Critically Sampled Composite Wavelets

Glenn R. Easley
System Planning Corporation,
3601 Wilson Blvd
Arlington, VA 22201 USA

Demetrio Labate
Department of Mathematics,
University of Houston,
Houston, TX 77204 USA

Abstract—Wavelets with composite dilations were introduced to provide a framework for the construction of waveforms defined not only at various scales and locations but also at various orientations. The shearlet system, which provides optimally sparse representations of images with edges, is a particular well-known example of these systems. In this work, we develop critically sampled wavelet transforms with composite dilations for the purpose of image coding. We show that these new critically sampled transforms can achieve much better non-linear approximation rates for images containing edges than traditional discrete wavelet transforms or even more sophisticated multiscale transforms such as the critically sampled contourlet transform.

Index Terms—wavelets, shearlets

I. INTRODUCTION

Despite their spectacular success in signal and image processing applications, it is now generally acknowledged that traditional wavelets are not particularly efficient in dealing with multidimensional data, due to their limited ability to process geometric information. In response to this limitation, several methods have been introduced in recent years in computational harmonic analysis, most notably the curvelets and shearlets, which offer optimally sparse representations of images with edges [1], [2]. While both representations provide a directional multiscale decomposition of images, the shearlets, which are a special realization of the theory of wavelets with composite dilations, offer the additional advantage of being based on the framework of affine systems. This enables a natural transition from the continuous to the discrete setting and a greater flexibility in the development of discrete directional multiscale schemes.

In the drive to develop more geometrically oriented transforms that are critically sampled, new variations of the contourlet transform have also been made [3], [4], [5]. In this work, we construct critically sampled transforms that are examples of or are related to the theory of wavelets with composite dilations. Similar constructions such as those provided [6], [7], [8], [3] can also be viewed as closely related to examples of our general framework.

A. Wavelets with composite dilations

For \(y \in \mathbb{R}^n \), the translation operator \(T_y \) is defined by

\[
T_y f(x) = f(x - y).
\]

For \(a \in GL_n(\mathbb{R}) \) the dilation operator \(D_a \) is defined by

\[
D_a f(x) = |\det a|^{-1/2} f(a^{-1} x).
\]

The affine or wavelet systems generated by \(\Psi = \{\psi_1, \ldots, \psi_L\} \subset L^2(\mathbb{R}^n) \) and \(A = \{a^i : i \in \mathbb{Z}\} \), are the systems of the form

\[
\mathcal{A}_A(\Psi) = \{D_a T_k \psi_m : a \in A, m = 1, \ldots, L\}.
\]

If \(\mathcal{A}_A(\Psi) \) is a Parseval frame for \(L^2(\mathbb{R}^n) \), then \(\Psi \) is called a multiwavelet or, simply, a wavelet if \(\Psi = \{\psi\} \). If, in addition, \(\mathcal{A}_A(\Psi) \) is an orthonormal basis, then \(\Psi \) is an orthonormal (multi)wavelet.

By extending this idea, one introduces the affine systems with composite dilations, which have the form

\[
\mathcal{A}_{AB}(\Psi) = \{D_a D_b T_k \Psi : k \in \mathbb{Z}^n, a \in A, b \in B\},
\]

where \(A, B \subset GL_n(\mathbb{R}) \). If \(\mathcal{A}_{AB}(\Psi) \) is a Parseval frame (orthonormal basis), then \(\Psi \) will be called a composite or \(AB \)-multiwavelet (orthonormal composite wavelet). The theory of these systems generalizes the classical theory of wavelets and provides a simple and flexible framework for the construction of Parseval frames and orthonormal bases that exhibit a number of geometric features of great potential in applications.

In fact, the matrices \(a \in A \) are expanding matrices and are associated with the usual multiscale decomposition; the matrices \(b \in B \), on the other hand, are non-expanding and are associated with rotations and other orthogonal transformations. As a result, one can construct composite wavelets with good time-frequency decay properties whose elements contain “long and narrow” waveforms with many locations, scales, shapes and directions.

II. NOVEL CONSTRUCTIONS

The theory of wavelets with composite dilations extends many of the standard results of the classical wavelet theory. We refer to [9], [10], [11] for a detailed description of this theory. For the constructions considered in this paper, it will be sufficient to recall the following results from [10], which provides relatively simple conditions for the constructions of composite wavelets of the form \(\psi = (\chi_S)^\psi \), where \(S \subset \mathbb{R}^2 \).

Theorem 1: Let \(\psi = (\chi_S)^\psi \) and suppose that \(S \subset F \subset \mathbb{R}^2 \), where

1) \(\hat{\mathbb{R}}^2 = \bigcup_{k \in \mathbb{Z}^2} (F + k) \);
2) \(\hat{\mathbb{R}}^2 = \bigcup_{c \in C} S c^{-1} \),

where the union is essentially disjoint and \(C \) is a subset of \(GL_2(\mathbb{R}) \). Then the system \(\mathcal{A}_C \) is a Parseval frame for \(L^2(\mathbb{R}^2) \).
Indeed, using Theorem 1, we obtain the following constructions which provide the framework for novel discrete directional multiscale systems.

A. Example 1

Let \(a = Q = (\frac{1}{0} \frac{1}{1}) \) and consider \(B = \{b_0, b_1, b_2, b_3\} \) where \(b_0 = (\frac{1}{0} \frac{0}{1}), b_1 = (\frac{1}{0} \frac{0}{1}), b_2 = (\frac{0}{1} \frac{1}{0}), b_3 = (\frac{0}{1} \frac{-1}{0}) \).

Let \(\psi(\xi) = \chi_S(\xi) \) where the set \(S \) is the union of the triangles with vertices \((1,0),(2,0),(1,1)\) and \((-1,0),(-2,0),(-1,1),(-2,-2)\). Next, we partition each trapezoid into equilateral triangles \(R_m, m = 1,2,3 \) as illustrated in Figure 3. Hence we define \(\psi^m(\xi) = \chi_{R_m}(\xi), m = 1,2,3 \) is an orthonormal basis for \(L^2(\mathbb{R}^2) \).

B. Example 2

Let \(a = (\frac{3}{2} \frac{3}{2}) \) and consider \(B = \{b, b_1, b_2, b_3\} \) where \(b_0 = (\frac{1}{0} \frac{0}{1}), b_1 = (\frac{1}{0} \frac{0}{1}), b_2 = (\frac{0}{1} \frac{1}{0}), b_3 = (\frac{0}{1} \frac{-1}{0}) \).

Let \(R \) be the union of the trapezoid with vertices \((1,0),(2,0),(1,1),(2,2)\) and the symmetric one with vertices \((-1,0),(-2,0),(-1,1),(-2,-2)\). Next, we partition each trapezoid into equilateral triangles \(R_m, m = 1,2,3 \) as illustrated in Figure 3. Hence we define \(\psi^m(\xi) = \chi_{R_m}(\xi), m = 1,2,3 \) is an orthonormal basis for \(L^2(\mathbb{R}^2) \).

C. Example 3

An interesting variant of the system described above is obtained by keeping the same dilation matrix \(a \) and replacing \(B \) with the set \(B = \{b^\ell : -3 \leq \ell \leq 2\} \) where \(b \) is the shear matrix \((\frac{1}{0} \frac{1}{1})\). Then, by letting \(R \) be the union of the trapezoid with vertices \((1,0),(2,0),(1,1/3),(2,2/3)\) and the symmetric one with vertices \((-1,0),(-2,0),(-1,-1/3),(-2,-2/3)\), and \(\psi^m(\xi) = \chi_{R_m}(\xi), m = 1,2,3 \), it follows that the system

\[
\{D^a_b \psi^m : i \in \mathbb{Z}, b \in \mathbb{Z}^2, m = 1,2\},
\]

is an orthonormal basis for \(L^2(D_0) = \{f \in L^2(\mathbb{R}^2) : \text{supp} f \subset D_0\} \), where \(D_0 = \{(\omega_1,\omega_2) : |\omega_2/\omega_1| \leq 1\} \).

To obtain an orthonormal basis for the whole space \(L^2(\mathbb{R}^2) \), it is sufficient to add another system, similar to the one above, which is an orthonormal basis for \(L^2(D_1) \) where \(D_1 = \{(\omega_1,\omega_2) : |\omega_2/\omega_1| \geq 1\} \). This is simply obtained as

\[
\{D^a_b \psi^m : i \in \mathbb{Z}, b \in \mathbb{B}, m = 1,2,3\},
\]

where \(B = \{(b^\ell) : -3 \leq \ell \leq 2\} \).

Notice that, for this example, as well as for other examples of composite wavelets, it is possible to modify the construction in such a way that \(\psi \) is a smooth function and not the characteristic function of a set. The last construction, in particular, is related to the shearlet system, a Parseval frame of well-localized waveforms with optimal approximation properties for images with edges [2], [12].
III. CRITICALLY SAMPLED TRANSFORMS

We will now develop some examples of discrete critically sampled transforms whose spatial-frequency tilings is consistent with some of the constructions given above. In particular, we will take advantage of a critically sampled 2D separable discrete wavelet transform (DWT) and of the quincunx-based discrete wavelet transform (QDWT) in our constructions.

For brevity, we describe the construction using a critically sampled 2D separable DWT; the other case is similar. Given a one dimensional scaling function ϕ and a wavelet function ψ, the three functions $\psi^1(x) = \phi(x_1)\psi(x_2)$, $\psi^2(x) = \psi(x_1)\psi(x_2)$, and $\psi^3(x) = \psi(x_1)\psi(x_2)$ generate an orthogonal basis for $L^2(\mathbb{R}^2)$ by translation and dilation. Define $\psi^k_{j,n}(x) = 2^{j/2}\phi_{k}(2^j x - n)$ for $k = 1$ to 3 where j determines the scale and $n \in \mathbb{Z}^2$. These determine basis functions for the detail subspaces $V_j \otimes W_j$, $W_j \otimes V_j$, and $W_j \otimes W_j$ where V_j and W_j denote the 1D approximation space and detail space determined by the 1D scaling and wavelet functions. The 2D approximation space is $V_j \otimes V_j$ and is generated by $\{2^{j/2}\phi^2(2^j x - n)\}_{n \in \mathbb{Z}^2}$ where $\phi^2(x) = \phi(x_1)\phi(x_2)$.

To construct our directional filters corresponding approximately to the construction of Example 3, we define

$$S^{(0)}(\omega) = S_1(\omega_1)S_2(\omega_2), \quad S^{(1)}(\omega) = S_1(\omega_2)S_2(\omega_1)$$

where $S_1, S_2 \in C^\infty(\mathbb{R})$ and are compactly supported. Under appropriate assumptions on S_1, S_2, we can choose $\Phi \in C^\infty(\mathbb{R}^2)$ to satisfy

$$|\Phi(\omega)|^2 + \sum_{d=0}^1 \sum_{j \geq 0} \sum_{l = -2^j}^{2^j - 1} \left|S^{(d)}(\omega a^{-d}b^{-l})\right|^2 \chi_{D_d}(\xi) = 1$$

where $b_0 = (1,0), b_1 = b^T$, $\omega \in \mathbb{R}^2$ and D_d is given in Example 3.

Define $\phi_k(x) = \phi(x - k)$, where $\phi = (\Phi)^\vee$, and $s^{(d)}_{j,l,k}(x) = 2^{j/2} s^{(d)}_{j,l,k}(2^j x - k)$, where $s^{(d)} = (S^{(d)})^\vee$. Then the collection of $\{\phi_k : k \in \mathbb{Z}^2\}$ together with

$$\{s^{(d)}_{j,l,k}(x) : j \geq 0, -2^j + 1 \leq l \leq 2^j - 2, k \in \mathbb{Z}^2, d = 0, 1\}$$

$$\cup \{s^{(d)}_{j,l,k}(x) : j \geq 0, l = -2^j, 2^j - 1, k \in \mathbb{Z}^2, d = 0, 1\},$$

is a Parseval frame for $L^2(\mathbb{R}^2)$, where $S_{j,l,k} = s^{(d)}_{j,l,k} \chi_{D_d}$ (the last set is needed to take care of the corner elements).

We can now form a decomposition of the complement of the 2D approximation space at level j for a fixed j_0 with $k \in \mathbb{Z}^2$ ($d = 0$, 1) to be

$$\sum_{k'} s^{(d)}_{j_0,l,k-k'}(x)\psi^1_{j,k}(x), \quad \sum_{k'} s^{(d)}_{j_0,l,k-k'}(x)\psi^2_{j,k}(x),$$

$$\sum_{k'} s^{(d)}_{j_0,l,k-k'}(x)\psi^3_{j,k}(x)$$

with $-2^j_0 + 1 \leq l \leq 2^j_0 - 2$ and

$$\sum_{k'} s^{(d)}_{j_0,l,k-k'}(x)\psi^1_{j,k}(x), \quad \sum_{k'} s^{(d)}_{j_0,l,k-k'}(x)\psi^2_{j,k}(x),$$

$$\sum_{k'} s^{(d)}_{j_0,l,k-k'}(x)\psi^3_{j,k}(x)$$

with $l = -2^j, 2^j - 1$. Since the transform based on this decomposition combines a discrete wavelet transform (DWT) and a component of the shearlet transform, it will be referred to as the DWTShear transform. The implementation is based on using a Meyer wavelet for the shearlet-based component [12], [13]. The analogous transform based on using the quincunxbased discrete wavelet transform (QDWT) will be referred to as QDWTShear. This produces a spatial-frequency tiling of a wavelet with composite dilations equivalent to Example 1. Further details on this implementation are described in [14].

Note that, in this decomposition, j_0 is constant so that an image coding scheme can take advantage of the correlation between levels in the DWT. In particular, one can benefit from tree-based coding schemes to improve this decay rate [15]. This is in contrast to similar schemes which do not fix the number of angular divisions in order to try and maintain a parabolic scaling law of width \propto height2.

IV. EXPERIMENTAL RESULTS

In this section, we present results of our proposed algorithms and compare their nonlinear approximation (NLA) capabilities to those of the full hybrid DWT (HDWT), the full hybrid QDWT (HQDWT) [8], the non-uniform directional filter based (NUDFB), the quincunx non-uniform directional filter based (QNUDFB) [16], and the critically sampled contourlet transform (CSCT) [3].

We used the images Barbara, Einstein, and Elaine shown in Figure 5. In our implementation of DWTShear and QDWTShear transforms we used a 4 level decomposition DWT with j_0 set to 6. Figure 6 illustrates a decomposition when j_0 is set to 3 for easy interpretation. An improved performance is possible by using a larger number of decomposition levels for the DWT but a 4 level decomposition of the DWT was used to have a transform comparable in decomposition to those used [8],[16], and [3].

V. CONCLUSION

In this paper, we have shown that the framework of wavelets with composite dilations provides a very flexible tool to generalize a number of oriented transforms recently appeared in the literature, and to construct new ones. Within this setting,
we derive a new critically sampled transform referred to as the DWTShear transform and its quincunx companion the QDWT-Shear transform. Various experiments demonstrate that these transforms can sparsely represent a wide class of images and achieve excellent nonlinear approximation capabilities. Such transforms can be applied to image coding very effectively.

REFERENCES

Fig. 5. Images used in this paper for different experiments. (a) Barbara image; (b) Einstein image; (c) Elaine image.

Fig. 6. Example images of the DWTShear decompositions of the Elaine image using 8 angular subdivisions in each quadrant and 4 scales.

TABLE I
PSNR VALUES OF THE NLA FOR THE BARBARA IMAGE.

<table>
<thead>
<tr>
<th>Num. of coeff.</th>
<th>1050</th>
<th>1350</th>
<th>1600</th>
<th>1950</th>
<th>2250</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWTShear</td>
<td>35.70</td>
<td>38.31</td>
<td>38.67</td>
<td>39.18</td>
<td>39.62</td>
</tr>
<tr>
<td>HDWT</td>
<td>27.44</td>
<td>29.87</td>
<td>30.50</td>
<td>31.14</td>
<td>31.54</td>
</tr>
<tr>
<td>CSCT</td>
<td>20.55</td>
<td>22.35</td>
<td>22.86</td>
<td>23.02</td>
<td>24.08</td>
</tr>
<tr>
<td>NUDFB</td>
<td>20.16</td>
<td>21.26</td>
<td>21.91</td>
<td>22.50</td>
<td>23.42</td>
</tr>
<tr>
<td>DWT</td>
<td>20.34</td>
<td>21.76</td>
<td>21.98</td>
<td>22.90</td>
<td>23.50</td>
</tr>
<tr>
<td>QDWTShear</td>
<td>34.39</td>
<td>37.11</td>
<td>37.63</td>
<td>38.14</td>
<td>38.55</td>
</tr>
<tr>
<td>HQDWT</td>
<td>28.55</td>
<td>29.63</td>
<td>30.05</td>
<td>30.84</td>
<td>31.24</td>
</tr>
<tr>
<td>QNUDFB</td>
<td>20.08</td>
<td>22.29</td>
<td>23.14</td>
<td>23.77</td>
<td>23.91</td>
</tr>
<tr>
<td>QDWT</td>
<td>19.88</td>
<td>20.86</td>
<td>21.69</td>
<td>22.51</td>
<td>22.49</td>
</tr>
</tbody>
</table>

TABLE II
PSNR VALUES OF THE NLA FOR THE EINSTEIN IMAGE.

<table>
<thead>
<tr>
<th>Num. of coeff.</th>
<th>4150</th>
<th>5400</th>
<th>6400</th>
<th>6900</th>
<th>7400</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWTShear</td>
<td>44.55</td>
<td>45.40</td>
<td>45.74</td>
<td>45.82</td>
<td>45.93</td>
</tr>
<tr>
<td>HDWT</td>
<td>32.54</td>
<td>33.79</td>
<td>34.47</td>
<td>34.72</td>
<td>34.98</td>
</tr>
<tr>
<td>CSCT</td>
<td>26.32</td>
<td>28.31</td>
<td>28.50</td>
<td>28.84</td>
<td>29.13</td>
</tr>
<tr>
<td>NUDFB</td>
<td>26.71</td>
<td>28.57</td>
<td>29.12</td>
<td>29.11</td>
<td>29.31</td>
</tr>
<tr>
<td>DWT</td>
<td>26.18</td>
<td>28.58</td>
<td>28.84</td>
<td>29.05</td>
<td>29.20</td>
</tr>
<tr>
<td>QDWTShear</td>
<td>39.70</td>
<td>43.75</td>
<td>44.17</td>
<td>44.32</td>
<td>44.54</td>
</tr>
<tr>
<td>HQDWT</td>
<td>34.79</td>
<td>36.12</td>
<td>36.01</td>
<td>37.05</td>
<td>37.10</td>
</tr>
<tr>
<td>QNUDFB</td>
<td>26.85</td>
<td>28.38</td>
<td>28.81</td>
<td>29.00</td>
<td>29.10</td>
</tr>
<tr>
<td>QDWT</td>
<td>26.10</td>
<td>27.58</td>
<td>27.63</td>
<td>27.75</td>
<td>27.90</td>
</tr>
</tbody>
</table>

TABLE III
PSNR VALUES OF THE NLA FOR THE ELAINE IMAGE.

<table>
<thead>
<tr>
<th>Num. of coeff.</th>
<th>4150</th>
<th>5400</th>
<th>6400</th>
<th>6900</th>
<th>7400</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWTShear</td>
<td>45.98</td>
<td>47.05</td>
<td>48.03</td>
<td>48.46</td>
<td>48.80</td>
</tr>
<tr>
<td>HDWT</td>
<td>32.90</td>
<td>34.41</td>
<td>34.97</td>
<td>35.22</td>
<td>35.50</td>
</tr>
<tr>
<td>CSCT</td>
<td>27.46</td>
<td>29.34</td>
<td>30.00</td>
<td>30.31</td>
<td>30.43</td>
</tr>
<tr>
<td>NUDFB</td>
<td>28.31</td>
<td>30.38</td>
<td>30.82</td>
<td>31.00</td>
<td>31.01</td>
</tr>
<tr>
<td>DWT</td>
<td>27.86</td>
<td>29.98</td>
<td>30.91</td>
<td>31.08</td>
<td>31.34</td>
</tr>
<tr>
<td>QDWTShear</td>
<td>46.35</td>
<td>47.50</td>
<td>48.00</td>
<td>48.15</td>
<td>48.29</td>
</tr>
<tr>
<td>HQDWT</td>
<td>35.60</td>
<td>38.16</td>
<td>39.12</td>
<td>39.50</td>
<td>39.85</td>
</tr>
<tr>
<td>QNUDFB</td>
<td>28.02</td>
<td>30.05</td>
<td>30.72</td>
<td>31.06</td>
<td>31.24</td>
</tr>
<tr>
<td>QDWT</td>
<td>27.74</td>
<td>29.72</td>
<td>30.30</td>
<td>30.72</td>
<td>30.94</td>
</tr>
</tbody>
</table>