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ABSTRACT
Centerline tracing of dendritic structures in confocal images
of neurons is an essential tool for the construction of geo-
metrical representation of a neuronal network from its coarse
scale up to its fine scale structures. In this paper, we propose
a novel algorithm (ORION 2) for centerline extraction that is
both highly accurate and computationally efficient. The main
novelty of the proposed method is the use of a small set of
Multiscale Isotropic Laplacian filters for a fast and efficient
binarization of the dendritic structure.The performance of this
algorithm, which is validated on data from the DIADEM set,
is shown to be very competitive against other state-of-the-art
algorithms.

1. INTRODUCTION AND PREVIOUS WORK

The recent advances in confocal and multiphoton microscopy
have opened up tremendous opportunities to study fundamen-
tal changes in neuronal morphology which, in the brain, are
typically associated with learning and memory formation. To
this goal, it is essential to develop accurate and efficient tools
to segment neuronal structures and quantify their associated
morphological characteristics. Deducing the graph connectiv-
ity for the centerline of a dendrite and using this graph as the
backbone for representing the geometry of the tubular struc-
ture of a dendrite is essential for building a geometrical rep-
resentation of a neuron. Although the problem of extracting
this neuronal mapping still requires significant human inter-
vention, methods for the extraction of the graph connectivity
of dendrites have been extensively studied, including methods
for tracing dendritic centerlines and identifying their branch-
ing and terminal points.

A commonly used strategy to determine the centerline
in binarized images is skeletonization (e.g., [10]), where
the binary volume undergoes an iterative thinning process.
However, skeletonization is not particularly robust to noise.
Other methods for centerline extraction require the selection
of a point source (also called, a seed point), that may be
automatically detected [8], randomly selected [2], or user-
provided [7]. This point source initializes a process of wave
propagation [4] or a fast marching algorithm [7] which pro-
ceeds to draw the centerline until it reaches some terminal
points. While this approach is computationally efficient, its

main drawback is that its performance tends to be quite sen-
sitive to the choice of the point source, leading to the risk of
missing complete branches of the segmented volume.

In this paper, we propose a novel algorithm, called
ORION 2, for the semi-automatic centerline extraction from
3D volumes, that is very competitive in terms of accuracy
and computational efficiency and significantly reduces the
need for training. This new efficient algorithm extracts the
graph connectivity of a neuronal network. The main novelty
of the proposed method is the use of a small set of Multiscale
Isotropic Laplacian filters for a quick and efficient binariza-
tion of the dendritic structure combined with the application
of a simple 3D finite-length filter which automatically de-
tects the seed points for the centerline extraction. Although
the strategy of our approach bares some similarity with the
strategy recently proposed by Xie et al. [9], our method is dif-
ferent. The first step of the algorithm by Xie et al. segments
the solid by applying a global threshold. This threshold-
ing strategy is commonly used due to speed and simplicity.
Nevertheless, this binarization method is not robust with re-
spect to segmentation errors [6]. In contrast, as it will be
explained below, our approach provides a more reliable and
accurate binarization. The proposed seeding and tracing al-
gorithms have a simpler mathematical justification, a much
more streamlined implementation, and avoid the forward and
backward propagation algorithms used in ORION [5, 7] and
FARSIGHT [8], reducing computational cost.

2. METHODS

2.1. Training of the Classifier

The training of the classifier consists of three stages: feature
selection, sample selection and parameter optimization. For
computational efficiency, the features to consider are gener-
ated by a set of filters F1, . . . , FN , combining isotropic low
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derivatives at the direction of the gradient, which is in prin-
ciple perpendicular to the centerline. Here, Pn is the Taylor
polynomial of degree n associated with the exponential func-
tion ex, and Cn,k = (2n + 1)/(πσk)

2. The volume Fi ∗ I
is computed, where I is the input volume. A normalizing
constant αi is defined such that max

v∈I
{αi|(Fi ∗ I)v|} = 1. For

each voxel v in I , we define (α1(F1 ∗ I)v, . . . , αN (FN ∗ I)v)
to be the feature vector corresponding to v.

The output of a confocal or multiphoton microscopy scan
of a neuron can be approximated by a finite sum of the form
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SO(3), Txig(x) = g(x − xi), and ai,k,j1,j2 > 0. According
to this model, the surface of the solid is identified by the in-
flexion points of the sum. Thus, theoretically, we expect that
the Laplacian of I would to be negative in the interior of the
structure and positive in the exterior.

Noise present in real volumes may introduce spike-values
in its Laplacian. These spikes have high frequency content,
and therefore such noise is mitigated by the application of a
band-pass filter. Hence, voxels corresponding to larger posi-
tive or negative values have a higher likelihood of being back-
ground or solid, respectively.

A human operator chooses regions Ri inside the solid to
be used for training, and parameters pi and ni, that corre-
spond to the percentage of the total number of positive and
negative values that will be considered as samples (typically
0.5% − 2%). The operator can visually inspect the sample
sets, and either approve them or adjust the parameters pi and
ni. The operator’s goal is to generate sample sets as repre-
sentative as possible. Once sample sets and respective feature
vectors are obtained, a grid search for the SVM paremeters is
performed via a four-fold validation process. Upon compli-
tion of the search, the classifier is generated. This SVM train-
ing procedure was inspired and improved from ORION [5, 7].

2.2. Binarization

Often, in a neuronal volume, it is expected that the number of
object voxels will be considerably smaller than the number of
the background voxels, with the latter having lower intensity
values. If we compute µ, the average intensity of the vol-
ume I , voxels with intensity values lower than µ can safely
be considered to belong to the background. This preliminary
crude segmentation step reduces the computational overhead
of the binarization. To segment the remaining voxels we use
the SVM classifier previously trained utilizing the proposed
features.
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Fig. 1. Process of seed generation. (a) Depiction of seed
candidates obtained from the filtering process, prior to deci-
mation. (b) seeds remaining after decimation.

2.3. Selection of Seed Points

The selection of seed points from the binary volume is per-
formed in three steps: filter seeding, seed decimation, and
compensatory seeding.

Consider B to be the set of voxels in the segmented solid
after the completion of the binarization. Each voxel v is iden-
tified by its integer reference coordinates (x, y, z). We define
d(v) = min{‖v − p‖ : p /∈ B}, where ‖ · ‖ is the Euclidean
norm.

We compute the distance transform of the structure
through the use of an efficient off-the-shelf algorithm. The
resulting distance volume is convolved with T , which is a
3 × 3 × 3 filter with T0,0,0 = 1, and Ti,j,k = −1/26 for all
(i, j, k) 6= (0, 0, 0). Let N(v) be the set of immediate neigh-
bors of v. Note that (T ∗ d)(v) = d(v)− 1

26

∑
w∈N(v) d(w)

is the difference between the distance of v and the average
of distance all neighboring voxels. The solid obtained is
normalized by dividing by the maximum of its values, and a
threshold equal to 0.5 is applied. The set of seed candidates
may contains voxel that are not in the centerline. Our second
step, decimation, intends to eliminate these voxels and it is
performed by Algorithm 1.

Algorithm 1 Seed Decimation
Input:

Voxel v and set N(v).
Output:

Decision S: v is not a seed
1: Set dM (v) = max{d(w)|w ∈ N(v)}
2: Set dm(v) = min{d(w)|w ∈ N(v)}
3: if dm(v) = 0 and d(v) < dM (v) then
4: S = true
5: else if

√
d(v)2 + 1 < dM (v) then

6: S = true
7: else
8: S = false
9: end if

It is possible that no seeds were generated in some re-
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Fig. 2. Tracing Process. Following an iteration of the algo-
rithm 2, (a) depicts current path P in red, and next seed sk
in green. (b) depicts in yellow the region Rk where the path
search will be performed. The region containing the subpath
from the new seed to the current path is identified. (c) shows
in blue the subpath Pk generated between P and sk.

gions of the solid, creating the potential to miss partial or
entire branches during tracing. To mitigate this effect, we
identify these portions as the complement in the solid of the
set {v|∃s ∈ S, ‖v − s‖ ≤ C · d(s)} where C is twice the
z−smear factor of the input, and S is the current set of seeds.
The new seeds are computed by iteratively obtaining the max-
imum value d(v) of the voxels in such regions, and mark the
voxel v in question as a seed, and remove from such regions
the voxels w such that ‖v −w‖ ≤ C · d(v). This process is
significantly slower than the first seed selection process, and
therefore it is not used to generate seeds on the entire solid,
but it is a reasonable alternative for few significantly smaller
portions of the solid.

2.4. Tracing

Once the seeds are generated, the centerline is traced by itera-
tively identifying and connecting seeds to to the current path,
according to Algorithm 2. To compute the subpath from the
new seed to the previous path, we propose a variation of Di-
jkstra’s algorithm [3], to be applied to search the minimum
path between sk and each voxel in P ∩ Rk. Unlike the stan-
dard Dijkstra’s algorithm, this algorithm uses an ordered pair
of weights W (e) = (W1(e),W2(e)) for the directed edge
e = (v,w) between neighboring voxels v and w. The term
W1(e) = (d(v))−1 + (d(w))−1 is introduced to maximize
the distance from the path elements to the background, and
W2(e) = 1 − max

{
〈v−w,w−p〉
‖v−w‖·‖w−p‖

∣∣∣p ∈ P ∩Rk} is spec-
ified to attenuate the z-smear effect by placing higher rele-
vance to the path with lower directional variation. We coon-
sider W to be ordered by lexicographical ordering.

2.5. Centerline Post-processing

It may be the case that after the decimation step, some seeds
remain that are not in the centerline, and therefore, these seeds
may have been traced as false branches. These false seeds are,

Algorithm 2 Tracing
Input:

Seed set S and solid voxels B.
Output:

Centerline path voxel set P .
1: Select seed s1 so that d(s1) = max{d(s)|s ∈ S}.
2: P ← {s1}.
3: k ← 1.
4: while S \ P 6= ∅ do
5: k ← k + 1.
6: Select seed sk so that d(sk) = max{d(s)|s ∈ S \ P}.
7: Set Rk = {sk}.
8: while Rk ∩ P = ∅ do
9: Rk ← (Rk ∪N(Rk)) ∩B.

10: end while
11: Pk ← dijkstraVariation(sk, Rk, P ∪Rk).
12: P ← P ∪ Pk.
13: end while

nevertheless, close to the real centerline, thus it is reasonable
to expect these false brances to be fairly short.

To address this potential source of errors, we identify from
the graph structure of the centerline, the terminal and branch-
ing points. We compute the length of the branch from the ter-
minal point u to its closest branching point v. If this length is
smaller than d(v), we eliminate all the voxels in this branch
but v.

3. EXPERIMENTS, RESULTS AND COMPARISONS

To evaluate the accuracy of the proposed method, we used
all of the Olfactory Projection Fibers and the first set of Neu-
romuscular Projection Fibers (NPF) datasets from the DIA-
DEM challenge [1]. To compare our results, we take the
Gold Standard Reconstructions provided by DIADEM. For
each of these data sets, a single classifier was trained in one
solid only. Some of the Gold Standard Reconstructions pro-
vided for the NPF are incomplete. An estimate of the percent-
age of solid traced was computed for each of the 152 solids
in this dataset by linearly interpolating the annotations, con-
structing a synthetic solid from these annotations, and com-
paring these synthetic solids with a user selected binariza-
tion thresholding. This tests shows that only for thirty solids
the manual annotations cover over 99% of the binary solid.
We used these solids for our analysis. For our binarization
step, we considered a single training with nine features: three
Laplacian, with σ ∈ {0.25, 0.5, 0.75}, three low pass band
filters, with σ ∈ {0.3, 0.5, 0.7}, and three high pass filters
with (σ1, σ2) ∈ {(0.4, 0.1), (0.6, 0.3), (0.8, 0.5)}. We set
n = 60, where n is the degree of Pn.

To quantitatively validate the performance of our algo-
rithm, we used the metrics employed in [8] and [9]. These
include Precision, Recall, and the Miss-Extra-Score (MES)



Table 1. Metrics for Neuromuscular Projection Fiber stacks.
Stack Precision Recall MES ADE (σ) VRS

1 1.00 1.00 1.00 0.71 (0.66) 0.97
2 1.00 0.98 0.98 0.89 (1.02) 1.00
3 0.85 0.88 0.82 1.31 (0.89) 0.85
4 0.99 1.00 0.99 0.95 (1.07) 0.99
5 0.79 0.94 0.81 1.37 (0.97) 0.88
6 0.95 1.00 0.96 0.76 (1.08) 0.98

Average 0.93 0.97 0.93 1.0 (0.95) 0.87

Fig. 3. Boxplots of metrics for the NPF reconstructions.

defined as Precision = SC/ST , Recall = SC/(SC + Smiss),
MES = (SG − Smiss)/(SG + Sextra), where SC is the to-
tal length of the correctly traced segments, ST is the total
length of the traced centerline, SG is the total length of all seg-
ments in the ground-truth trace, Smiss and Sextra are the total
lengths of missing and extra segments in the computed trace,
respectively. The second metric is the Average-Displacement-
Error (ADE) which is defined as the average displacement of
the matched components. The third and last metric to be com-
puted is Volume-Reached-Score (VRS), defined as the ratio in
the cardinalities of the set {v ∈ B|∃c ∈ C s.t ‖v − c‖ ≤
d(c)}, and B, where B is the set of voxels in the binarized
solid, and C is the set of voxels in the computed centerline.

Our results compare very favorably with the published lit-
erature. Specifically, Xie et al. [9] reported an average MES
of 0.86 for a subset of five out of the six solids in Table 1.
Our algorithm’s average MES is 0.93 in the entire collection,
and no less than 0.91 on any subcollection of five of these
solids. Compared with the FARSIGHT algorithm [8] report
on a subset of 26 solids from the Neuromuscular Projection
Fibers datasets, average Precision of 0.98 and Recall of 0.95,
after manual editing. From the subset analyzed in this pa-
per, we obtain an average Precision of 0.98 and Recall of
0.94, with unedited traces, and without additional training.
The experiments were performed using a PC with a 2.79GHz
i5 quad-core processor and 16 GB of RAM memory, using
MATLAB R2011b. We used the LIBSVM library as our Sup-
port Vector Machine engine.
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