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Abstract The analysis and detection of edges and interface boundaries is a funda-
mental problem in applied mathematics and image processing. In the study of the
wave equation, for example, one is interested in the evolution of moving fronts; in
image processing and computer vision, the detection and analysis of edges is an es-
sential task for applications such as shape recognition, image enhancement and clas-
sification. Multiscale methods and wavelets have been very successful in this area,
due to a combination of useful micro-analytical properties and fast numerical imple-
mentations. The continuous wavelet transform in particular, has the ability to signal
the location of the singularities of functions and distributions through its asymptotic
decay at fine scales. However, this approach is unable to provide additional infor-
mation about the geometry of the singularity set, such as the edge orientation. This
limitation can be overcome by using the continuous shearlet transform, an approach
combining the analytical power of multiscale analysis and high directional sensi-
tivity. This chapter gives an overview of the microlocal properties of the shearlet
transform and illustrates its ability to provide a precise geometric characterization
of edges and interface boundaries in images and other multidimensional data. These
results provide the theoretical groundwork for innovative applications in problems
of edge detection, feature extraction and geometric separation.
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1 Introduction

Edges are prominent features in images. Because they often carry the most important
information of an image, analysis and detection of edges is a central topic in image
processing, computer vision and pattern recognition.

The first difficulty one encounters is that the concept of ‘edge’ has both a physical
and a visual meaning. In the physical world, edges correspond to discontinuities
in the structural, chemical or photometrical properties of real objects. In images,
edges are associated with sharp changes of intensity and accurate detection of the
locations of these changes is the purpose of edge detection algorithms. In principle,
if an image is modelled as a continuous function, sudden intensity changes can
be identified by differentiation. However, every realistic image is contaminated by
some noise, producing local intensity variations that may confound a naive edge
detector scheme based on direct implementation of a differentiation operator. Thus,
to design a robust edge detection scheme, more sophisticated algorithmic procedure
are usually necessary.

The problem of edge detection is historically intertwined with the modelling of
the human visual system. Following the celebrated physiological studies of Golgi,
Cajal, Granit, Hartline and others, along with the advent of the modern computer
age it emerged the idea that vision is an information processing system, whose first
stage works essentially as an edge detector [34]. This idea was articulated most ef-
fectively by D. Marr who observed that “the purpose of early visual processing is to
construct a primitive but rich description of the image”, called a raw primal sketch
of the image, which is “constructed of the intensity changes in an image, using a
primitive language of edge-segments, bars, blobs and terminations” (cf. [34]). Re-
lated to this is the fundamental remark that: “A major difficulty with natural images
is that changes can and do occur over a wide range of scales. No single filter can
be optimal simultaneously at all scales, so it follows that one should seek a way
of dealing separately with the changes occurring at different scales.” Based on this
observation, Marr and Hildreth pioneered the idea of using a multiscale approach to
detect edges in images and argued in favour of a method based on the Laplacian of
Gaussian (at various scales) inspired by the structure of the receptive field of retinal
ganglion cells [35].

In mathematics, edges are usually modelled as discontinuities or, more generally,
as singularities of functions and distributions. For example, the two-dimensional
Heaviside step function H, given by

H(x1,x2) =

{
1 if x1 > 0,
0 if x1 ≤ 0,

is a model of an ideal step edge in the plane R2 located along the axis x1 = 0.
The mathematical characterization of step edges and other singularities using

multiscale transforms goes back to the origins of the wavelet literature [16] and
was inspired in part by the observations from the neurophysiological literature we
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described above. In the wavelet approach, the key idea is to construct families of
analyzing functions defined over a range of scales and location, that is,

{ψa,t(x) = a−n/2
ψ(a−1(x− t)), a > 0, t ∈ Rn},

where ψ ∈ L2(Rn) is usually a well-localized function (i.e., it has rapid decay both
in the spatial and the Fourier domain). In particular, we can choose ψ such that ψ̂ ∈
C∞

c (Rn) and ψ̂(0) = 0. Since ψ has rapid decay in space-domain, the functions ψa,t
are mostly concentrated around t, with the size of the essential support controlled
by the scaling parameter a. We can then use these functions to analyze the local
regularity of a function or distribution f through the mapping

f → 〈 f ,ψa,t〉, a > 0, t ∈ Rn. (1)

To illustrate how this approach can be used to identify the location of a step
edge, let us apply the transform (1), for n = 2, to the Heaviside step function H.
Using Plancherel theorem, the distributional Fourier transform of H (see Appendix)
and denoting t = (t1, t2) ∈ R2, we have:

〈H,ψa,t〉 = 〈Ĥ, ψ̂a,t〉

= a
∫
R2

Ĥ(ξ1,ξ2) ψ̂(aξ1,aξ2)e−2πi(ξ1t1+ξ2t2) dξ1 dξ2

= a
∫
R2

δ2(ξ1,ξ2)

2πiξ1
ψ̂(aξ1,aξ2)e−2πi(ξ1t1+ξ2t2) dξ1 dξ2

= a
∫
R

1
2πiξ1

ψ̂(aξ1,0)e−2πiξ1t1 dξ1

= a
∫
R

γ̂(η)e−2πiη t1
a dη ,

where γ̂(η) = 1
2πiη ψ̂(η ,0). If t1 = 0, the calculation above shows that |〈 f ,ψa,t〉| ≈

a, provided that
∫
R γ̂(η)dη 6= 0. On the other hand, if t1 6= 0, an application of

the Inverse Fourier Transform theorem yields that 〈 f ,ψa,t〉 = aγ(−t1/a). Since
γ̂ ∈ C∞

c (R), γ has rapid decay in space-domain, implying that 〈H,ψa,t〉 decays
rapidly to 0, as a → 0; that is, for any N ∈ N, there is a constant CN > 0 such
that |〈H,ψa,t〉| ≤CNaN , as a→ 0. In summary, the elements 〈H,ψa,t〉 exhibit rapid
asymptotic decay, as a→ 0, for all t ∈ R2 except at the location of the singularity
t1 = 0, where 〈H,ψa,t〉 behaves as O(a).

The mapping f → 〈 f ,ψa,t〉 is the classical continuous wavelet transform and the
above example illustrates its ability to characterize the location of the discontinuities
of f through its asymptotic decay at fine scales. More generally, the continuous
wavelet transform can be used to characterize the singular support of a distribution,
that is, the set of points where it fails to be regular [27, 36], and to measure its local
regularity [29, 30].

However, despite the remarkable ability of the continuous wavelet transform in
resolving the local regularity of a function of distribution, this approach is very
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limited in terms of extracting the geometry of the singularity set. In the example
of the Heaviside step function H, for instance, the continuous wavelet transform
detects the location of edge points but provides no information about the orientation
of the singularity line. In dimensions two and higher, when the singularity points
are supported on a curve or a higher dimensional manifold, it is useful not only to
detect the location of the singularity points but also to capture the geometry of the
singularity set. In the language of microlocal analysis, we want to detect not only
the singular support of a distribution, but also its wavefront set.

In the mathematical literature, the idea of using wavelet-like transforms to per-
form microlocal analysis can be traced back to Bros and Iagolnitzer [1] and Cordoba
and Fefferman [5], who both defined transforms with implicitly a kind of anisotropic
scaling and used these transforms to address various questions in microlocal analy-
sis. It was later shown that the Fourier-Bros-Iagolnitzer (FBI) transform is able to re-
solve not only the singular support but also the wavefront set of a distribution [9, 14].
During the last decade, with the introduction of a new generation of directional mul-
tiscale systems in the wavelet literature, most notably the curvelet [3] and shearlet
systems [18], it was shown that it is possible to define ‘generalized’ wavelet trans-
forms able to resolve the wavefront set of distributions [4, 15, 31]. Among such
transforms, the continuous shearlet transform offers an especially appealing math-
ematical framework, due to a simple construction, derived from the general setting
of affine systems, and its high directional sensitivity obtained through the action
of anisotropic dilations and shear transformations. One major advantage of this ap-
proach is that, thanks to the affine structure, there is a rather direct procedure to de-
rive discrete versions of the shearlet transform and transfer the theoretical properties
of the continuous transform to its discrete counterparts. This property is especially
useful for image processing and other numerical applications.

In this chapter, we present a review of the mathematical results concerning the
application of the continuous shearlet transform to the analysis and detection of
edge-type singularities in multivariate functions and distributions. As we will show
below, the continuous shearlet transform enables a precise geometric characteriza-
tion of edges and other singularity sets in multivariate functions and distributions.
For instance, in the case of the two-dimensional Heaviside step function, the con-
tinuous shearlet transform characterizes both the location and the orientation of the
discontinuity line. More generally, it can be used to identify the geometry of curvi-
linear edges and detect corner points in functions of two variables and similarly
to characterize surface boundaries, wedges and corner points in functions of three
variables.

The rest of the chapter is organize as follows. In Section 2, we recall the defi-
nition of the continuous wavelet and shearlet transforms. In Section 3, we present
the shearlet analysis of step discontinuities in the two-dimensional case. The main
theorem we prove is a generalization of results previously appeared in the literature
and shows that the shearlet-based analysis can be used not only to detect the loca-
tion and orientation of an edge, but also to extract information about its curvature.
In Section 4, we discuss the extension of the shearlet analysis of step discontinu-
ities to the three-dimensional case. We make some additional remarks about the
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analysis of other types of edge singularities in Section 5, where we also include a
brief survey of the numerical applications of the results discussed in this chapter. In
the Appendix, we collect some basic definitions and results about Fourier analysis,
including Fourier analysis of distributions.

2 The continuous wavelet transform and its generalizations

In this section, we recall the definition of the continuous wavelet transform, first
in dimension one and then in higher dimensions. We define the continuous shear-
let transform within this setting as a special realization of the continuous wavelet
transform in dimensions n≥ 1.

2.1 Continuous wavelets

The affine group associated with R, denoted by A , consists of all pairs

(a, t) ∈ R+×R

with the group operation

(a, t) · (a′, t ′) = (aa′,at ′+ t).

This operation is consistent with the action of g = (a, t) ∈ A on x ∈ R given by
g(x) = ax+t. Note that g−1 = (a, t)−1 = (a−1,a−1−a−1t). For ψ ∈ L2(R), a unitary
representation of A acting on L2(R) is the mapping π : A 7→U (L2(R)) given by

(π(a, t)ψ)(x) = a−1/2
ψ((a, t)−1x) = a−1/2

ψ(a−1(x− t)) := ψa,t(x),

where U (L2(R)) denotes the group of unitary representations on L2(R2). The col-
lection of functions

{ψa,t : (a, t) ∈A }

is called a continuous wavelet system generated by ψ ∈ L2(R2) and the mapping
Wψ taking f ∈ L2(R) into the function

Wψ f (a, t) = 〈 f ,ψa,t〉= a−1/2
∫
R

f (x)ψ(a−1(x− t))dx (2)

on A is the continuous wavelet transform of f .
One major goal of wavelet theory is to find conditions on ψ so that one can

reconstruct f from its wavelet transform via the reproducing formula

f =
∫

A
〈 f ,ψa,t〉ψa,t dλ (a, t), (3)
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where dλ (a, t) = a−2dadt is the left Haar measure on A and the equality is under-
stood in the weak sense. This condition, called admissibility condition, was discov-
ered by Calderòn [2] and is given by the expression∫

∞

0
|ψ̂(aξ )|2 da

a
= 1, for a.e. ξ ∈ R. (4)

An admissible function ψ satisfying the reproducing formula (3) is called a continu-
ous wavelet on A . Clearly, there are many examples of continuous wavelets on A ,
as one can choose any ψ ∈ L2(R) such that ψ̂ is a bounded function supported in a
compact set in R\{0}.

The extension of the notion of continuous wavelet and continuous wavelet trans-
form to n dimensions follows along the same lines presented above, once we replace
the affine group with its multi-dimensional version. The full affine group of motions
on Rn, denoted by An, consists of all pairs (M, t) ∈ GLn(R)×Rn with group oper-
ation

(M, t) · (M′, t ′) = (MM′,Mt ′+ t).

This operation is associated with the action x 7→Mx+ t on Rn.
We consider the subgroups Λ = {(M, t) : M ∈ G, t ∈ Rn} ⊂ An, where G is a

closed subgroup of GL2(R). We can identify G with the subgroup {(M, t) ∈ Λ :
M ∈ G, t = 0} and we refer to it as the dilation subgroup of Λ . Similarly, we refer
to the subgroup N = {(M, t) ∈Λ : M = I, t ∈Rn} as the translation subgroup of Λ .
For ψ ∈ L2(R2), a unitary representation of Λ acting on L2(R2) is defined by

(ρ(M, t)ψ)(x) = |detM|−
1
2 ψ(M−1(x− t)) := ψM,t(x).

Then, similar to the one-dimensional case, a continuous wavelet system generated
by ψ ∈ L2(R2) is a collection of functions of the form{

ψM,t(x) = |detM|−
1
2 ψ(M−1(x− t)) : (M, t) ∈Λ

}
and the mapping Wψ taking f ∈ L2(Rn) into the function

Wψ f (M, t) = 〈 f ,ψM,t〉= |detM|−1/2
∫
Rn

f (x)ψ(M−1(x− t))dx (5)

is the continuous wavelet transform of f on Λ associated with ψ ∈ L2(Rn). Similar
to the one-dimensional case, a function ψ ∈ L2(Rn) is said to be admissible and
is called a continuous wavelet on Λ if any f ∈ L2(Rn) can be recovered via the
reproducing formula

f =
∫

Λ

〈 f ,ψM,t〉ψM,t dλ (M, t), (6)

where λ is the left Haar measure for Λ and, as above, the equality is understood in
the weak sense. We write dλ (M, t) = dµ(M)dt, where µ is the left Haar measure
of G. The following proposition gives the admissibility condition for a function ψ
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satisfying formula (6). The proof that we include is taken from [31] and it follows
the main ideas from [40].

Proposition 1. Equality (6) is valid for all f ∈ L2(Rn) if and only if

∆(ψ)(ξ ) =
∫

G
|ψ̂(ξ M)|2 |detM|dµ(M) = 1, (7)

for all ξ ∈ Rn \{0}.

Proof. Suppose that (7) holds. Given any f ∈ L2(Rn), an application of Parseval
and Plancherel formulas yields:

‖Wψ f‖2
L2(Λ) =

∫
Rn

∫
G
|〈 f ,ψM,t〉|2 dµ(M)dt

=
∫
Rn

∫
G

∣∣∣∣∫Rn
f̂ (ξ ) ψ̂(ξ M)e2πiξ tdξ

∣∣∣∣2 |detM|dµ(M)dt

=
∫
Rn

∫
G

∣∣∣∣( f̂ ψ̂(·M)
)∨

(t)
∣∣∣∣2 |detM|dµ(M)dt

=
∫

G

∫
Rn

∣∣∣∣( f̂ ψ̂(·M)
)∨

(t)
∣∣∣∣2 dt |detM|dµ(M)

=
∫

G

∫
Rn
| f̂ (ξ )|2 |ψ̂(ξ M)|2 |detM|dξ dµ(M)

=
∫

G
| f̂ (ξ )|2 ∆(ψ)(ξ )dξ = ‖ f‖2

L2(Rn).

This shows that the mapping

Wψ : L2(Rn)→ L2(Λ)

is an isometry. By polarization we thus have that

〈Wψ f ,Wψ g〉L2(Λ) = 〈 f ,g〉L2(Rn)

for all f , f in L2(Rn) giving equation (6).
Conversely, suppose that∫

Rn

∫
G
|〈 f ,ψM,t〉|2 dµ(M)dt = ‖ f‖2

for all f ∈ L2(Rn). Let ξ0 be a point of differentiability of ∆(ψ)(ξ ) and let
f̂ (ξ ) = |B(ξ0,r)|−1/2 χB(ξ0,r)(ξ ), where B(ξ0,r) is a ball centered at ξ0 of radius
r. By reversing the chain of equalities above we conclude that

1
|B(ξ0,r)|

∫
B(ξ0,r)

∆(ψ)(ξ )dξ = 1
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for all r > 0. Letting r→ 0, we obtain that ∆(ψ)(ξ0) = 1, and, since almost each
ξ ∈ Rn is a point of differentiability, (7) holds. ut

If G is the affine group A , then |deta|= a, dµ(a) = da
a

2
and (7) gives the classical

Calderòn condition (4). Also, note that Proposition 2 can be extended to the situation
where Λ is just a subset and not a subgroup of An.

For a given dilations group G, it does not always exist an admissible function ψ

for which the reproducing formula (6) holds. For example, it is not difficult to show
that the group of 2× 2 orthogonal matrices SO(2) acting on R2 is not associated
to any admissible ψ . We refer the interested reader to [33, 40] for an illuminating
discussion about the admissible dilation groups and several related results.

The simplest example of dilation group we can consider is G = {aIn : a > 0},
where In is the n× n identity matrix. In this case, similar to the one-dimensional
case (5), we can choose as admissible function any ψ ∈ L2(R) such that ψ̂ is a
bounded function supported in a compact set in Rn \ {0}. This choice of dilation
group is associated with isotropic dilations since the action of an element of the
group (aIn, t) ∈ Λ on x ∈ Rn is given by ax+ t where the same dilation factor a is
applied to each coordinate direction. It is reasonable to expect that for more general
dilation groups G we can obtain wavelet transforms with more interesting geomet-
ric properties. This can achieved, in particular, using a special subgroup of upper
triangular matrices in GL(n,R) associated with the so-called shearlet group as will
be shown in the next section.

2.2 Continuous shearlets

The shearlet group, originally introduced in [7, 31], is the subgroup S of Λ ⊂
GL(n,R) where, for a fixed parameter β = (β1, . . . ,βn−1)∈Rn−1, the dilation group
G consists of the matrices

M(a,s) =


a −aβ1 s1 ... −aβn−1 sn−1

0 aβ1 ... 0
...

...
...

...

0 0 ... aβn−1

 ,

with a > 0 and s = (s1, . . . ,sn−1) ∈ Rn−1. Usually the parameters βi are chosen so
that 0 < βi < 1, for all 1 ≤ i < n, as this ensures useful geometric properties for
the functions generated under the action of this group. For example, in [8] all βi are
chosen to be equal to 1/n, as this generalizes the parabolic scaling condition (see
further comments in the next section).

We observe that the matrix M(a,s) can be written as the product B(s)A(a) of the
anisotropic dilation matrix
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A(a) =


a 0 ... 0
0 aβ1 ... 0
...

...
...

...

0 0 ... aβn−1


and the shear matrix

B(s) =


1 −s1 ... −sn−1

0 1 ... 0
...

...
...

...
0 0 ... 1

 .

Hence, the action of (M(a,s), t)∈S on x∈Rn is given by M(a,s)x+t =B(s)A(a)x+
t. This shows that each coordinate xi of x is multiplied by different dilation factor
aβi−1 and this operation is followed by the multiplication by the non-expanding ma-
trix B(s).

For ψ ∈ L2(Rn), the shearlet representation acting on L2(Rn) is the unitary rep-
resentation defined by

(ρ(M(a,s), t)ψ)(x) = |detM(a,s)|−
1
2 ψ(M(a,s)−1(x− t)) := ψM(a,s),t(x)

and a continuous shearlet system is a collection of functions of the form

{ψM(a,s),t(x) = |detM(a,s)|−
1
2 ψ(M(a,s)−1(x− t)) : (M(a,s), t) ∈ S}.

The mapping SHψ taking f ∈ L2(Rn) into the function

SHψ f (M(a,s), t) = 〈 f ,ψM(a,s),t〉= |detM(a,s)|−
1
2

∫
Rn

f (x)ψ(M(a,s)−1(x− t))dx

is the continuous shearlet transform of f associated with ψ ∈ L2(Rn).
It is not difficult to see that there exist admissible functions ψ ∈ L2(Rn) such that

any f ∈ L2(Rn) can be recovered from the reproducing formula

f =
∫
S
〈 f ,ψM(a,s),t〉ψM(a,s),t dλ (M(a,s), t),

where λ is the left Haar measure for S. It is a rather simple calculation to show that
dλ (M(a,s), t) = da

a3 dsdt. We will show examples of admissible functions in the next
section, where we illustrate the properties of shearlet systems in dimension n = 2.

We refer the interested reader to [6] for a more detailed discussion of the shearlet
group and its connection with the extended Heisenberg groups and the subgroups of
the symplectic group.
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2.3 Continuous shearlets in the plane (n = 2)

We now examine in more detail the properties of continuous shearlets in dimension
n = 2.

In accord with the general setting defined in the section above, for a fixed 0 <
β < 1, a continuous shearlet system generated by ψ ∈ L2(R2) is a collection of
functions

{ψa,s,t(x) = |detM(a,s)|−
1
2 ψ(M(a,s)−1(x− t)) : a > 0,s ∈ R, t ∈ R2}, (8)

where M(a,s)=
(

a −aβ s

0 aβ

)
. As in the general case, we can write M(a,s)=B(s)A(a),

where A(a) =
(a 0

0 aβ

)
and B(s) =

(
1 −s

0 1

)
. When β = 1

2 , the anisotropic dilation ma-

trix A(a) is associated with the so-called parabolic scaling, meaning that the action
of the matrix on an element of R2 produces a scaling that, along one coordinate
axis, is quadratic with respect to the other coordinate direction. Parabolic scaling
is especially relevant in the construction of discrete systems of curvelets and shear-
lets since it plays a critical role in ensuring that such system satisfy nearly optimal
approximation properties for functions in class of cartoon-like images (cf. [3, 18]).

To obtain an admissible function ψ ∈ L2(R) for the shearlet system (8), we define
ψ in the Fourier domain as

ψ̂(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1
),

where ∫
∞

0
|ψ̂1(aω)|2 da

a
= 1, for a.e. ω ∈ R; ‖ψ2‖2 = 1. (9)

We have the following result from [31].

Proposition 2. Let ψ be chosen as above, with ψ̂1 and ψ̂2 satisfying (9). Any f ∈
L2(R2) satisfies

f =
∫
R2

∫
R

∫
∞

0
〈 f ,ψa,s,t〉ψa,s,t

da
a3 dsdt, (10)

where the equality is understood in the L2 sense.

Proof. To prove the proposition, it is sufficient to show that the admissibility condi-
tion (7) from Proposition 2 is satisfied for M = M(a,s).

Observing that (ξ1,ξ2)M =(aξ1,aβ (ξ2−sξ1)) and that dλ (M(a,s), t)= dµ(M(a,s))dt =
a−3dadsdt, then the admissibility condition (7) becomes

∆(ψ)(ξ ) =
∫
R

∫
∞

0
|ψ̂1(aξ1)|2 |ψ̂2(aβ−1( ξ2

ξ1
− s))|2 a1+β da

a3 ds = 1. (11)

Using the assumptions on ψ1 and ψ2, we finally have that



Efficient analysis and detection of edges through directional multiscale representations 11

∆(ψ)(ξ ) =
∫
R

∫
R+
|ψ̂1(aξ1)|2 |ψ̂2(aβ−1( ξ2

ξ1
− s))|2 aβ−2dads

=
∫
R+
|ψ̂1(aξ1)|2

(∫
R
|ψ̂2(aβ−1 ξ2

ξ1
− s)|2 ds

) da
a

=
∫
R+
|ψ̂1(aξ1)|2

da
a

= 1 for a.e. ξ = (ξ1,ξ2) ∈ R2.

This shows that equality (11) is satisfied and, hence, ψ is an admissible function for
the shearlet system. ut

In many cases, including the applications we will consider in the following, some
additional assumptions are required on the functions ψ1, ψ2. Namely, both functions
are assumed to be C∞

c in the Fourier domain with

supp ψ̂1 ⊂ [−2,−1
2
]∪ [1

2
,2]

and
supp ψ̂1 ⊂ [−1,1].

The elements of the shearlet system can be written in the Fourier domain as:

ψ̂a,s,t(ξ1,ξ2) = a
1+β

2 ψ̂1(aξ1) ψ̂2(aβ−1( ξ2
ξ1
− s))e−2πiξ ·t .

Thus, by the assumptions on ψ1 and ψ2, it follows that the functions ψ̂a,s,t have
supports:

supp ψ̂a,s,t ⊂ {(ξ1,ξ2) : ξ1 ∈ [− 2
a ,−

1
2a ]∪ [

1
2a ,

2
a ], |

ξ2
ξ1
− s| ≤ a1−β}.

That is, the support of ψ̂a,s,t is a pair of trapezoids, symmetric with respect to the ori-
gin, oriented along a line of slope s. The trapezoidal supports becomes increasingly
more elongated as a→ 0. Note that, since the functions ψ̂a,s,t are in C∞

c , in space
domain the elements ψa,s,t are well localized (even though, clearly, not compactly
supported), and their essential support is also highly anisotropic with orientation
controlled by s. In summary, the elements of a continuous shearlet system form a
collection of well-localized functions ranging over a multitude of scales, orienta-
tions and locations, associated with the variable a,s and t, respectively.

Some representative support sets of the functions ψ̂a,s,t are illustrated in Fig. 1.
Even though the continuous shearlet systems (8) exhibit directionality properties

going beyond the traditional isotropic wavelet systems, they do have a directional
bias which is a consequence of the fact that shear variable s is associated with the
slope and not the rotation angle 1 In fact, to produce a shearlet function aligned
with the vertical axis, the shear variable s need to increase asymptotically up to ∞.

1 Clearly one could try to define a wavelet-like system using dilations and rotations rather than
dilations and shear, like we are describing here. This is what is done by the curvelet approach. One
disadvantage, in the curvelet case, it that one looses the group structure inherited by the theory of
affine systems.
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HHY
(a,s) = ( 1

32 ,1)@
@@R

(a,s) = ( 1
4 ,0)

6

(a,s) = ( 1
32 ,0)

ξ1

ξ2

Fig. 1 Fourier domain supports of representative elements ψa,s,t of a continuous shearlet system,
for different values of a and s.

It follows that, if a function f is mostly concentrated along the vertical axis in the
Fourier domain, the energy of f will be mostly concentrated in the components of
the continuous shearlet transform SHψ f (M(a,s), t) as s→ ∞.

The standard way to address this problem is to modify the continuous shearlet
systems (8) as follows. Rather than letting the shear variable s to be defined over
R, its range is restricted to an interval, for example s ∈ [0,2]. Under this restriction,
the continuous shearlet system does not satisfy the reproducing formula (10) since
the values of s only cover the set of orientations contained in a cone-region centered
along the horizontal axis in the Fourier domain (see Fig. 1). The remaining set of
orientations will now be handled by a second continuous shearlet system.

More precisely, let ψ(h),ψ(v) ∈ L2(R2) be given by

ψ̂
(h)(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2(

ξ2
ξ1
), ψ̂

(v)(ξ1,ξ2) = ψ̂1(ξ2) ψ̂2(
ξ1
ξ2
),

and, for a fixed 0 < β < 1, let N(a,s) =
(

aβ 0

−aβ s a

)
. We define the horizontal and

vertical continuous shearlets by

ψ
(h)
a,s,t(x) = |detM(a,s)|−

1
2 ψ

(h)(M(a,s)−1(x− t)), a > 0,s ∈ R, t ∈ R2,

and

ψ
(v)
a,s,t(x) = |detN(a,s)|−

1
2 ψ

(v)(N(a,s)−1(x− t)), a > 0,s ∈ R, t ∈ R2,

respectively.
For 0 < a < 1

4 and |s| ≤ 3
2 , each system of continuous shearlets spans a subspace

of L2(R2) consisting of functions having Fourier-domain supports in one of the
horizontal or vertical cones defined in the Fourier domain by
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P(h) = {(ξ1,ξ2) ∈ R2 : |ξ1| ≥ 2 and | ξ2
ξ1
| ≤ 1}

P(v) = {(ξ1,ξ2) ∈ R2 : |ξ1| ≥ 2 and | ξ2
ξ1
|> 1}.

The following proposition shows that the horizontal and vertical shearlets satisfy a
reproducing formula similar to (10) for the spaces of L2 functions whose Fourier-
domain support is contained in P(h) and P(h), respectively. The proof of this result
is similar to Proposition 2 and is omitted.

Proposition 3. Let ψ(h) and ψ(v) be chosen with ψ̂1 and ψ̂2 satisfying (9). Let

L2(P(h))∨ = { f ∈ L2(R2) : supp f̂ ⊂P(h)},

with a similar definition for L2(P(v))∨. We have the following.

(i) For all f ∈ L2(P(h))∨,

f =
∫
R2

∫ 2

−2

∫ 1
4

0
〈 f ,ψ(h)

a,s,t〉ψ
(h)
a,s,t(x)

da
a3 dsdt.

(ii) For all f ∈ L2(P(v))∨,

f =
∫
R2

∫ 2

−2

∫ 1
4

0
〈 f ,ψ(v)

a,s,t〉ψ
(v)
a,s,t(x)

da
a3 dsdt.

The equalities are understood in the L2 sense.

Using the horizontal and vertical shearlets, we define the (fine-scale) continuous
shearlet transform on L2(R2) as the mapping

f ∈ L2(R2 \ [−2,2]2)∨→SHψ f (a,s, t), a ∈ (0, 1
4 ],s ∈ [−∞,∞], t ∈ R2,

given by

SHψ f (a,s, t) =

{
SH

(h)
ψ f (a,s, t) = 〈 f ,ψ(h)

a,s,t〉, if |s| ≤ 1

SH
(v)

ψ f (a, 1
s , t) = 〈 f ,ψ

(v)
a,s,t〉, if |s|> 1.

In this expression, it is understood that the limit value s = ±∞ is defined and that
SHψ f (a,±∞, t) = SH

(v)
ψ f (a,0, t).

The term fine-scale refers to the fact that this shearlet transform is only defined
for the scale variable a∈ (0,1/4], corresponding to “fine scales”. In fact, as it is clear
from Proposition 3, the shearlet transform SHψ f defines an isometry on L2(R2 \
[−2,2]2)∨, the subspace of L2(R2) of functions with Fourier-domain support away
from [−2,2]2, but not on L2(R2). This is not a limitation since the shearlet-based
analysis of singularities we will present below is based on asymptotic estimates, as
a approaches 0. In the following, for brevity, we will drop the wording ‘fine-scale’
and, henceforth, simply refer to this transform as the continuous shearlet transform.
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3 Shearlet analysis of step edges. Case n = 2.

In this section, we show that the continuous shearlet transform provides a precise
geometric characterization of step edges for functions of two variables of the form
χS, where S⊂ R2 is a compact set with piecewise regular boundary.

Before presenting the general result, we will examine again the two-dimensional
Heaviside step function that we analyzed above using the conventional wavelet
transform. The examination of this example is useful to illustrate the properties of
the continuous shearlet transform. A direct calculation, where we use Plancherel
theorem and denote t = (t1, t2) ∈ R2, yields that, for |s|< 1, we have

SHψ H(a,s, t) = 〈H,ψ
(h)
a,s,t〉

=
∫
R2

Ĥ(ξ1,ξ2) ψ̂
(h)
a,s,t(ξ1,ξ2)dξ1 dξ2

=
∫
R2

δ2(ξ1,ξ2)

2πiξ1
ψ̂

(h)
a,s,t(ξ1,ξ2)dξ1 dξ2

=
∫
R

1
2πiξ1

ψ̂a,s,t(ξ1,0)dξ1

= a
1+β

2

∫
R

1
2πiξ1

ψ̂1(aξ1) ψ̂2(aβ−1s)e2πiξ1t1 dξ1

= a
1+β

2 ψ̂2(aβ−1s)
∫
R

γ̂(η)e2πiη t1
a dη ,

where γ̂(η) = 1
2πiη ψ̂1(η). Hence, using the assumption that ψ̂1 ∈C∞

c (R), we have
that SHψ H(a,s, t) exhibits rapid asymptotic decay, as a→ 0, for all (t1, t2) ∈ R2

when t1 6= 0. If t1 = 0 and s 6= 0, the term ψ̂2(aβ−1s) will vanish as a→ 0, due to
the support assumptions on ψ̂2. Finally, if t1 = 0 and s = 0, we have that

SHψ H(a,0,(0, t2)) = a
1+β

2 ψ̂2(0)
∫
R

γ̂(η)dη .

Hence, provided that ψ̂2(0) 6= 0 and
∫
R γ̂(η)dη 6= 0, we have the estimate

SHψ H(a,0,(0, t2)) = O(a
1+β

2 ).

A similar computation shows that SHψ H(a,s, t) exhibits rapid asymptotic decay,
as a→ 0, for all |s|> 1.

In summary, under appropriate assumptions on ψ1 and ψ2, we observe that the
continuous shearlet transform of H decays rapidly, asymptotically for a→ 0, for all
t and s, unless t is on the discontinuous line and s corresponds to the normal direc-
tion of the discontinuous line at t. Thus, with respect to the wavelet-based analysis,
the shearlet-based approach enables to detect both the location and orientation of
the discontinuous line.
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Remarkably, the same properties of the continuous shearlet transform observed
on the two-dimensional Heaviside step function can be extended to very general
functions containing step discontinuities.

In particular, let us consider f = χS where S ⊂ R2 is a compact region whose
boundary, denoted by ∂S, is a simple curve, of finite length L, smooth except
possibly for finitely many corner points. To define the notion of corner point,
let α(t) be the parametrization of ∂S with respect to the arc length parameter t.
For any t0 ∈ (0,L) and any j ≥ 0, we assume that limt→t−0

α( j)(t) = α( j)(t−0 ) and

limt→t+0
α( j)(t) = α( j)(t+0 ) exist. Also, let n(t−), n(t+) be the outer normal direc-

tion(s) of ∂S at α(t) from the left and right, respectively; if they are equal, we write
them as n(t). Similarly, for the curvature of ∂S, we use the notation κ(t−), κ(t+) and
κ(t). We say that p = α(t0) is a corner point of ∂S if either (i) α ′(t−0 ) 6=±α ′(t+0 ) or
(ii) α ′(t−0 ) = ±α ′(t+0 ), but κ(t−0 ) 6= κ(t+0 ). When (i) holds, we say that p is a cor-
ner point of first type and, when (ii) holds, we say that p is a corner point of second
type. On the other hand, if α(t) is infinitely many times differentiable at t0, we say
that α(t0) is a regular point of ∂S. The boundary curve α(t) is piecewise smooth if
the values α(t) are regular points for all 0 ≤ t ≤ L, except for finitely many corner
points. Note that it is not necessary to require infinite regularity. One can replace the
piecewise smooth boundary with a piecewise regular boundary of finite order, say
Cm (for sufficiently large m), and derive a result similar to the one we will discuss
below, at the cost of heavier notation.

Let p0 = α(t0) be a regular point and let s0 = tan(θ0) with θ0 ∈ (−π

2 ,
π

2 ). Let
Θ(θ0) = [cosθ0,sinθ0]. We say that s0 corresponds to the normal direction of ∂S
at p0 if Θ(θ0) = ±n(t0). When α(t0) is a corner point, we can identify two outer
normal directions n(t−0 ) and n(t+0 ).

We are now ready to state the following results which is a generalization of a
similar result originally proved in [19] for the special case β = 1/2.

Theorem 1. Let ψ1,ψ2 be chosen such that

• ψ̂1 ∈C∞
c (R), supp ψ̂1 ⊂ [−2,− 1

2 ]∪ [
1
2 ,2], is odd, nonnegative

on [ 1
2 ,2] and it satisfies

∫
∞

0
|ψ̂1(aξ )|2 da

a
= 1, for a.e. ξ ∈ R;

• ψ̂2 ∈C∞
c (R), supp ψ̂2 ⊂ [−

√
2

4 ,
√

2
4 ], is even, nonnegative,

decreasing in [0,
√

2
4 ), and ‖ψ2‖2 = 1.

Let B = χS, where S⊂R2 is a compact set whose boundary ∂S is piecewise smooth,
and let k(p) be the curvature of ∂S at the point p. The following estimates hold.

(i) If p /∈ ∂S then, for all s ∈ R,

lim
a→0+

a−N SHψ B(a,s, p) = 0, for all N > 0.

(ii) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at p0
and s 6= s0, then
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O(a
3
4 )

O(aN)

O(a
3
4 )

O(a
3
4 ) O(aN)

O(aN)

Fig. 2 Asymptotic decay rate of the continuous shearlet transform of B = χS, where S ⊂ R2 has
piecewise smooth boundary. Here we consider the case where β = 1

2 . Away from the boundary,
the decay is faster than O(aN), for any N ∈ N. At the regular points p ∈ ∂S, for s corresponding to
the normal orientation, the shearlet transform decays as O(a

3
4 ); for all other values of s, the decay

is faster than O(aN), for any N ∈ N. At a corner point p, the shearlet transform decays as O(a
3
4 )

for the values of s associated with the two normal orientations at p.

lim
a→0+

a−N SHψ B(a,s, p0) = 0, for all N > 0.

(iii) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at p0,
k(p0) = 0, and 1

3 < β < 1, then

lim
a→0+

a−
1+β

2 SHψ B(a,s0, p0) 6= 0.

(iv) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at p0,
k(p0) 6= 0, and 0 < β ≤ 1

2 , then

lim
a→0+

a−(1−
β

2 )SHψ B(a,s0, p0) 6= 0.

(v) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S at p0,
k(p0) 6= 0, and 1

2 ≤ β < 1, then

lim
a→0+

a−
1+β

2 SHψ B(a,s0, p0) 6= 0.

Remark 1. The theorem shows that, when p /∈ ∂S or when p ∈ ∂S but s does not
correspond to the normal direction of ∂S at p, then the continuous shearlet trans-
form SHψ B(a,s, p) exhibits rapid asymptotic decay, as a function of a, when a
approached 0. If p ∈ ∂S is a regular point and s corresponds to the normal direction
of ∂S at p, then the continuous shearlet transform has ‘slow’ asymptotic decay, with
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decay rate depending on the curvature k of ∂S at p. In particular, when 1
3 < β < 1

2 ,

the decay rates are O(a
1+β

2 ) and O(a(1−
β

2 )) when k(p) = 0 and k(p) 6= 0, respec-
tively. When β = 1

2 , the theorem recovers the results from [19], where the decay

rate is O(a
3
4 ), independently of the values of k(p).

In the case where p ∈ ∂S is a corner point, the shearlet analysis also provides a
precise characterization. We recall below the following result from [19], valid when
β = 1

2 . The result for general β is not known at this time.

Theorem 2. Let ψ1,ψ2 be chosen as in Theorem 1 and β = 1
2 . For B = χS, where

S ⊂ R2 is a compact set whose boundary ∂S is piecewise smooth, the following
holds.

(i) If p0 ∈ ∂S is a corner point of the first type and s does not correspond to any of
the normal directions of ∂S at p0, then

lim
a→0+

a−
9
4 SHψ B(a,s, p0)< ∞.

(ii) If p0 ∈ ∂S is a corner point of the second type and s does not correspond to any
of the normal directions of ∂S at p0, then

lim
a→0+

a−
9
4 SHψ B(a,s, p0) 6= 0.

(iii) If p0 ∈ ∂S is a corner point and s= s0 corresponds to one of the normal directions
of ∂S at p0 then

lim
a→0+

a−
3
4 SHψ B(a,s0, p0) 6= 0.

That is, at a corner points p0, the asymptotic decay of the continuous shearlet
transform depends both on the tangent and the curvature at p0. If s = s0 corresponds
to one of the normal directions of ∂S at p0, then the continuous shearlet transform
decays as

SHψ B(a,s0, p0)∼ O(a
3
4 ), as a→ 0,

similar to the situation of regular boundary points. If p0 is a corner point of the
second type (e.g., the corner point in a half-disk) and s does not correspond to any
of the normal directions, then

SHψ B(a,s, p0)∼ O(a
9
4 ), as a→ 0,

which is a faster decay rate than in the normal-orientation case. Finally, if p0 is a
corner point of the first type (e.g., the vertex of a polygon) and s does not correspond
to any of the normal directions, then, by the theorem, we only know that the asymp-

totic decay of |SHψ B(a,s0, p)| is not slower than O(a
9
4 ). However the decay could

be faster than O(a
9
4 ), as shown in [19].
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The asymptotic decay rate of the continuous shearlet transform SHψ B(a,s, p),
as a→ 0, for various values of s and p is illustrated in Fig. 5.

3.1 Proof of Theorem 1

It is clear that the argument used to estimate the continuous shearlet transform of
the two-dimensional Heaviside step function cannot be extended to this case directly
since this would require an explicit expression of the Fourier transform of the func-
tion B= χS. In this more general case, we will instead apply the divergence theorem.
This theorem allows us to express the Fourier transform of B as a line integral over
∂S:

B̂(ξ ) = χ̂S(ξ ) =−
1

2πi|ξ |

∫
∂S

e−2πiξ ·x
Θ(θ) ·n(x)dσ(x)

= − 1
2πiρ

∫ L

0
e−2πiρ Θ(θ)·α(t)

Θ(θ) ·n(t)dt (12)

where ξ = ρ Θ(θ), Θ(θ) = (cosθ ,sinθ). Note that this convenient idea for repre-
senting the Fourier transform of the characteristic function of a bounded region is
used, for example, in [26].

Hence, using (12), we have that

SHψ B(a,s, p)

= 〈B,ψa,s,p〉

=
∫ 2π

0

∫
∞

0
B̂(ρ,θ) ψ̂

(d)
a,s,p(ρ,θ)ρ dρ dθ

=− 1
2πi

∫ 2π

0

∫
∞

0

∫ L

0
ψ̂

(d)
a,s,p(ρ,θ)e−2πiρ Θ(θ)·α(t)

Θ(θ) ·n(t)dt dρ dθ , (13)

where the upper-script in ψ
(d)
a,s,p is either d = h, when |s| ≤ 1, or d = v, when |s|> 1.

The first simplifying observation is that the asymptotic decay of the shearlet
transform SHψ B(a,s, p), as a→ 0, is only determined by the values of the bound-
ary ∂S which are “close” to p. To state this fact, for ε > 0, let D(ε, p) be the ball in
R2 of radius ε and center p, and Dc(ε, p) =R2 \D(ε, p). Hence, using (13), we can
write the shearlet transform of B as

SHψ B(a,s, p) = I1(a,s, p)+ I2(a,s, p),

where
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I1(a,s, p)

=− 1
2πi

∫ 2π

0

∫
∞

0

∫
∂S∩D(ε,p)

ψ̂
(d)
a,s,p(ρ,θ)e−2πiρ Θ(θ)·α(t)

Θ(θ) ·n(t)dt dρ dθ , (14)

I2(a,s, p)

=− 1
2πi

∫ 2π

0

∫
∞

0

∫
∂S∩Dc(ε,p)

ψ̂
(d)
a,s,p(ρ,θ)e−2πiρ Θ(θ)·α(t)

Θ(θ) ·n(t)dt dρ dθ . (15)

The following Localization Lemma shows that I2 has rapid asymptotic decay, at
fine scales.

Lemma 1 (Localization Lemma). Let I2(a,s, p) be given by (15). For any positive
integer N, there is a constant CN > 0 such that

|I2(a,s, p)| ≤CN a
N
2 ,

asymptotically as a→ 0, uniformly for all s ∈ R.

Proof. We will only examine the behaviour of I2(a,s, p) for |s| ≤ 1, so that we
use the horizontal shearlets only. The proof when |s|> 1 is similar. We have:

I2(a,s, p) = − 1
2πi

∫
∂S∩Dc(ε,p)

∫ 2π

0

∫
∞

0
ψ̂

(h)
a,s,p(ρ,θ)e−2πiρ Θ(θ)·α(t)

Θ(θ) ·n(t)dt dρ dθ

=
−a

1+β

2

2πi

∫
∂S∩Dc(ε,p)

∫ 2π

0

∫
∞

0
ψ̂1(aρ cosθ) ψ̂2(aβ−1(tanθ − s))

×e2πiρ Θ(θ)·p dρ dθe−2πiρ Θ(θ)·α(t)
Θ(θ) ·n(t)dt

=
−a

β−1
2

2πi

∫
∂S∩Dc(ε,p)

∫ 2π

0

∫
∞

0
ψ̂1(ρ cosθ) ψ̂2(aβ−1(tanθ − s))

×e2πi ρ

a Θ(θ)·(p−α(t))
Θ(θ) ·n(t)dρ dθ dt.

By assumption, since integration occurs on the region Dc(ε, p), we have that
‖p−α(t)‖ ≥ ε for all α(t) ∈ ∂S∩Dc(ε, p). Hence, there is a constant Cp such that
infx∈∂S∩Dc(ε,p) |p−x|=Cp. Note that, due to the assumptions on the support on ψ̂2,
the integration in the variable θ is restricted to the interval I = {θ : | tanθ − s| ≤
a1−β}. Let I1 = {θ : |Θ(θ) · (p− x)| ≥ Cp√

2
}
⋂

I , and I2 = I \I1. Since the

vectors Θ(θ),Θ ′(θ) form an orthonormal basis in R2, it follows that, on the set
I2, we have |Θ ′(θ) · (p− x)| ≥ Cp√

2
. Hence we can express the integrals I2 as a sum

of a term where θ ∈ I1 and another term where θ ∈ I2, and integrate by parts
as follows. On I1, we integrate by parts with respect to the variable ρ; on I2 we
integrate by parts with respect to the variable θ . Doing this repeatedly, it yields that,
for any positive integer N, |I2(a,s, p)| ≤ CN aβN , uniformly in s. This finishes the
proof of the lemma. ut

Let α(t) be the boundary curve ∂S, with 0 ≤ t ≤ L and p ∈ ∂S. Without loss of
generality we may assume that L > 1 and p = (0,0) = α(1). If p is a regular point,
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we write the boundary curve near p as C = ∂S∩D(ε,(0,0)), where

C = {α(t) : 1− ε ≤ t ≤ 1+ ε}.

Rather than using the arclength representation of C , we can also write C =
{(G(u),u),−ε ≤ u ≤ ε}, where G(u) is a smooth function. Since p = (0,0), we
have G(0) = 0.

If p is a corner point of ∂S, we write the boundary curve near p as C = ∂S∩
D(ε,(0,0)) = C−∪C+, where

C− = {α(t) : 1− ε ≤ t ≤ 1}, C+ = {α(t) : 1≤ t ≤ 1+ ε}.

Similar to the regular point case, we can write C+ = {(G+(u),u), 0≤ u≤ ε} and
C− = {(G−(u),u), −ε ≤ u≤ 0}, where G+(u) and G−(u) are smooth functions on
[0,ε] and [−ε,0], respectively.

We will need the following Lemma which is proven in [19].

Lemma 2. Let ψ2 ∈ L2(R) be such that ‖ψ2‖2 = 1, supp ψ̂2 ⊂ [−1,1], ψ̂2 is even,
nonnegative and decreasing on [0,1]. Then, for each ρ > 0, we have that∫ 1

0
ψ̂2(u)

(
sin(πρu2)+ cos(πρu2)

)
du > 0.

We can now proceed with the proof of Theorem 1.

Proof of Theorem 1.

As above, it will be sufficient to examine the case of the horizontal shearlets only;
the case of vertical shearlets is similar.
• Part (i) This follows directly from Lemma 1.

• Part (ii) Assume that s = s0 does not correspond to any of the normal di-
rections of ∂S at p = (0,0). We write s0 = tanθ0, where we assume that |θ0| ≤ π

4 .
Otherwise, for the case π

4 < |θ0| ≤ π

2 , one will use the vertical shearlets and the
argument is very similar to the one presented below. Hence, we have that

I1(a,s0,0) = −
a

β−1
2

2πi

∫
∞

0

∫ 2π

0
ψ̂1(ρ cosθ) ψ̂2(aβ−1(tanθ − tanθ0))K(a,ρ,θ)dθ dρ,

where

K(a,ρ,θ) =
∫ 1+ε

1−ε

e−2πi ρ

a Θ(θ)·α(t)
Θ(θ) ·n(t)dt.

Let b ∈ C∞
0 (R) be a smooth bump function such that b(t) = 1 for |t − 1| ≤ ε

4 and
b(t) = 0 for |t−1|> 3ε

4 . Hence we can write

I1(a,s0,0) = I11(a,s0,0)+ I12(a,s0,0),



Efficient analysis and detection of edges through directional multiscale representations 21

where

I11(a,s0,0) = −
a

β−1
2

2πi

∫
∞

0

∫ 2π

0
ψ̂1(ρ cosθ) ψ̂2(aβ−1(tanθ − tanθ0))K1(a,ρ,θ)dθ dρ,

I12(a,s0,0) = −
a

β−1
2

2πi

∫
∞

0

∫ 2π

0
ψ̂1(ρ cosθ) ψ̂2(aβ−1(tanθ − tanθ0))K2(a,ρ,θ)dθ dρ,

and

K1(a,ρ,θ) =
∫ 1+ε

1−ε

e−2πi ρ

a Θ(θ)·α(t)
Θ(θ) ·n(t)b(t)dt

K2(a,ρ,θ) =
∫ 1+ε

1−ε

e−2πi ρ

a Θ(θ)·α(t)
Θ(θ) ·n(t) (1−b(t)) dt.

From the definition of b(t), we have 1−b(t) = 0 for |t−1| ≤ ε

4 . Since the boundary
curve {α(t), 0≤ t ≤ L} is simple and p= (0,0) =α(1), it follows that there exists a
c0 > 0 such that ‖α(t)‖≥ c0 for all t with ε

4 ≤ |t−1| ≤ ε . Replacing the set Dc(ε, p)
by the set {α(t), ε

4 ≤ |t − 1| ≤ ε}, one can repeat the argument of Lemma 1 for
I12(a,s0,0) to show that |I12(a,s0,0)| ≤CN aN for any N > 0.

Recall that when a→ 0, we have θ → θ0. Since s0 does not correspond to the
normal direction at p, one can choose ε sufficient small so that Θ(θ) ·α ′(t) 6= 0 for
|t−1| ≤ ε and for all small a (and hence for θ near θ0). Also from the assumption
on b, it follows that b(n)(1− ε) = 0 and b(n)(1+ ε) = 0 for all n≥ 0. Writing

e−2πi ρ

a Θ(θ)·α(t) =
−a

2πiρ Θ(θ) ·α ′(t)

(
e−2πi ρ

a Θ(θ)·α(t)
)′
,

it follows that

K1(a,ρ,θ) = −
a

2πiρ

∫ 1+ε

1−ε

(
e−2πi ρ

a Θ(θ)·α(t)
)′ Θ(θ) ·n(t)

Θ(θ) ·α ′(t)
b(t)dt

=
ai

2πρ

((
e−2πi ρ

a Θ(θ)·α(t) Θ(θ) ·n(t)
Θ(θ) ·α ′(t)

b(t)
)1+ε

1−ε

+K3(a,ρ,θ)

)

=
ai

2πρ
K3(a,ρ,θ),

where we used the fact that b(1− ε) = 0, b(1+ ε) = 0 and

K3(a,ρ,θ) =
∫ 1+ε

1−ε

e−2πi ρ

a Θ(θ)·α(t)
(

Θ(θ) ·n(t)
Θ(θ) ·α ′(t)

b(t)
)′

dt.

Repeating the above argument for K3(a,ρ,θ) and using induction, it follows that
for all N > 0 there exists a CN > 0 such that |K1(a,ρ,θ)| ≤CN aN and, hence, that
|I11(a,s0,0)| ≤CN aN .
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• Part (iii) Without loss of generality, we may assume that p = (0,0) and s0 = 0
so that tanθ0 = 0 (and hence G′(0) = 0). It follows that G(u) = Au2 +O(u3) near
u = 0 with some constant A. Since G′′(0) = 0 by assumption in this case, we have
A = 0.

Using polar coordinates, we can express I1(a,0,0), evaluated on s0 = 0, as

I1(a,0,0)

=−a
β−1

2

2πi

∫
∞

0

∫ 2π

0
ψ̂1(ρ cosθ)ψ̂2(a1−β tanθ)

∫
ε

−ε

e−2πi ρ

a (cosθO(u3)+sinθ u)

×(−cosθ + sinθ O(u2))dudθ dρ.

By Lemma 1, to complete the proof of this case it is sufficient to show that

lim
a→0+

a−
1+β

2 I1(a,s0,0) 6= 0.

In the expression of I1, the interval [0,2π] of the integral in θ can be broken
into the subintervals [−π

2 ,
π

2 ] and [π

2 ,
3π

2 ]. On [π

2 ,
3π

2 ], we let θ ′ = θ − π so that
θ ′ ∈ [−π

2 ,
π

2 ] and sinθ = −sinθ ′, cosθ = −cosθ ′. Using this observation and the
fact that ψ̂1 is an odd function, it follows that I1(a,0,0) = I10(a,0,0)+ I11(a,0,0),
where

2πia
1−β

2 I10(a,0,0)

= cosθ

∫
∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a1−β tanθ)
∫

ε

−ε

e−2πi ρ

a (cosθO(u3)+usinθ)dudθ dρ

+cosθ

∫
∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a1−β tanθ)
∫

ε

−ε

e2πi ρ

a (cosθO(u3)+usinθ) dudθ dρ,

and

2πia
1−β

2 I11(a,0,0)

=−sinθ

∫
∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a1−β tanθ)
∫

ε

−ε

e−2πi ρ

a (cosθO(u3)+usinθ)O(u2)dudθ dρ

−sinθ

∫
∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a1−β tanθ)
∫

ε

−ε

e2πi ρ

a (cosθO(u3)+usinθ)O(u2)dudθ dρ.

For θ ∈ (−π

2 ,
π

2 ), let t = aβ−1 tanθ and u = aβ v. We observe that a→ 0 implies
θ → 0. It is easy to see that lima→0

1
a (sinθu) = lima→0

1
a (cosθa1−β+β tv) = tv and

that, for 1
3 < β < 1, we have lima→0

O(u3)
a = lima→0 a3β−1O(v3) = 0.

It follows that
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lim
a→0+

2πia−
1+β

2 I10(a,0,0)

=
∫

∞

0
ψ̂1(ρ)

∫
∞

−∞

∫ 1

−1
ψ̂2(t)e−2πiρvtdtdvdρ +

∫
∞

0
ψ̂1(ρ)

∫
∞

−∞

∫ 1

−1
ψ̂2(t)e2πiρvtdtdvdρ

= 2ψ̂2(0)
∫

∞

0
ψ̂1(ρ)dρ > 0.

Since there is a factor O(u2) in the expression of I11, the same calculation yields

that lima→0+ 2πia−
1+β

2 I11(a,0,0) = 0. Through these calculations, we have hence

shown that lima→0+ 2πia−
1+β

2 I1(a,s0,0) 6= 0. This completes the proof of part (iii).

• Part (iv) We first consider the case of β = 1
2 . Since k(p0) 6= 0, by as-

sumption we have that G(u) = Au2 + O(u3) with A 6= 0. Without loss of gen-
erality, we may assume A = 1 so that we can write G(u) = u2 + O(u3). As in
(iii), using polar coordinates, we can express I1(a,0,0), evaluated on s0 = 0, as
I1(a,0,0) = I10(a,0,0)+ I11(a,0,0), where

2πia
1
4 I10(a,0,0)

= cosθ

∫
∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
4 tanθ)

∫
ε

−ε

e−2πi ρ

a (cosθ(u2+O(u3))+usinθ)dudθ dρ

+cosθ

∫
∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
2 tanθ)

∫
ε

−ε

e2πi ρ

a (cosθ(u2+O(u3))+usinθ) dudθ dρ

and

2πia
1
4 I11(a,0,0)

=−sinθ

∫
∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
2 tanθ)

∫
ε

−ε

e−2πi ρ

a (cosθ(u2+O(u3))+usinθ)

×(2u+O(u2))dudθ dρ− sinθ

∫
∞

0

∫ π
2

− π
2

ψ̂1(ρ cosθ)ψ̂2(a−
1
2 tanθ)

×
∫

ε

−ε

e2πi ρ

a (cosθ(u2+O(u3))+usinθ)(2u+O(u2))dudθ dρ.

As in part (iii), it is enough to show

lim
a→0+

a−
3
4 I10(a,0,0) 6= 0.

For θ ∈ (−π

2 ,
π

2 ), let t = a−
1
2 tanθ and u = a−

1
2 v. In the calculation below, we

will use the formulas of Fresnel integrals∫
∞

−∞

cos(
π

2
x2)dx =

∫
∞

−∞

sin(
π

2
x2)dx = 1.
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Hence we have:

lim
a→0+

2πia−
3
4 I10(a,0,0)

=
∫

∞

0
ˆψ1(ρ)

∫ 1

−1
ψ̂2(t)

∫
∞

−∞

e−2πiρ(v2+vt) dvdt dρ

+
∫

∞

0
ˆψ1(ρ)

∫ 1

−1
ψ̂2(t)

∫
∞

−∞

e2πiρ(v2+vt) dvdt dρ

=
∫

∞

0
ˆψ1(ρ)

∫ 1

−1
e−

1
2 πiρt2

ψ̂2(t)
∫

∞

−∞

e−2πiρ(v+ 1
2 t)2

dvdt dρ

+
∫

∞

0
ˆψ1(ρ)

∫ 1

−1
e

1
2 πiρt2

ψ̂2(t)
∫

∞

−∞

e2πiρ(v+ 1
2 t)2

dvdt dρ

=
∫

∞

0

ψ̂1(ρ)√
ρ

(∫ 1

−1
cos(

πρ

2
t2)ψ̂2(t)dt +

∫ 1

−1
sin(

πρ

2
t2)ψ̂2(t)dt

)
dρ,

The last expression is strictly positive by Lemma 2 and the properties of ψ̂1. This
completes the proof of part (iv) for β = 1

2 . It remains to prove part (iv) for 0< β < 1
2 .

We will follow the same idea as the argument for β = 1
2 and use the change of

variables t = aβ−1 tanθ and u = 1
2 v (instead of u = aβ v in the proof of part (iii)).

Note that a→ 0 implies θ → 0. We will also use the observation that

lim
a→0

1
a
(u2 +O(u3)) = lim

a→0

1
a
(av2 +a

3
2 O(v3)) = v2

and
lim
a→0

1
a
(sinθu) = lim

a→0

1
a
(cosθa1−β+ 1

2 v) = lim
a→0

a
1
2−β cosθv) = 0.

With these observations, it now follows that

lim
a→0+

2πia1− β

2 I10(a,0,0) =
∫

∞

0
ˆψ1(ρ)

∫ 1

−1
ψ̂2(t)

∫
∞

−∞

e−2πiρv2
dvdt dρ

+
∫

∞

0
ˆψ1(ρ)

∫ 1

−1
ψ̂2(t)

∫
∞

−∞

e2πiρv2
dvdt dρ

=
∫

∞

0

ψ̂1(ρ)√
ρ

dρ

∫ 1

−1
ψ̂2(t)dt > 0.

This completes the proof of part (iv).

• Part (v) We need only to consider 1
2 < β < 1.

Here again we let t = aβ−1 tanθ , but let u= aβ v as in the proof of part (iii) (recall
that we let u = a

1
2 v in the proof of part (iv)). In this case we have

lim
a→0

1
a
(u2 +O(u3)) = lim

a→0

1
a
(a2β v2 +a3β O(v3)) = 0
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lim
a→0

1
a
(sinθ u) = lim

a→0

1
a
(cosθ a1−β+β tv) = t v.

Following the same argument as in the proof of part (iii), we have

lim
a→0+

2πia−
1+β

2 I10(a,0,0) =
∫

∞

0
ˆψ1(ρ)

∫
∞

−∞

∫ 1

−1
ψ̂2(t)e−2πiρvt dt dvdρ

+
∫

∞

0
ψ̂1(ρ)

∫
∞

−∞

∫ 1

−1
ψ̂2(t)e2πiρvt dt dvdρ

= 2ψ̂2(0)
∫

∞

0
ψ̂1(ρ)dρ > 0.

4 Shearlet analysis of edges in dimension n = 3

The shearlet-based analysis of step edges we presented above extends to the 3-
dimensional setting [20, 21]. The statements of the 3D results are formally very
similar to their 2-dimensional counterparts. Also the proofs follow essentially the
same ideas of the 2D case, except for more significant changes needed for the anal-
ysis of the irregular boundary points. Indeed, if we consider functions of the form
f = χΩ where Ω ⊂R3 is a compact set with piecewise smooth boundary, then there
are two main types of ‘edges’ to consider: the smooth (or regular) surface bound-
aries and the curvilinear singularities resulting from the intersection of different
smooth (or regular) sections of such surfaces. We will show below that it is possible
to design an appropriate modification of the continuous shearlet transform suited to
these curvilinear singularities in R3.

4.1 3D Continuous Shearlet Transform

There is a natural way to extend to the 3D setting the 2-dimensional fine-scale
continuous shearlet transform we constructed in Section 2.3. Similar to the 2-
dimensional case, we can define separate 3D shearlet systems spanning proper sub-
spaces of L2(R3), which are obtained by restricting the shear variables to a finite
subset only. Namely, we introduce the following pyramidal regions in R3:

P1 = {(ξ1,ξ2,ξ3) ∈ R3 : |ξ1| ≥ 2, | ξ2
ξ1
| ≤ 1 and | ξ3

ξ1
| ≤ 1},

P2 = {(ξ1,ξ2,ξ3) ∈ R3 : |ξ2| ≥ 2, | ξ2
ξ1
|> 1 and | ξ3

ξ2
| ≤ 1},

P3 = {(ξ1,ξ2,ξ3) ∈ R3 : |ξ3| ≥ 2, | ξ3
ξ1
|> 1 and | ξ3

ξ2
|> 1}.

For ξ = (ξ1,ξ2,ξ3) ∈ R3, ξ1 6= 0, let ψ(d), d = 1,2,3 be defined by
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ψ̂
(1)(ξ ) = ψ̂

(1)(ξ1,ξ2,ξ3) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1
), ψ̂2(

ξ3
ξ1
),

ψ̂
(2)(ξ ) = ψ̂

(2)(ξ1,ξ2,ξ3) = ψ̂1(ξ2) ψ̂2(
ξ1
ξ2
), ψ̂2(

ξ3
ξ2
),

ψ̂
(3)(ξ ) = ψ̂

(3)(ξ1,ξ2,ξ3) = ψ̂1(ξ3) ψ̂2(
ξ2
ξ3
), ψ̂2(

ξ1
ξ3
),

where ψ1, ψ2 satisfy the same assumptions as in the 2D case. For d = 1,2,3, and β =
(β1,β2), with 0 < β1,β2 < 1, the 3D pyramid-based continuous shearlet systems for
L2(Pd)

∨ are the systems

{ψ(d)
a,s1,s2,t : 0≤ a≤ 1

4 ,−
3
2 ≤ s1 ≤ 3

2 ,−
3
2 ≤ s2 ≤ 3

2 , t ∈ R3},

where ψ
(d)
a,s1,s2,t(x) = |detM(d)

as1s2 |−
1
2 ψ(d)((M(d)

as1s2)
−1(x− t)), and

M(1)
as1s2 =

(
a −aβ1 s1 −aβ2 s2

0 aβ1 0
0 0 aβ2

)
, M(2)

as1s2 =

(
aβ1 0 0
−aβ1 s1 a −aβ2 s2

0 0 aβ2

)
,

M(3)
as1s2 =

(
aβ1 0 0
0 aβ2 0

−aβ1 s1 −aβ2 s2 a

)
.

In particular, in the Fourier domain, the shearlets ψ
(1)
a,s1,s2,t have the form:

ψ̂
(1)
a,s1,s2,t(ξ1,ξ2,ξ3)= a

1+β1+β2
2 ψ̂1(aξ1) ψ̂2(aβ1−1( ξ2

ξ1
−s1)) ψ̂2(aβ2−1( ξ3

ξ1
−s2))e−2πiξ ·t ,

with similar expressions for the shearlets on the other pyramidal regions. This shows
that, similar to the 2D case, the shearlets ψ

(d)
a,s1,s2,t are well localized waveforms

associated with various scales controlled by a, orientations controlled by the two
shear variables s1,s2 and locations controlled by t. Fig. 3 shows the Fourier domain
support of a representative element of a 3D continuous shearlet system.

For f ∈ L2(R3), we define the 3D (fine-scale) pyramid-based continuous shearlet
transform f →SHψ f (a,s1,s2, t), for a > 0, s1,s2 ∈ R, t ∈ R3 by

SHψ f (a,s1,s2, t) =


〈 f ,ψ(1)

a,s1,s2,t〉 if |s1|, |s2| ≤ 1,

〈 f ,ψ(2)
a, 1

s1
,

s2
s1
,t
〉 if |s1|> 1, |s2| ≤ |s1|

〈 f ,ψ(3)
a, s1

s2
, 1

s2
,t
〉 if |s2|> 1, |s2|> |s1|.

That is, depending on the values of the shearing variables, the 3D continuous shear-
let transform only involves one specific pyramid-based shearlet system. As above,
we are only interested in the continuous shearlet transform at“fine scales”, as a ap-
proaches 0, since this is what is needed for the analysis of the singularities of f .
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Fig. 3 Fourier domain support of a representative element ψ
(1)
a,s1,s2,t of a 3D continuous shearlet

system, inside the pyramidal region P1.

4.2 Characterization of 3D Boundaries

Similar to its 2D counterpart, the 3D continuous shearlet transform can be applied
to analyze the geometry of the set of singularities of functions and distributions of
3 variables. In particular, we can show that it provides a geometric characterization
of the boundary set of a solid regions.

To state the precise result, let f = χΩ , where Ω is a subset of R3 whose boundary
∂Ω is a 2-dimensional manifold. We say that ∂Ω is piecewise smooth if:

(i) ∂Ω is a C∞ manifold except possibly for finitely many separating C3 curves on
∂Ω ;

(ii) at each point on a separating curve, ∂Ω has exactly two outer normal vectors,
which are not on the same line.

Let the outer normal vector of ∂Ω be np = ±(cosθ0 sinφ0,sinθ0 sinφ0,cosφ0) for
some θ0 ∈ [0,2π], φ0 ∈ [0,π]. We say that s = (s1,s2) corresponds to the normal
direction np if s1 = a−

1
2 tanθ0, s2 = a−

1
2 cotφ0 secθ0. Notice that this definition

excludes, in particular, surfaces containing cusps, such as the vertex of a cone.
The following theorem, which is a proved in [21], shows that the behaviour of

the 3D continuous shearlet transform is consistent with the one found in dimension
n = 2. Namely, for f = χΩ , the continuous shearlet transform SHψ f (a,s1,s2, t),
has rapid asymptotic decay as a→ 0 for all locations t ∈R3, except when t is on the
boundary of Ω and the orientation variables s1,s2 correspond to the normal direction
of the boundary surface at t, or when t is on a separating curve and the orientation



28 Kanghui Guo and Demetrio Labate

O(aN)

O(a)

O(aN)

x2
x1

x3

Fig. 4 Asymptotic decay rate of the 3D continuous shearlet transform. The continuous shearlet
transform SHψ B(a,s1,s2, t), where B = χΩ , Ω ⊂ R3 and ∂Ω piecewise smooth boundary has
rapid asymptotic decay, as a→ 0, away from ∂Ω . When t ∈ ∂Ω is a regular boundary point and
the shear variables (s1,s2) correspond to the normal direction at t, then SHψ B(a,s1,s2, t)∼O(a),
as a→ 0; otherwise, if (s1,s2) does not correspond to the normal direction at t, SHψ B has rapid
asymptotic decay.

variables s1,s2 correspond to the normal direction of the boundary surface at t. Thus,
as in the 2D case, the continuous shearlet transform provides a description of the
geometry of ∂Ω through the asymptotic decay of SHψ B(a,s1,s2, t), at fine scales.
Here is the precise statement for the case β1 = β2 =

1
2 .

Theorem 3. Let ψ1 ψ2 be chosen as in Theorem 1, β1 = β2 =
1
2 and f = χΩ , where

Ω be a bounded region in R3. Assume that the boundary surface ∂Ω is a piecewise
smooth 2-dimensional manifold. Let γ j, j = 1,2, · · ·m be the separating curves of
∂Ω . Then we have

(i) If t /∈ ∂Ω then

lim
a→0+

a−N SHψ f (a,s1,s2, t) = 0, for all N > 0.

(ii) If t ∈ ∂Ω \
⋃m

j=1 γ j and (s1,s2) does not correspond to the normal direction of
∂Ω at t, then

lim
a→0+

a−N SHψ f (a,s1,s2, t) = 0, for all N > 0.

(iii) If t ∈ ∂Ω \
⋃m

j=1 γ j and s = (s1,s2) corresponds to the normal direction of ∂Ω at
t or t ∈

⋃m
j=1 γ j and s = (s1,s2) corresponds to one of the two normal directions

of ∂Ω at t, then
lim

a→0+
a−1 SHψ f (a,s1,s2, t) 6= 0.
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Hence, similar to the 2D case, the continuous shearlet transform decays rapidly
away from the boundary and on the boundary for non-normal orientations. The de-
cay rate is only O(a) at the boundary for normal orientation. This behavior illus-
trated in Fig. 4. On the separating curves of the surface γi the information provided
by the theorem is less sharp, in the sense that, for normal orientations, the decay rate
is O(a), but, for non-normal orientations, we can only say that the decay rate is faster
but not necessarily rapid. In particular, it is shown in [21] that, when β1 = β2 = 1/2,
the decay rate is of order O(a3/2) or faster. We will see in Section 4.3 that there is
an alternative and more precise approach to analyze the curves γi.

We refer the reader to [21] for the complete proof of Theorem 3. In the following,
we make a few basic observation about this proof.

As in the 2D case, the starting point of the proof is the divergence theorem, which
allows us to write the Fourier transform of f as

f̂ (ξ ) = χ̂Ω (ξ ) =− 1
2πi|ξ |2

∫
∂Ω

e−2πiξ ·x
ξ ·n(x)dσ(x),

where n is the outer normal vector to ∂Ω at x. Next, using spherical coordinates, we
have that, for |s1|, |s2|< 1,

SHψ f (a,s1,s2, t) = 〈 f ,ψ(1)
a,s1,s2,t〉= I1(a,s1,s2, t)+ I2(a,s1,s2, t),

where

I1(a,s1,s2, t) =
∫ 2π

0

∫
π

0

∫
∞

0
T1(ρ,θ ,φ) ψ̂

(1)
a,s1,s2,t(ρ,θ ,φ)ρ

2 sinφ dρ dφ dθ

I2(a,s1,s2, t) =
∫ 2π

0

∫
π

0

∫
∞

0
T2(ρ,θ ,φ) ψ̂

(1)
a,s1,s2,t(ρ,θ ,φ)ρ

2 sinφ dρ dφ dθ

and

T1(ρ,θ ,φ) = −
1

2πiρ

∫
Pε (t)

e−2πiρ Θ(θ ,φ)·x
Θ(θ ,φ) ·n(x)dσ(x)

T2(ρ,θ ,φ) = −
1

2πiρ

∫
∂Ω\Pε (t)

e−2πiρ Θ(θ ,φ)·x
Θ(θ ,φ) ·n(x)dσ(x),

where Pε(t) = ∂Ω ∩D(ε, t), and D(ε, t) is the ball in R3 of radius ε and center
t. Notice that I2 is associated with the term T2 which is evaluated away from the
location t of the continuous shearlet transform. Hence, a localization result similar
to Lemma 1 shows that I2 is rapidly decreasing as a→ 0. The rest of the proof, when
t is located on a regular point of ∂Ω , can be derived using ideas similar to the proof
of Theorem 1. The situation for t located on a separating curve requires a different
approach cannot be carried out using the method from the proof of Theorem 2.
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4.3 Identification of curve singularities on the piecewise smooth
surface boundary of a solid

In the 3-dimensional setting, there are other types of singularities of interest beside
the surface boundary of a solid region. In particular, if f = χΩ , where Ω ⊂ R3 is
a compact subset whose surface boundary SΩ = ∂Ω is the union SΩ = ∪q

i=1Si and
each Si is a smooth surface with boundary curve γi, it may be useful to identify the
location and orientation of the separating curves γ = γ1∪·· ·∪ γm.

We can attempt to address this question by making use of the results of Sec-
tion 4.2 to determine if a given t ∈ R3 belongs to γ , and, if so, the value of γ ′|t .
Using Theorem 3, where we choose β1 = β2 = 1/2, we make the following obser-
vations.

• If a−N lima→0+ SHψ f (a,s1,s2, t) = 0, for all N > 0 and all but at most one pair
(s1,s2), then t /∈ γ .

• If a−Nk lima→0+ SHψ f (a,sk
1,s

k
2, t) 6= 0 for some N0,N1 > 0 and distinct (s0

1,s
0
2)

and (s1
1,s

1
2), then t ∈ γ .

• If a−1 lima→0+ SHψ f (a,sk
1,s

k
2, t) 6= 0 for distinct (s0

1,s
0
2) and (s1

1,s
1
2) then γ ′|t

equals (up to a scalar) the vector cross product of the orientations corresponding
to (s0

1,s
0
2) and (s1

1,s
1
2).

However, there are multiple drawbacks regarding the applicability of this method.
First, suppose SHψ f (a,s1,s2, t) is observed to decay relatively slowly as a→ 0+

for all (s1,s2) only in some localized directional region S. It may be difficult to
determine whether there is a single peak of slow decay (s0

1,s
0
2) (indicating t /∈ γ)

or two nearby peaks of slow decay (s0
1,s

0
2) and (s1

1,s
1
2) (indicating t ∈ γ). Second,

suppose we are relatively certain that t ∈ γ . To determine γ ′|t , we need to determine
the two values (s0

1,s
0
2) and (s1

1,s
1
2) such that

a−1 lim
a→0+

SHψ f (a,sk
1,s

k
2, t) 6= 0,

for k = 1,2. However, (s0
1,s

0
2) and (s1

1,s
1
2) may be difficult to isolate since, by The-

orem 3, there may be (s1,s2) 6= (s0
1,s

0
2),(s

1
1,s

1
2) with comparably slow decay rates:

a−3/2 lim
a→0+

SHψ f (a,s1,s2, t) 6= 0.

As an alternative approach to this problem, one can introduce a modified con-
tinuous shearlet transform that can precisely address the question posed in the first
paragraph of this section, while avoiding all of the limitations suggested in the pre-
vious paragraph. This idea was recently introduced in [28], and we summarized the
main result below.

First, let us be more precise about the types of objects we will consider. We say
that the surface boundary SΩ of Ω is piecewise CK at t if there exists an open set
U ⊂ R3 with t ∈U and F,G ∈CK(U,R) with F(t) = G(t) = 0 and {∇F(t),∇G(t)}
linearly independent such that



Efficient analysis and detection of edges through directional multiscale representations 31

Ω ∩U = {x ∈U : F(x)< 0}2{x ∈U : G(x)< 0}

(in the a.e. sense), where the symbol 2 can be either ∩ or ∪. In this case, we call

OΩ (t) = ∇F(t)×∇G(t)

(where × is the vector cross product) the orientation of SΩ at t. Note that OΩ (t) is
well-defined (up to nonzero scalar multiplication) and equals the tangent vector at t
to the curve defined by {x : F(x) = G(x) = 0} near t.

Fix β1 > β3 > β2 > 0 and write β0 = (β1−β2−β3)/2. For a > 0 and s ∈ R, we
define the following matrices:

B21(s) =

1 0 0
s 1 0
0 0 1

 B12(s) =

1 s 0
0 1 0
0 0 1

 B13(s) =

1 0 s
0 1 0
0 0 1



B31(s) =

1 0 0
0 1 0
s 0 1

 B32(s) =

1 0 0
0 1 0
0 s 1

 B23(s) =

1 0 0
0 1 s
0 0 1


A21(a) =

aβ3 0 0
0 aβ1 0
0 0 aβ2

 A12(a) =

aβ1 0 0
0 aβ3 0
0 0 aβ2

 A13(a) =

aβ1 0 0
0 aβ2 0
0 0 aβ3



A31(a) =

aβ3 0 0
0 aβ2 0
0 0 aβ1

 A32(a) =

aβ2 0 0
0 aβ3 0
0 0 aβ1

 A23(a) =

aβ2 0 0
0 aβ1 0
0 0 aβ3


σ21 =

0 0 1
1 0 0
0 1 0

 σ12 =

1 0 0
0 0 1
0 1 0

 σ13 =

1 0 0
0 1 0
0 0 1


σ31 =

0 0 1
0 1 0
1 0 0

 σ32 =

0 1 0
0 0 1
1 0 0

 σ23 =

0 1 0
1 0 0
0 0 1

 .

Let ψ ∈ L2(R3), and, for t ∈ R3, define

ψ
i j
a,s,t = |detA−1

i j |ψ(σ−1
i j A−1

i j B−1
i j (x− t)). (16)

The collection {ψ i j
a,s,t} induces the 6 continuous transforms {S i j}, where

S i j f (a,s, t) = 〈 f ,ψ i j
a,s,t〉.

We are now ready to define a new transform able to capture curvilinear singular-
ities on the surface of a solid in 3D. Let V denote (R3 \ {0})/ ∼, where v ∼ w if
v = cw for some c ∈ R\{0}. Write
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K = {(2,1),(3,1),(1,2),(3,2),(1,3),(2,3)}

and, for (i, j) ∈K , define

Pi j =

{
[−1,1], if (i, j) = (1,3),(2,3),(1,2)
(−1,1), otherwise

.

If v ∈V, there exists a unique j = j(v) ∈ {1,2,3} such that v j 6= 0 and vi/v j ∈Pi j,
for all i, with the quantities j and vi/v j well-defined with respect to ∼. If a > 0,
v ∈ V, and t ∈ R3, we define the (3,1)-continuous shearlet transform S(3,1) as

S(3,1) f (a,v, t) = ∏
i∈{1,2,3}\{ j}

Si j f (a,vi/v j, t).

The “(3,1)” indicates that the transform is designed to capture singularities along
1-dimensional structures in the 3-dimensional ambient space.

Before stating the main theorem from [28], we will make some additional as-
sumptions on ψ given by (16).

Let 0 < ε < M1 < ∞ and 0 < M2 < M3 < ∞ be such that

M3

M2
>

(
M1

ε

)β2/β1

.

Choose θ1,θ2 ∈C∞(R) such that

supp(θ1)⊂ [ε,M1],
∫

∞

0
θ1(a)2 da

a
= β1/2,

θ2 is compactly supported in (0,∞), and

|θ2(ξ )|= 1, for all M2 ≤ ξ ≤M3.

For q = 1,2, define

θ
even
q (ξ ) =

{
θq(ξ ), if ξ ≥ 0
θq(−ξ ), if ξ < 0

,

θ
odd
q (ξ ) =

{
θq(ξ ), if ξ ≥ 0
−θq(−ξ ), if ξ < 0

,

and ψq ∈ L2(R) by ψ̂q = θ even
q + iθ odd

q . Let 0 < M4 < ∞ and choose ψ3 ∈ L2(R)
such that ψ̂3 is even, belongs to C∞(R,R), and satisfies ψ̂3(0) 6= 0,

supp(ψ̂3)⊂ [−M4,M4], and ‖ψ3‖= 1.

Finally, define ψ ∈ L2(R3) by ψ̂(ξ ) = ψ̂1(ξ1)ψ̂2(ξ2)ψ̂3(ξ3/ξ1). Note, in particular,
that ψ is real-valued and that ψ̂ belongs to C∞(R3) and is compactly supported.
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With this choice of ψ we can now state the following result2, which shows that
S(3,1) precisely identifies both t and the tangent vector OΩ (t) when SΩ is piecewise
C∞ at t.

Theorem 4. Let f = χΩ and suppose that β1 < 2β2. We have the following:

• If t /∈ SΩ , where SΩ denotes the closure of SΩ , or if SΩ is C∞ at t, then

lim
a→0+

a−NS(3,1) f (a,v, t) = 0,

for all N > 0 and all v ∈ V.
• Let v ∈ V and assume SΩ is piecewise C∞ at p. If v∼ OΩ (t), then

lim
a→0+

a−2(β1+β3+β0)S(3,1) f (a,v, t) ∈ C∪{∞}\{0};

otherwise,
lim

a→0+
a−NS(3,1)(Ω)(a,v, t) = 0,

for all N > 0.

We refer to [28] for a discussion of more technical aspects of the theorems, such
as the assumptions on the analyzing functions, and for the proof of this result. In
the following, we will briefly illustrate the application of Theorem 4 using a simple
example.

We set f = χΩ where

Ω ∩U = {x ∈U : x1 < 0}∩{x ∈U : x2 < 0},

and U = (−1,1)3. Write Γ = {x ∈U : x1 = x2 = 0},

S1 = {x ∈U : x1 = 0,x2 < 0}, and S2 = {x ∈U : x1 < 0,x2 = 0}.

Then, it follows that

• SΩ ∩U = S1∪Γ ∪S2
• SΩ is C∞ at t, for all t ∈ S1∪S2
• SΩ is piecewise C∞ at t, with OΩ (t) = (0,0,1) and j(OΩ (t)) = 3, for all t ∈ Γ .

Thus, Theorem 4 implies that

• If t ∈U \Γ , then
lim

a→0+
a−NS(3,1)(Ω)(a,v, t) = 0,

for all N > 0 and all v ∈ V.

2 Note that, in [28], the theorem is stated under more general assumptions on ψ satisfying an
appropriate admissibility condition. The special function we consider here is in fact one example
of a function satisfying such admissibility condition.
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• Assume t ∈ Γ . If v∼ (0,0,1),

lim
a→0+

a−2(β1+β3+β0)S(3,1) f (a,v, t) ∈ C∪{∞}\{0};

otherwise,
lim

a→0+
a−NS(3,1) f (a,v, t) = 0, (17)

for all N > 0.

Thus, the (3,1)-continuous shearlet transform characterizes both the location and
orientation of the singularity curve Γ through its asymptotic decay at fine scales.

O(a2(β1+β3+β0))

O(aN)

O(aN) O(aN)

x2

x1

x3

Fig. 5 Asymptotic decay rate of the (3,1)-continuous shearlet transform S(3,1) of f = χΩ , where
Ω ⊂ R3 has piecewise smooth boundary S = S1 ∪S2 ∪ . . . . Away from the surface S and on S but
away from Γ , the decay is faster than O(aN), for any N ∈N. When t ∈Γ , for v corresponding to the
tangent direction of Γ at t, S(3,1) f (a,v, t) decays as O(a2(β1+β3+β0)); when v does not correspond
to the tangent direction of Γ at t, the decay is faster than O(aN), for any N ∈ N.

On the other hand, one can verify that the ‘standard’ 3D continuous shearlet
transform SHψ defined in Section 4.1 is not very efficient to capture the geometry
of the singularity line Γ . In fact we observe the following.



Efficient analysis and detection of edges through directional multiscale representations 35

• If t ∈U \ (Γ ∪S1∪S2), then

lim
a→0+

a−NSHψ f (a,v, t) = 0,

for all v ∈ V and all K > 0.
• Assume p ∈ S1. If v = (1,0,0) (i.e., the normal vector of S1), then

lim
a→0+

a−1SHψ f (a,v, t) 6= 0;

otherwise,
lim

a→0+
a−NSHψ f (a,v, t) = 0,

for all N > 0.
• Assume t ∈ S2. If v = (0,1,0) (i.e., the normal vector of S2), then

lim
a→0+

a−1S(3,2)(Ω)(a,v, t) 6= 0;

otherwise,
lim

a→0+
a−NS(3,2)(Ω)(a,v, t) = 0,

for all N > 0.
• Assume t ∈ Γ . If v ∈ {(1,0,0),(0,1,0)}, then

lim
a→0+

a−1SHψ f (a,v, t) 6= 0;

otherwise,
limsup

a→0+
a−3/2SHψ f (a,v, t)< ∞. (18)

We thus see that SHψ f is able to detect the location of Γ as all t such that the
condition

lim
a→0+

α
−NSHψ f (a,v, t) = 0, for all N > 0

fails for two at least two v. In this case, SHψ f can then detect the orientation,
(0,0,1), of Γ as the vector cross product of the two unique v, (1,0,0) and (0,1,0),
for which (18) fails. Comparing these results to the those in the previous paragraph
(particularly, (17) to (18)), we see that while SHψ f can detect the location of Γ

just as precisely as S(3,1), the latter is much better able to precisely identify the
orientation of Γ .

5 Other results and applications

The shearlet analysis of singularities extends beyond the cases considered in the
previous sections. In this section, we will briefly review the results available in the
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literature. We will also include a brief discussion of the numerical algorithms that
were developed based on shearlet analysis of singularities.

5.1 Shearlet analysis of general edges

In the engineering literature, it is common to consider several types of edges be-
side the step edges [43]. For example, ramp edges are associated with sharp linear
transitions in images. As an idealized model of such edges, let as consider the two-
dimensional distribution x1H(x1,x2), where H is the two-dimensional Heaviside
step function defined in Section 1. The line x1 = 0 is the ramp edge that we wish to
detect.

By applying the continuous shearlet transform, a calculation very similar to Sec-
tion 1 yields:

SHψ(x1H)(a,s, t) = 〈x1H,ψa,s,t〉

=− 1
2πi

∫
R2

∂1Ĥ(ξ1,ξ2) ψ̂a,s,t(ξ1,ξ2)dξ1 dξ2

=
1

2πi

∫
R2

Ĥ(ξ1,ξ2)∂1ψ̂a,s,t(ξ1,ξ2)dξ1 dξ2

=
∫
R2

δ2(ξ1,ξ2)

2πiξ1
∂1ψ̂a,s,t(ξ1,ξ2)dξ1 dξ2

=
∫
R

1
2πiξ1

∂1ψ̂a,s,t(ξ1,ξ2)|ξ2=0 dξ1

= a
1+β

2 ψ̂2(aβ−1s)
∫
R

1
2πiξ1

∂1

(
ψ̂1(aξ1)e2πiξ1t1

)
dξ1

= a
1+β

2 ψ̂2(aβ−1s)
∫
R

1
2πiξ1

(
a∂1
(
ψ̂1
)
(aξ1)+2πit1ψ̂1(aξ1)

)
e2πiξ1t1 dξ1.

Similar to the observations from Section 1, under the assumption that ψ̂1 ∈C∞
c (R)

it follows that SHψ(x1H)(a,s, t) decays rapidly, asymptotically for a→ 0, for all
(t1, t2) when t1 6= 0, and for t1 = 0, s 6= 0. On the other hand, if t1 = 0 and s = 0 we
have:

SHψ(x1H)(a,s, t) = a
3+β

2 ψ̂2(0)
∫
R

1
2πiξ1

∂1
(
ψ̂1
)
(aξ1)dξ1.

Provided that ψ̂2(0) 6= 0 and that the integral on the right hand side of the equation

above is non-zero, it follows that SHψ(x1H)(a,s, t) = O(a
3+β

2 ).
If the ideal ramp edge is replaced by a polynomial-type edge xm

1 H(x1,x2), using
the same argument above we can show that the continuous shearlet transform will
exhibit slow asymptotic decay at the edge location t1 = 0, when s = 0, with decay

rate O(a
2m+1+β

2 ). In other words, the example suggests that, also in the case of gen-
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eral edges, the continuous shearlet transform may be able to capture the geometry
of edge curves through its asymptotic behavior at fine scales.

It was recently shown [22] that it is possible to extend the shearlet-based analysis
of edges to general functions of the form B= f χS where f ∈C∞(R2) and S⊂R2 is a
compact region with piecewise smooth boundary ∂S. The analysis of this problem is
significantly more involved than the example illustrated above. This is due not only
to the fact that, as in the analysis of step edges, there no explicit expression for the
Fourier transform of B = f χS, but also to the fact that f and its partial derivatives up
to an arbitrary order may vanish at ∂S. To deal with this situation, the method pro-
posed in [22] uses a slightly modified shearlet transform. The detailed presentation
of this result is beyond the scope of this chapter and we refer the interested reader
to the paper. We also recall that other partial results about the analysis of ‘general’
edges using methods based on the shearlet transform can be found in [17, 24].

Finally, we recall that the microlocal analysis of edges and singularities plays
a very significant role in the problem of geometric separation, aiming to break up
functions or distributions into geometrically distinct components. It was observed by
that Donoho and Kutyniok that the ability to achieve such separation is frequently
a consequence of the ability to discriminate singularities. As a mathematical ide-
alization of a class of images, they consider distributions of the form f = P+ T ,
where P is a collection of point-like singularities and T is a piece-wise smooth func-
tion containing curvilinear edges. By expanding f within a combined dictionary of
wavelets and curvelets and enforcing sparsity via minimization of the expansion co-
efficients in the `1-norm, they proved that the geometric components P and T can be
separately recovered by wavelets and curvelets, respectively, asymptotically at fine
scales [10]. This result relies on the microlocal properties of wavelets and curvelets.
In a recent paper [23], the authors of this chapter proved an extension of the ge-
ometric separation result to the three-dimensional setting using the shearlet-based
methods presented in Section 4.

5.2 Numerical applications

The mathematical results presented in this chapter about the geometric analysis of
singularities in multivariate functions provide the theoretical justification for a num-
ber of numerical methods for edge analysis and detection, and for feature extraction
in images. We briefly describe below some of these applications.

In particular, a shearlet-based algorithm for edge detection was introduced in [41,
42], based on the properties of the continuous shearlet transform and taking advan-
tage of its ability to accurately detect the edge orientation. This algorithm was shown
to be very competitive with respect to more conventional edge detectors and inspired
the development of similar directional-sensitive methods. Such methods include an
edge detector using anisotropic Gaussian kernels which generate shearlet-like fil-
ters [39] and a method using a sort of directional spline wavelets [25]. An extension
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of the original shearlet-based algorithm for edge detection to the three-dimensional
setting was developed in [38].

The theoretical properties of the continuous shearlet transform also justify a num-
ber of numerical methods designed to extract features in images. In particular, the
analysis of step edges in Sections 3 shows that corner points are associated with
the presence of two directions where the continuous shearlet transform has ‘slow’
asymptotic decay. This property was exploited in [42] to derive an algorithm to
detect corners and other landmarks in images. A refined version of this corner de-
tection algorithm was recently proposed in [11]. More generally, one can derive
discrete algorithms based on the continuous shearlet transform to extract geometri-
cal features associated with edges in images. An examples of such applications can
be found in [32, 37], where a shearlet-based geometric descriptor called Directional
Ratio is introduced to reliably detect morphological properties in fluorescent images
of neuronal cultures.

Appendix

We recall some basic facts from Fourier analysis, including the Fourier transform of
distributions. We refer the reader to [12, 13] for additional details.

The Fourier transform

L1(Rn) is the space of Lebesgue integrable function on Rn and L2(Rn) the Hilbert
space of square Lebesgue integrable function on Rn endowed with the inner product
〈 f ,g〉 =

∫
Rn f g. The Schwartz space S (Rn) consists of those function in C∞(Rn)

which, together with all their derivatives, vanish at infinity faster than any power of
|x|. That is,

S (Rn) = { f ∈C∞(Rn) : sup
x∈Rn

(1+ |x|)N |∂ α f (x)|< ∞, for all N,α},

where N is any non negative integer and α = (α1, . . . ,αn) is any multi-index.

Definition 1. The Fourier transform is the operator F mapping a function f ∈
L1(Rn) into F f = f̂ defined by

f̂ (ξ ) =
∫
Rn

f (x)e−2πix·ξ dx.

The inverse Fourier transform is the operator F−1 mapping a function g ∈ L1(Rn)
into F−1g = ǧ, where

ǧ(x) = ĝ(−x) =
∫
Rn

g(ξ )e2πix·ξ dξ .
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It is a fact that g = (ĝ)∨ for any function g ∈ L1(Rn) with ĝ ∈ L1(Rn).
The Fourier transform is a bijection of S onto itself and can be extended via

an appropriate limit to a unitary map from L2 onto itself. Under this extension, the
Fourier inversion theorem is valid and, for f ,g ∈ L2(Rn), the Plancherel formula
holds:

〈 f ,g〉= 〈 f̂ , ĝ〉,

and, in particular,
‖ f‖2 = ‖ f̂‖2.

Among the most important properties of Fourier analysis we recall the following
list of results (cf. [12]).

Theorem 5. Let f ,g ∈ L1(Rn).

(i) (Ty f )∧(ξ ) = e−2πiξ ·y f̂ (ξ ) and (DM f )∧(ξ ) = DN f̂ (ξ ), where N = (M∗)−1.
(ii) ( f ∗g)∧ = f̂ ĝ.

(iii) If xα f ∈ L1 for |α| ≤ k, then ∂ α f̂ = ((−2πix)α f )∧ .
(iv) If f ∈Ck, ∂ α f̂ ∈ L1, for |α| ≤ k, and ∂ α f̂ ∈C0, for |α| ≤ k−1, then (∂ α f̂ )∧(ξ )=

(2πiξ )α f̂ (ξ ).
(v) F

(
L1(Rn)

)
⊂C0(Rn).

The following proposition is a simple application of the Fourier transform show-
ing that regularity on Rn implies decay in the Fourier domain.

Proposition 4. Suppose that ψ ∈ L2(Rn) is such that ψ̂ ∈ C∞
c (R), where R =

supp ψ̂ ⊂ Rn. Then, for each k ∈ N, there is a constant Ck > 0 such that, for any
x ∈ Rn, we have

|ψ(x)| ≤Ck (1+ |x|2)−k.

In particular, Ck = k m(R)
(
‖ψ̂‖∞ +‖4kψ̂‖∞

)
, where4= ∑

n
i=1

∂ 2

∂ξ 2
i

is the Fourier-

domain Laplacian operator and m(R) is the Lebesgue measure of R.

Proof. From the definition of the Fourier transform, it follows that, for every
x ∈ Rn,

|ψ(x)| ≤ m(R)‖ψ̂‖∞. (19)

An integration by parts shows that∫
R
4ψ̂(ξ )e2πi〈ξ ,x〉 dξ =−(2π)2 |x|2 ψ(x).

Thus, for every x ∈ Rn,

(2π |x|)2k |ψ(x)| ≤ m(R)‖4k
ψ̂‖∞. (20)

Using (19) and (20), we have(
1+(2π |x|)2k) |ψ(x)| ≤ m(R)

(
‖ψ̂‖∞ +‖4k

ψ̂‖∞

)
. (21)
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Observe that, for each k ∈ N,

(1+ |x|2)k ≤
(
1+(2π)2 |x|2

)k ≤ k
(
1+(2π |x|)2k).

Using this last inequality and (21), we have that for each x ∈ Rn

|ψ(x)| ≤ k m(R)(1+ |x|2)−k (‖ψ̂‖∞ +‖4k
ψ̂‖∞

)
. ut

Under the same assumptions of Proposition 4, we can derive a similar estimate valid
for ψM,t = TtDMψ . Using a change of variable in the last step of the proof above,
we have that for all k > 0 there is a Ck > 0 such that

|ψM,t(x)| ≤Ck |detM|−
1
2 (1+ |M−1(x− t)|2)−k.

Distributions and the Fourier transform of distributions

The space D(Rn) of test functions is the space of all C∞ functions whose support is
compact. A sequence {φ j} in D(Rn) converges in D to φ if the supports of all φ j
are contained in a fixed compact subset of Rn and if ∂ α φ j→ ∂ α φ uniformly for all
multi-indices α .

Definition 2. A distribution is a continuous linear functional on D and the space of
distributions is denoted by D ′. We impose the weak∗ topology on D ′, that is, the
topology of pointwise convergence on D .

If F ∈D ′(Rn) and φ ∈D(Rn), we denote the value of F at φ by F(φ) or 〈F,φ〉.
The latter notation conflicts with the notation of inner product but its meaning will
be clear by the context.

Given two distribution F and G, we say that F = G is 〈F,φ〉 = 〈G,φ〉, for all
φ ∈D(Rn).

Example 1. Every f ∈ L1
loc(Rn) defines a distribution by φ ∈S (Rn)→

∫
Rn f φ .

Example 2. The Dirac’s impulse δ is defined by δ (φ) = 〈δ ,φ〉= φ(0), φ ∈S (Rn).
This is an example of a distribution which is not a function.

Example 3. The distribution pv( 1
x ) is defined by

〈pv( 1
x ),φ〉= P.V.

∫
R

φ(x)
x

dx = lim
ε→0

∫
ε

−ε

φ(x)
x

dx,

for φ ∈S (R), where P.V. is the principal value of the integral.

There is a general procedure for extending many linear operations from functions
to distributions.
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• Differentiation. For any F ∈D ′(Rn), the derivatives ∂ α F ∈D ′(Rn) are given by

〈∂ α F,φ〉= (−1)|α|〈F,∂ α
φ〉.

• Multiplication by a smooth function. Given g ∈C∞(Rn), for any F ∈D ′(Rn), the
product gF ∈D ′(Rn) is given by

〈gF,φ〉= 〈F,gφ〉.

• Convolution. Let g ∈ C∞(Rn). For any F ∈ D ′(Rn), the convolution F ∗ g ∈
D ′(Rn) is given by

〈F ∗g,φ〉= 〈F,φ ∗ g̃〉,

where g̃(x) = g(−x).

For example, let H be the one-dimensional Heaviside function, defined by
H(x) = 0 if x < 0, H(x) = 1 if x ≥ 0. A direct computation shows that, for any
φ ∈S (R),

〈H ′,φ〉=−〈H,φ ′〉=−
∫

∞

0
φ
′(x)dx = φ(0) = 〈δ ,φ〉.

Hence H ′ = δ .
The following class of distributions are useful to extend the Fourier transform

beyond the realm of classical functions.

Definition 3. A tempered distribution is a continuous linear functional on S and the
space of tempered distributions is denoted by S ′. We impose the weak∗ topology
on S ′, that is, the topology of pointwise convergence on S .

Example 4. Every f ∈ L1
loc(Rn) such that

∫
Rn(1+ |x|)N | f (x)|dx < ∞ defines a tem-

pered distribution by φ →
∫

f φ .

Example 5. Any distribution with compact support is tempered.

The Fourier transform extends to a continuous linear map from S ′ to itself by
defining

〈F̂ ,φ〉= 〈F, φ̂〉, F ∈S ′,φ ∈S .

This definition agrees with the classical definition when F ∈ L1∩L2. Furthermore,
it is easy to verify that the basic properties of the Fourier transform continue to hold.
In particular, for F ∈S ′(Rn), we have the following formulas.

(i) (TyF)∧ = e−2πiξ ·yF̂ and (DMF)∧ = DN F̂ , where N = (M∗)−1.
(ii) (F ∗g)∧ = F̂ ĝ, for g ∈S (Rn).

(iii) ∂ α F̂ = ((−2πix)α F)∧ .
(iv) (∂ α F̂)∧ = (2πiξ )α F̂ .

Similarly, the inverse Fourier transform is defined on S ′ by
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〈F̌ ,φ〉= 〈F, φ̌〉, F ∈S ′,φ ∈S ,

and, for all F ∈S ′(Rn), F = (F̌)∧ = (F̂)∨.

Example 6. For any φ ∈S (R),

〈δ̂ ,φ〉= 〈δ , φ̂〉= φ̂(0) =
∫
R

φ(x)dx = 〈1,φ〉.

Hence δ̂ = 1. It follows that, for any y ∈ R, the Fourier transform of δy = Tyδ is

δ̂y(ξ ) = e−2πiyξ and, for any k ∈ N, δ̂ (k)(ξ ) = (2πiξ )k.

Example 7. We will show that ŝgn(ξ ) = 1
iπ pv( 1

ξ
), where sgn is the signum function,

that is defined as sgn(x) = −1 of x < 0, sgn(x) = 0 of x ≥ 0. In order to derive

this result, we consider first the functions fn defined by fn(x) =

{
−ex/n if x < 0
e−x/n if x > 0

,

where n ∈ N. An application of Lebesgue Dominated Convergence theorem shows
that fn converges to f = sgn as n→ ∞ in the sense of tempered distributions, that
is, 〈 fn,φ〉 → 〈sgn,φ〉 as n→ ∞, for all φ ∈S (R). A direct computation (note that
fn ∈ L1(R)) shows that

f̂n(ξ ) =
∫

∞

0
e−x/ne−2πixξ dx−

∫ 0

−∞

ex/ne−2πixξ dx =
1

1
n +2πiξ

− 1
1
n −2πiξ

.

Finally, we use that fact that if (Fn),F ∈ S ′ and 〈Fn,φ〉 → 〈F,φ〉 for all φ ∈ S ,
then 〈F̂n,φ〉 → 〈F̂ ,φ〉 for all φ ∈S . Since

lim
n→∞
〈 f̂n,φ〉=

1
iπ

P.V.
∫

φ(ξ )

ξ
dξ ,

we conclude that ŝgn(ξ ) = 1
iπ pv( 1

ξ
).

Example 8. The one-dimensional Heaviside function H(x) can be written as H(x) =
1
2 +

1
2 sgn(x). It follows that Ĥ(ξ ) = 1

2 δ (ξ )+ 1
2πi pv( 1

ξ
).

Example 9. Let us consider the two-dimensional Heaviside function H1(x1,x2) =
χx1>0(x1,x2). Since it can be written as the tensor product H1(x1,x2) = H(x1)1(x2),
it follows that Ĥ1(ξ1,ξ2) =

1
2 δ (ξ1)δ (ξ2)+

δ (ξ1)
2πi pv( 1

ξ 1
).

Singular support and wavefront set

The notion of singular support is introduced to describe the location where a distri-
bution fails to be smooth. Since a distribution is not defined at a single point, this
definition requires to deal with open sets containing the point of interest.
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For a distribution F , we say that x0 ∈ Rn is a regular point of F if there exists a
function g ∈C∞(U), where U ⊂ Rn is an open neighbourhood of x0 and g(x0) = 1,
such that gF ∈C∞(U). The complement of the set of the regular points of F is called
the singular support of F and is denoted by singsupp(F). It is easy to see that the
singular support of F is a closed set.

For example, singsupp(δ ) = {0}. Also singsupp(pv( 1
x )) = {0}.

Note that the condition gF ∈ C∞(U) is equivalent to (gF)∧ being rapidly de-
creasing, i.e., for all N > 0 there exists a CN > 0 such that

(gF)∧(ξ )| ≤CN (1+ |ξ |)−N .

If a function or distribution fails to be smooth, we can look not only for the
location of the singularity in space, but also for the orientation of the singularity.

We shall say that a set Γ ∈ Rn \ {0} is conic if ξ ∈ Γ implies that λξ ∈ Γ for
all λ > 0. A conic neighbourhood of a point is an open conic set containing it. For
a distribution F , the point (x,ξ ) ∈ Rn×Rn \{0} is a regular directed point of F if
there exists a function g∈C∞(U), where U ⊂Rn is an open neighbourhood of x and
g(x) = 1, such that gF ∈C∞(U) and, for al N > 0, there exists a CN > 0 such that

|(gF)∧(ξ )| ≤CN (1+ |ξ |)−N ,

for all ξ is a conic neighbourhood containing the direction ξ0. The complement in
Rn×Rn \{0} of the set of regular directed points of F is called the wavefront set of
F ans is denoted by WF(F).

Example 10. Let x = (x′,x′′) be a splitting of the coordinates and define the distri-
bution F by

〈F,φ〉=
∫

φ(0,x′′)dx′′.

It is easy to see that singsupp(F) = {(x′,x′′) : x′= 0}. To compute the wavefront set,
observe that, for γ ∈C∞(U), where U is a neighbourhood of a point x0 = (x′0,x

′′
0),

we have:
〈γF,φ〉=

∫
γ(0,x′′)φ(0,x′′)dx′′.

Thus, (γF)∧(ξ ) = γ̂0(ξ
′′), where γ0(x′′) = γ(0,x′′). Since γ0 is C∞ and compactly

supported, its Fourier transform has rapid decay as a funxtion of ξ ′′ but is constant
as a function of ξ ′. Hence we conclude that WF(F) = {(0,x′′,ξ ′,0)}.
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