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Goals and Scope of Presentation
The goal of the presentation is to summarize the key results of Smale’s
paper “Shannon’s Sampling Theorem II: A Connection to Learning 
Theory”

Due to the nature of this presentation, the nature of this course, and 
presentation time constraints, I will be focusing on the concepts most 
relevant to the topics discussed in this course. 

The main focus of this paper is the interplay between Smale’s
Generalized version of Shannon’s Sampling Theorem and Regression 
Analysis



Overview
Regression Analysis is one method in data science that is used to determine 
a classification function.

For this reason, it is meaningful to investigate new approaches to studying 
regression functions.

In this paper, Smale starts by describing a Hilbert Space oriented function 
reconstruction method using point values. He then takes this result, extends 
it to Frames in a Reproducing Kernel Hilbert Space Framework, illustrates 
the interplay between his generalized version of Shannon’s Sampling 
Theorem in RKHS and regression functions, and proves some error bounds 
related to the approximation of regression functions.



Regression Function

With Regression problems, there is an 
error function and this is minimized by 
a regression function

Smale summarizes the goal of solving Regression Problems in the following 
way, “The problem with a regression function is to find good 
approximations from a set of random samples” 

As we will see on the next slides, Smale now shows that what we have 
covered so far can be used to approximate functions solving Regression 
analysis problems.



Function Reconstruction with Point Evaluation

Before discussing regression analysis, we need some preparation.



Function Reconstruction from Point Values

Smale begins by defining a sampling operator and using the Riesz
Representation Theorem to define Function E_x within H

x represents the sample points in the domain, used for function reconstruction



Function Reconstruction from Point Values
Using the E_x functions in the previous slide, Smale constructs the adjoint 
operator for S 

Smale also gives us the following problem to solve

This problem is essentially saying “lets find the function in our Hilbert Space 
that minimizes the least squares problem related to our sampled values”.

Term for noise



Function Reconstruction from Point Values
Smale then goes on to give a condition related to the sampling operator 
that guarantees a solution for our problem.

He then goes on to create estimates to bound the error of this function 
reconstruction. 

For the sake of time, these will not be included.

So, now, we would like to extend these results to frames and draw a 
connection to learning theory.



An Extension of this Result to Frames

We see that by the boundedness of the
Sampling operator, the family of
H.S. functions {E_x}  is a Bessel sequence

With an extra Assumption, we see that the
Sampling Operator composed with its
Adjoint, gives us a Frame Operator

> 0

We now can now replace our point
Evaluations 
with functionals in our problem.



Reproducing Kernel Hilbert Spaces
We now assume that our space X is compact and we construct a Reproducing 
Kernel Hilbert Space (RKHS) with kernel K.

Using the RKHS property, we can view the minimizing function of this 
problem as a projection onto the subspace

Smale observes that our original family of functions {E_x} becomes the family 
of function {K_x}



Reproducing Kernel Hilbert Space

Smale observes that our current problem we are solving becomes the original 
problem when you make the substitutions                and 

Problem we are solving

Problem from earlier Problem with Substitutions

Note: There are some other technical assumptions that have been omitted for the sake of illustrating the main concept



Reproducing Kernel Hilbert Spaces
Now we find ourselves in our original context, except this time we have used a 
RKHS structure to bring a regression function into play.

We remember the original Theorem from the beginning:

And see that it can be applied now to solve our most recent problem



How Good is This Approximation
In Smale’s paper, what follows is a variety of technical proofs that 
eventually converge towards the following result



Conclusion
The key takeaway is that Smale’s work gives an interesting 
characterization for solving a regression problem and extends his 
previous work to a characterization with frames.

We see in this paper that there is an interplay between RKHS and other 
fields, such as Learning Theory and Regression Analysis.
Furthermore, we see that dimension independent estimates were 
given for the error of our RKHS approximation.
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