw the graph of $f_n(x)$ for two values of n (e.g., $n = 2, 4$). Show that (f_n) converges to the function $f(x) = 1$, $x \in [0, 1]$, in the L^2 norm.
TEST #2

Please, write clearly and justify all your steps, to get proper credit for your work.

(1)[5 Pts] Let \(f(x) = \cos^2(x) \).
(a) Sketch a graph of \(f \) over the interval \([-\pi, \pi]\).
(b) Expand the function \(f(x) = \cos^2(x) \) in a Fourier series valid on the interval \(-\pi \leq x \leq \pi\).
(b) Does the Fourier series of \(f \) converge uniformly to \(f \)? Justify your answer.

(2)[6 Pts] Consider the function \(f(x) = \begin{cases} -x^2 & -1 \leq x < 0 \\ x^2 & 0 \leq x \leq 1 \end{cases} \).
(a) Sketch a graph of \(f \) over the interval \([-1, 1]\).
(b) Expand the function \(f \) in a Fourier series valid on the interval \(-1 \leq x \leq 1\).
[HINT: You can take advantage of the symmetry of \(f \)]

(3)[4 Pts] (a) Show that if \(f \) is continuous on the interval \(0 \leq x \leq a \), then its even periodic extension is continuous everywhere. Justify your answer.
(b) What about the odd periodic extension? What conditions are necessary to ensure that the odd periodic of \(f \) is continuous everywhere? Justify your answer.
[HINT: In both cases, it suffices to check the behavior near \(x = 0 \)]
TEST #3

Please, write clearly and justify all your steps, to get proper credit for your work. Open book test

(1)[5 Pts] Let
\[f(t) = \begin{cases} t & -\frac{1}{2} \leq t < \frac{1}{2} \\ 0 & \text{otherwise} \end{cases} \]

(a) Compute \(\hat{f} \), the Fourier transform of \(f \).
(b) Express the real and imaginary part of \(\hat{f} \).
[HINT: You can take advantage of the symmetry of \(f \)]

(2)[5 Pts] Let
\[\phi(t) = \begin{cases} 1 & 0 \leq t < 1 \\ 0 & \text{otherwise} \end{cases} \]
and
\[g(t) = \begin{cases} t & 0 \leq t < 1 \\ 0 & \text{otherwise} \end{cases} \]

(a) Compute \(h(x) = (\phi * g)(x) \).
(b) Sketch the graphs of \(\phi \), \(f \) and \(h \) over the interval \([-1, 3]\).

(3)[3 Pts] Consider the filter
\[f \rightarrow f * h_d, \]
where
\[h_d(t) = \begin{cases} 1/d & 0 \leq t < d \\ 0 & \text{otherwise} \end{cases} \]

Let \[f(t) = e^{-t} (\cos 2t + \sin 3t + \cos 18t + \sin 90t) , \quad t \in [0, 2\pi]. \]

Which value(s) of the parameter \(d \) for the filter \(h_d \) will ensure that the components of the signal \(f \) with frequencies above 50 are removed and the frequencies in the range 0 to 18 are retained? Justify your answer.
The orthogonal complement of \(V_0 \) in \(V \) is the set of all vectors in \(V \) which are orthogonal to \(V_0 \):

\[
V_0^\perp = \{ v \in V : \langle v, w \rangle = 0 \ \forall w \in V_0 \} \tag{1PT}
\]

Since \(\mathbb{R}^3 \) is 3-dimensional and \(V_0 \) is 2-dimensional, \(V_0^\perp \) is the span of the vectors which are orthogonal to \((1,0,2)\) and \((-1,-1,1)\).

\[
\begin{pmatrix}
1 \\
0 \\
2
\end{pmatrix} \times
\begin{pmatrix}
-1 \\
-1 \\
1
\end{pmatrix} = \begin{pmatrix}
2 \\
-1 \\
-1
\end{pmatrix} = (2, -1, -1) \tag{1PT}
\]

Hence \(V_0^\perp = \{ v \in V : v = \alpha (2, -1, -1), \ \alpha \in \mathbb{R}^2 \} \tag{1PT} \)

\[\text{1) } (i) \tag{1PT}\]

\(p_0 \) and \(q \) are an orthonormal basis of \(V_0 \). Hence, \(p_0 \), the orthogonal projection of \(f \) onto \(V_0 \) is given by

\[p_0(x) = \langle f, p_0 \rangle \psi(x) + \langle f, q \rangle \psi(x) \tag{1PT}\]

\[<f, p_0> = \int_0^1 x^2 \psi(x) \, dx = \frac{1}{3} \tag{1PT}\]

\[<f, q> = \int_0^1 x^2 \psi(x) \, dx = \int_0^{1/2} x^2 \, dx - \int_0^{1/2} x^2 \, dx = \frac{x^3}{3} \bigg|_0^{1/2} = \frac{1}{8} - \frac{1}{3} = \frac{1}{24} \tag{1PT}\]

\[= -\frac{1}{4} \tag{1PT}\]

\[p_0(x) = \frac{1}{3} \psi(x) - \frac{1}{4} \psi(x) \tag{1PT}\]

Need to show that \(f_n \to f \) in \(L^2 \) norm.

That is \(\| f_n - f \| \to 0 \).

That is \(\int_0^1 (f_n(x) - f(x))^2 \, dx = \int_0^1 (mx - 1)^2 \, dx = \frac{1}{3} \left(\frac{1}{n} \right) \to 0 \) as \(n \to \infty \).

This shows that \(\lim_{n \to \infty} \| f_n - f \| = \lim_{n \to \infty} \frac{1}{3n} = 0 \).
\(f(x) = \cos^2 x \)

\[\text{[1 Pt] Draw graph} \]

(a)

\[\cos^2 x = \frac{1}{2} + \frac{1}{2} \cos 2x \quad (\cos x \text{ is } \pi\text{-periodic}) \]

(b) By the uniqueness of the Fourier series, it follows that

The Fourier series of \(f \), over the interval \([-\pi, \pi]\) is

\[f(x) = \frac{1}{2} + \frac{1}{2} \cos 2x \]

(c) Since \(f \) is continuous and piecewise smooth, then \(f(x) \) converges uniformly to \(f \) on \([-\pi, \pi]\)

\[\text{[1 Pt]} \]

\[\text{[1 Pt]} \]

\(f(x) \)

Neko Hit F is an odd function

\[\text{[1 Pt]} \]

(b) Since \(f \) is an odd function, its Fourier series only contain

\(\cos \) terms. Hence, it can be computed as

\[F(x) = \sum_{k=1}^{\infty} b_k \sin(k\pi x) \quad \text{where} \quad b_k = 2 \int_{0}^{1} f(x) \sin(k\pi x) \, dx \]

\[b_k = 2 \int_{0}^{1} \cos^2 x \sin(k\pi x) \, dx = 2 \left[\frac{-x^2 \cos(k\pi x)}{k\pi} \right]_{0}^{1} + \frac{1}{k\pi} \left[x \sin(k\pi x) \right]_{0}^{1} \]

\[= 2 \left[\frac{-1}{k\pi} \cos(k\pi) + \frac{1}{k\pi} \sin(k\pi) \right] \]

\[= 2 \left[\frac{-1}{k\pi} \cos(k\pi) + \frac{1}{k\pi} \sin(k\pi) \right] \]

\[= 2 \left[\frac{1}{k\pi} \left(\frac{1}{k\pi} - 1 \right) \right] \]

\[= 2 \left(\frac{(-1)^k}{k\pi} + \frac{2}{(k\pi)^3}(-1)^k - 1 \right) \]

\[\text{[5 Pts]} \]

\(\text{This is all you get} \)

\(\text{FULL} \)
(a) If \(f \) is continuous on \([0, a]\), then its periodic extension satisfies \(f(x) = f(x + na) \) \(\forall n \in \mathbb{Z} \) and \(f(x) = f(-x) \).

In particular, \(f(0^+) = \lim_{h \to 0^+} f(h) = \lim_{h \to 0^-} f(-h) = f(0^-) \).

Thus, the periodic extension is continuous at \(x = 0 \).

(b) The odd extension satisfies \(f(x) = -f(-x) \).

Hence, \(\lim_{h \to 0^+} f(h) \neq \lim_{h \to 0^-} f(-h) = \lim_{h \to 0^+} f(h) \).

In general, \(\lim_{h \to 0^+} f(h) \neq \lim_{h \to 0^-} f(h) \).

The two sides are the same \(\iff \ f(h = f(h), \)

\[\lim_{h \to 0^+} f(h) = -\lim_{h \to 0^-} f(h) = 0 \]

That is, the odd extension of \(f \) is continuous \(\iff \ f(0) = 0 \).
1. (a) \[\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\frac{1}{2}}^{\frac{1}{2}} f(t) e^{-iwt} \, dt \]

\[= \frac{1}{\sqrt{2\pi}} \int_{0}^{\frac{1}{2}} t e^{-iwt} \, dt \]

Notice:
\[t e^{-iwt} = t \cos wt - i t \sin wt \]

Since \(t \cos wt \) is odd, it gives no contribution to \(\hat{f}(w) \)

\[= \frac{2i}{\sqrt{2\pi}} \int_{0}^{\frac{1}{2}} t (-\sin wt) \, dt \]

\[= \frac{2i}{\sqrt{2\pi}} \left[\frac{t}{w} \cos wt \right]_{0}^{\frac{1}{2}} - \frac{1}{w} \int_{0}^{\frac{1}{2}} \cos wt \, dt \]

\[= \frac{2i}{\sqrt{2\pi}} \left[\frac{1}{2w} \cos (\frac{1}{2}w) - \frac{1}{2w} \sin (\frac{1}{2}w) \right] \]

(b) \(\hat{f}(w) \) is purely imaginary

\[\Re \hat{f}(w) = 0 \]

2. The convolution acts as a local averaging operator on windows of size \(d \).

To remove frequencies above 50, need

\[d \geq \frac{2\pi}{50} \approx 0.12 \]

To preserve frequencies below 18, need

\[d \ll \frac{2\pi}{18} \approx 0.33 \]

For example, we can choose \(d = 0.15 \).
\[h(x) = (\varphi * g)(x) = \int_{\mathbb{R}} \varphi(t) g(x-t) \, dt \]

\[= \int_{0}^{1} g(x-t) \, dt \]

It is clear from the graph of \(g(x-t) \) that \(h(x) = 0 \) if \(x \leq 0 \)

and \(h(x) = 0 \) if \(x-1 > 1 \Rightarrow x > 2 \)

Hence, we only need to examine \(0 \leq x \leq 2 \)

If \(0 \leq x \leq 1 \), then

\[h(x) = \int_{0}^{x} (x-t) \, dt = \left[xt - \frac{t^2}{2} \right]_{0}^{x} = x^2 - \frac{x^2}{2} = \frac{x^2}{2} \]

If \(1 < x \leq 2 \), then

\[h(x) = \int_{x-1}^{x} (x-t) \, dt = \left[xt - \frac{t^2}{2} \right]_{x-1}^{x} = x - \frac{x}{2} - (x-1)x + \frac{(x-1)^2}{2} \]

\[= x \left(1 - \frac{x}{2} \right) \]

Conclusion

\[h(x) = \begin{cases}
0 & \text{if } x < 0 \\
0 & \text{if } x > 2 \\
\frac{x^2}{2} & \text{if } 0 \leq x \leq 1 \\
x \left(1 - \frac{x}{2} \right) & \text{if } 1 < x \leq 2
\end{cases} \]