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Abstract—Wavelets with composite dilations were introduced
to provide a framework for the construction of waveforms defined

not only at various scales and locations but also at various
orientations. The shearlet system, which provides optimally

sparse representations of images with edges, is a particular
well-known example of these systems. In this work, we develop

critically sampled wavelet transforms with composite dilations
for the purpose of image coding. We show that these new

critically sampled transforms can achieve much better non-linear
approximation rates for images containing edges than traditional

discrete wavelet transforms or even more sophisticated multiscale
transforms such as the critically sampled contourlet transform.

Index Terms— wavelets, shearlets

I. INTRODUCTION

Despite their spectacular success in signal and image pro-

cessing applications, it is now generally acknowledged that tra-

ditional wavelets are not particularly efficient in dealing with

multidimensional data, due to their limited ability to process

geometric information. In response to this limitation, several

methods have been introduced in recent years in computational

harmonic analysis, most notably the curvelets and shearlets,

which offer optimally sparse representations of images with

edges [1], [2]. While both representations provide a directional

multiscale decomposition of images, the shearlets, which are

a special realization of the theory of wavelets with composite

dilations, offer the additional advantage of being based on the

framework of affine systems. This enables a natural transition

from the continuous to the discrete setting and a greater

flexibility in the development of discrete directional multiscale

schemes.

In the drive to develop more geometrically oriented trans-

forms that are critically sampled, new variations of the

contourlet transform have also been made [3], [4], [5]. In

this work, we construct critically sampled transforms that

are examples of or are related to the theory of wavelets

with composite dilations. Similar constructions such as those

provided [6], [7], [8], [3] can also be viewed as closely related

to examples of our general framework.

A. Wavelets with composite dilations

For y ∈ R
n, the translation operator Ty is defined by

Ty f(x) = f(x − y).

For a ∈ GLn(R) the dilation operator Da is defined by

Da f(x) = | det a|−1/2 f(a−1x).

The affine or wavelet systems generated by Ψ =
{ψ1, . . . , ψL} ⊂ L2(Rn) and A = {ai : i ∈ Z}, are the

systems of the form

AA(Ψ) = {Da Tk ψm : a ∈ A, m = 1, . . . , L}.

If AA(Ψ) is a Parseval frame for L2(Rn), then Ψ is called a

multiwavelet or, simply, a wavelet if Ψ = {ψ}. If, in addition,

AA(Ψ) is an orthonormal basis, then Ψ is an orthonormal

(multi)wavelet.

By extending this idea, one introduces the affine systems

with composite dilations, which have the form

AAB(Ψ) = {DaDb Tk Ψ : k ∈ Z
n, a ∈ A, b ∈ B},

where A, B ⊂ GLn(R). If AAB(Ψ) is a Parseval frame

(orthonormal basis), then Ψ will be called a composite or AB-

multiwavelet (orthonormal composite wavelet). The theory of

these systems generalizes the classical theory of wavelets and

provides a simple and flexible framework for the construction

of Parseval frames and orthonormal bases that exhibit a

number of geometric features of great potential in applications.

In fact, the matrices a ∈ A are expanding matrices and

are associated with the usual multiscale decomposition; the

matrices b ∈ B, on the other hand, are non-expanding and are

associated with rotations and other orthogonal transformations.

As a result, one can construct composite wavelets with good

time-frequency decay properties whose elements contain “long

and narrow” waveforms with many locations, scales, shapes

and directions.

II. NOVEL CONSTRUCTIONS

The theory of wavelets with composite dilations extends

many of the standard results of the classical wavelet theory.

We refer to [9], [10], [11] for a detailed description of this

theory. For the constructions considered in this paper, it will

be sufficient to recall the following results from [10], which

provides relatively simple conditions for the constructions of

composite wavelets of the form ψ = (χS)∨, where S ⊂ R
2.

Theorem 1: Let ψ = (χS)∨ and suppose that S ⊂ F ⊂ R
2,

where

1) R̂
2 =

⋃
k∈Z2 (F + k);

2) R̂
2 =

⋃
c∈C S c

−1,

where the union is essentially disjoint and C is a subset of

GL2(R). Then the system AC is a Parseval frame for L2(R2).



Indeed, using Theorem 1, we obtain the following construc-

tions which provide the framework for novel discrete direc-

tional multiscale systems.
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Fig. 1. Example of composite wavelet where a = Q.

A. Example 1

Let a = Q = ( 1 1
−1 1 ) and consider B = {b0, b1, b2, b3}

where b0 = ( 1 0
0 1 ), b1 = ( 1 0

0 −1 ), b2 = ( 0 1
1 0 ), b3 = ( 0 −1

−1 0 ).

Let ψ̂(ξ) = χS(ξ) where the set S is the union

of the triangles with vertices (1, 0), (2, 0), (1, 1) and

(−1, 0), (−2, 0), (−1,−1) and is illustrated in Figure 1. Notice

that S satisfies the assumptions of Theorem 1. Hence the

system

{Di
aDb Tk ψ : i ∈ Z, b ∈ B, k ∈ Z

2, }

is an ONB for L2(R2) (since it is a PF and, in addition, ‖ψ‖ =
1).

Indeed, a construction in [8] is a modification of this one

which is obtained by splitting each triangle of the set S into

2 smaller triangles, say, S = S1 ∪ S1, so that we have the

frequency tiling illustrated in Figure 2. This can be expressed

as the composite wavelet system

{Di
a Db Tk ψ

m : i ∈ Z, b ∈ B, k ∈ Z
2, m = 1, 2},

where ψ̂m(ξ) = χSm
(ξ), m = 1, 2.
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Fig. 2. Example of composite wavelet system with a = Q.

B. Example 2

Let a = ( 2 0
0 2 ) and consider B = {b, b1, b2, b3} where b0 =

( 1 0
0 1 ), b1 = ( 1 0

0 −1 ), b2 = ( 0 1
1 0 ), b3 = ( 0 −1

−1 0 ).

Let R be the union of the trapezoid with vertices

(1, 0), (2, 0), (1, 1), (2, 2) and the symmetric one with vertices

(−1, 0), (−2, 0), (−1,−1), (−2,−2). Next, we partition each

trapezoid into equilateral triangles Rm, m = 1, 2, 3 as il-

lustrated in Figure 3. Hence we define ψ̂m(ξ) = χRm
(ξ),

m = 1, 2, 3. Then the system

{Di
a Db Tk ψ

m : i ∈ Z, b ∈ B, k ∈ Z
2, m = 1, 2, 3}

is an orthonormal basis for L2(R2).
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Fig. 3. Example of composite wavelet system with a = 2I .

C. Example 3

An interesting variant of the system described above is

obtained by keeping the same dilation matrix a and replacing

B with the set B = {b` : −3 ≤ ` ≤ 2} where b is the shear

matrix ( 1 1
0 1 ). Then, by letting R be the union of the trapezoid

with vertices (1, 0), (2, 0), (1, 1/3), (2, 2/3) and the symmetric

one with vertices (−1, 0), (−2, 0), (−1,−1/3), (−2,−2/3),
and ψ̂m(ξ) = χRm

(ξ), where Rm = R bm, it follows that

the system

{Di
a Db Tk ψ

m : i ∈ Z, b ∈ B, k ∈ Z
2, m = 1, 2, 3}

is an orthonormal basis for L2(D0) = {f ∈ L2(R2) :
supp f̂ ⊂ D0}, where D0 = {(ω1, ω2) : |ω2/ω1| ≤ 1}.

To obtain an orthonormal basis for the whole space L2(R2),
it is sufficient to add another system, similar to the one

above, which is an orthonormal basis for L2(D1) where

D1 = {(ω1, ω2) : |ω2/ω1| ≥ 1}. This is simply obtained

as

{Di
aDb Tk ψ̃

m : i ∈ Z, b ∈ B̃, k ∈ Z
2, m = 1, 2, 3},

where B = {(bT )` : −3 ≤ ` ≤ 2}.

Notice that, for this example, as well as for other examples

of composite wavelets, it is possible to modify the construction

in such a way that ψ̂ is a smooth function and not the charac-

teristic function of a set. The last construction, in particular,

is related to the shearlet system, a Parseval frame of well-

localized waveforms with optimal approximation properties

for images with edges [2], [12].
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Fig. 4. Example of composite wavelet system with a = 2I and shearing

matrix.

III. CRITICALLY SAMPLED TRANSFORMS

We will now develop some examples of discrete critically

sampled transforms whose spatial-frequency tilings is consis-

tent with some of the constructions given above. In particular,

we will take advantage of a critically sampled 2D separable

discrete wavelet transform (DWT) and of the quincunx-based

discrete wavelet transform (QDWT) in our constructions.

For brevity, we describe the construction using a critically

sampled 2D separable DWT; the other case is similar. Given a

one dimensional scaling function φ and a wavelet function

ψ, the three functions ψ1(x) = φ(x1)ψ(x2), ψ2(x) =
ψ(x1)φ(x2), and ψ3(x) = ψ(x1)ψ(x2) generate an orthogonal

basis for L2(R2) by translation and dilation. Define ψk
j,n(x) =

2j/2ψk(2jx − n) for k = 1 to 3 where j determines the

scale and n ∈ Z
2. These determine basis functions for the

detail subspace Vj ⊗ Wj , Wj ⊗ Vj , and Wj ⊗ Wj where

Vj and Wj denote the 1D approximation space and detail

space determined by the 1D scaling and wavelet functions.

The 2D approximation space is Vj ⊗ Vj and is generated by

{2j/2φ2(2jx− n)}n∈Z2 where φ2(x) = φ(x1)φ(x2).
To construct our directional filters corresponding approxi-

mately to the construction of Example 3, we define

S(0)(ω) = S1(ω1)S2(
ω2

ω1

), S(1)(ω) = S1(ω2)S2(
ω1

ω2

)

where S1,S2 ∈ C∞(R) and are compactly supported. Under

appropriate assumptions on S1, S2, we can choose Φ ∈
C∞

0 (R2) to satisfy

|Φ(ω)|2 +

1∑

d=0

∑

j≥0

2j−1∑

`=−2j

|S(d)(ωa−jb−`
d )|2 χDd

(ξ) = 1

where b0 = ( 1 1
0 1 ), b1 = bT , ω ∈ R

2 and Dd is given in

Example 3.

Define φk(x) = φ(x−k), where φ = (Φ)∨, and s
(d)
j,`,k(x) =

2
3j

2 s(d)(b`da
jx−k), where s(d) = (S(d))∨. Then the collection

of {φk : k ∈ Z
2} together with

{s
(d)
j,`,k(x) : j ≥ 0, −2j + 1 ≤ ` ≤ 2j − 2, k ∈ Z

2, d = 0, 1}

∪{s̃
(d)
j,`,k(x) : j ≥ 0, ` = −2j, 2j − 1, k ∈ Z

2, d = 0, 1},

is a Parseval frame for L2(R2), where S̃
(d)
j,`,k = S

(d)
j,`,k χDd

(the

last set is needed to take care of the corner elements).

We can now form a decomposition of the complement of the

2D approximation space at level j for a fixed j0 with k ∈ Z
2

(d = 0, 1) to be
∑

k′

s
(d)
j0,`,k−k′(x)ψ

1
j,k(x),

∑

k′

s
(d)
j0,`,k−k′(x)ψ

2
j,k(x),

∑

k′

s
(d)
j0,`,k−k′(x)ψ

3
j,k(x)

with −2j
0 + 1 ≤ ` ≤ 2j

0 − 2 and
∑

k′

s̃
(d)
j0,`,k−k′(x)ψ

1
j,k(x),

∑

k′

s̃
(d)
j0,`,k−k′(x)ψ

2
j,k(x),

∑

k′

s̃
(d)
j0,`,k−k′(x)ψ

3
j,k(x)

with ` = −2j, 2j − 1. Since the transform based on this

decomposition combines a discrete wavelet transform (DWT)

and a component of the shearlet transform, it will be referred to

as the DWTShear transform. The implementation is based on

using a Meyer wavelet for the shearlet-based component [12],

[13]. The analogous transform based on using the quincunx-

based discrete wavelet transform (QDWT) will be referred to

as QDWTShear. This produces a spatial-frequency tiling of

a wavelet with composite dilations equivalent to Example 1.

Further details on this implementation are described in [14]

Note that, in this decomposition, j0 is constant so that an

image coding scheme can take advantage of the correlation

between levels in the DWT. In particular, one can benefit from

tree-based coding schemes to improve this decay rate [15].

This is in contrast to similar schemes which do not fix the

number of angular divisions in order to try and maintain a

parabolic scaling law of width ∝ height2.

IV. EXPERIMENTAL RESULTS

In this section, we present results of our proposed al-

gorithms and compare their nonlinear approximation (NLA)

capabilities to those of the full hybrid DWT (HDWT), the

full hybrid QDWT (HQDWT) [8], the non-uniform directional

filter based (NUDFB), the quincunx non-uniform directional

filter based (QNUDFB) [16], and the critically sampled con-

tourlet transform (CSCT) [3].

We used the images Barbara, Einstein, and Elaine shown

in Figure 5. In our implementation of DWTShear and QDWT-

Shear transforms we used a 4 level decomposition DWT with

j0 set to 6. Figure 6 illustrates a decomposition when j0 is

set to 3 for easy interpretation. An improved performance is

possible by using a larger number of decomposition levels for

the DWT but a 4 level decomposition of the DWT was used to

have a transform comparable in decomposition to those used

[8],[16], and [3].

V. CONCLUSION

In this paper, we have shown that the framework of wavelets

with composite dilations provides a very flexible tool to

generalize a number of oriented transforms recently appeared

in the literature, and to construct new ones. Within this setting,
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Fig. 8. Details of the nonlinear approximations using 4150 coefficients with the Einstein image. (a) Original image. (b) DWTShear (PSNR=44.55 dB). (c)
HQDWT (PSNR=34.79 dB). (d) HDWT (PSNR=32.54 dB). (e) QNUDFB (PSNR=26.85 dB). (f) NUDFB (PSNR=26.71 dB).

we derive a new critically sampled transform referred to as the

DWTShear transform and its quincunx companion the QDWT-

Shear transform. Various experiments demonstrate that these

transforms can sparsely represent a wide class of images and

achieve excellent nonlinear approximation capabilities. Such

transforms can be applied to image coding very effectively.

REFERENCES

[1] E. J. Candès and D. L. Donoho, “New tight frames of curvelets and
optimal representations of objects with piecewise C2 singularities,”

Comm. Pure and Appl. Math., vol. 56, pp. 216–266, 2004.

[2] K. Guo and D. Labate, “Optimally sparse multidimensional representa-
tion using shearlets”, SIAM J. Math. Anal., vol. 9, pp. 298–318, 2007.

[3] S. Higaki, S. Kyochi, Y. Tanaka, and M. Ikehara, “A novel design
of critically sampled contourlet transform and its application to image
coding,” Proc. IEEE Int. Conf. Image Process. ICIP2008. San Diego,

CA, Oct. 2008.

[4] M. N. Do, and M. Vetterli, “The contourlet transform: an efficient
directional multiresolution image representation”, IEEE Trans. Image

Process., vol. 14, no. 12, pp. 2091-2106, Dec. 2005.

[5] D. D. Po and M. N. Do, “Directional multiscale modeling of images
using the contourlet transform,” IEEE Trans. Image Process., vol. 15,

pp. 1610–1620, 2006.

[6] R. Eslami, H. Radha, “New image transforms using hybrid wavelets

and directional filter banks: Analysis and design,” Proc. IEEE Int. Conf.



(a)

(b) (c)

Fig. 5. Images used in this paper for different experiments. (a) Barbara

image, (b) Einstein image, (c) Elaine image.

Fig. 6. Example images of the DWTShear decompositions of the Elaine

image using 8 angular subdivisions in each quadrant and 4 scales.

Image Process. ICIP2005. Genova, Italy, Sept. 2005.

[7] R. Eslami and H. Radha, “Regular hybrid wavelets and directional

filter banks: Extensions and applications,” Proc. IEEE Int. Conf. Image

Process. ICIP2006. Atlanta, GA, Oct. 2006.

[8] R. Eslami, H. Radha, “A New Family of Nonredundant Transforms
Using Hybrid Wavelets and Directional Filter Banks,” IEEE Trans.

Image Process. vol. 16, no. 4, pp. 1152–1167, 2007.

[9] K. Guo, W.-Q Lim, D. Labate, G. Weiss and E. Wilson, “Wavelets with
composite dilations,” Electron. Res. Announc. Amer. Math. Soc., vol. 10,
pp. 78–87, 2004.

[10] K. Guo, W-Q. Lim, D. Labate, G. Weiss and E. Wilson, “Wavelets with
composite dilations and their MRA properties,” Appl. Comput. Harmon.
Anal. vol. 20, pp. 220–236, 2006.

TABLE I

PSNR VALUES OF THE NLA FOR THE BARBARA IMAGE.

Num. of coeff. 1050 1350 1600 1950 2250

DWTShear 35.70 38.31 38.67 39.18 39.62

HDWT 27.41 29.87 30.50 31.14 31.54

CSCT 20.55 22.35 22.86 23.02 24.08

NUDFB 20.16 21.26 21.91 22.50 23.42

DWT 20.34 21.76 21.98 22.90 23.50

QDWTShear 34.39 37.11 37.63 38.14 38.53

HQDWT 28.55 29.63 30.05 30.84 31.24

QNUDFB 20.08 22.29 23.14 23.77 23.91

QDWT 19.88 20.86 21.69 22.51 22.49

TABLE II
PSNR VALUES OF THE NLA FOR THE EINSTEIN IMAGE.

Num. of coeff. 4150 5400 6400 6900 7400

DWTShear 44.55 45.40 45.74 45.82 45.93

HDWT 32.54 33.79 34.47 34.72 34.98

CSCT 26.32 28.31 28.50 28.84 29.13

NUDFB 26.71 28.57 29.12 29.11 29.31

DWT 26.18 28.58 28.84 29.05 29.20

QDWTShear 39.70 43.75 44.17 44.32 44.54

HQDWT 34.79 36.12 36.70 36.87 37.05

QNUDFB 26.85 28.38 28.81 29.00 29.10

QDWT 26.10 27.58 27.63 27.75 27.90

TABLE III
PSNR VALUES OF THE NLA FOR THE ELAINE IMAGE.

Num. of coeff. 4150 5400 6400 6900 7400

DWTShear 45.98 47.05 48.03 48.46 48.80

HDWT 32.90 34.41 34.97 35.22 35.50

CSCT 27.46 29.34 30.00 30.31 30.43

NUDFB 28.31 30.38 30.82 31.00 31.01

DWT 27.86 29.98 30.91 31.08 31.34

QDWTShear 46.35 47.50 48.00 48.15 48.29

HQDWT 35.60 38.16 39.12 39.50 39.85

QNUDFB 28.02 30.05 30.72 31.06 31.24

QDWT 27.74 29.72 30.30 30.72 30.94

[11] K. Guo, W-Q. Lim, D. Labate, G. Weiss and E. Wilson, “The theory
of wavelets with composite dilations,” in: Harmonic Analysis and
Applications, C. Heil (ed.), pp. 231–249, Birkhäuser, Boston, MA, 2006.
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