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Abstract Edges and surface boundaries are often the most relevant features
in images and multidimensional data. It is well known that multiscale methods
including wavelets and their more sophisticated multidimensional siblings offer
a powerful tool for the analysis and detection of such sets. Among such meth-
ods, the continuous shearlet transform has been especially successful. This
method combines anisotropic scaling and directional sensitivity controlled by
shear transformations in order to precisely identify not only the location of
edges and boundary points but also edge orientation and corner points. In
this paper, we show that this framework can be made even more flexible by
controlling the scaling parameter of the anisotropic dilation matrix and con-
sidering non-parabolic scaling. We prove that, using ‘higher-than-parabolic’
scaling, the modified shearlet transform is also able to estimate the degree of
local flatness of an edge or surface boundary, providing more detailed infor-
mation about the geometry of edge and boundary points.

Keywords Analysis of singularities · continuous wavelets · curvelets ·
directional wavelets · edge detection · shearlets · wavelets
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1 Introduction

One of the most salient properties of the continuous wavelet transform is its
sensitivity to the local regularity of functions and distributions. If f is a func-
tion that is smooth apart from a discontinuity at a point p0, the continuous
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wavelet transform of f , denoted by Wf(a, p), signals the location of the dis-
continuity through its decay rate as the scale variable a approaches 0 (the
asymptotic decay is fast unless p is near p0 [16,23]). More generally, the con-
tinuous wavelet transform is able to resolve the singular support of f and to
measure the pointwise regularity of functions [17,18].

It is also known that the conventional wavelet approach offers rather lim-
ited capabilities for the analysis of the geometry of the singularity set. For
example, it cannot detect the orientation of a singularity curve [15]. The con-
tinuous shearlet transform [20] was introduced with the goal of refining the
microlocal properties of the conventional wavelet transform, and in fact is able
to resolve the wavefront set of distributions [8,20]. It was next shown in a se-
quence of more recent papers that the continuous shearlet transform provides
a precise characterization of the local orientation of edges for a large class of
multidimensional functions and distributions [9–11,14,21]. In particular, let us

consider a function on R2 of the form h =
∑N
i=1 ciχSi , where, for each i, ci is a

constant and Si is a compact subset of R2 with a piecewise regular boundary
∂Si. The continuous shearlet transform characterizes the location and orien-
tation of the boundary curves ∂Si through its asymptotic decay properties at
finer scales; this result includes the characterization of corner points. Similar
results hold true for more general piecewise smooth functions [13] and in the
three-dimensional setting [10,11], and provide the theoretical underpinning for
highly competitive numerical algorithms of edge detection and feature extrac-
tion in image processing applications [5,24–27].

In this paper, we show that the shearlet framework can be applied to de-
tect and analyze an additional property of edges, namely the edge flatness.
This property enables one to distinguish, for example, a circular edge from a
linear edge through the local asymptotic decay of the shearlet transform at
edge points. Up to the knowledge of the authors, this is the first result of this
type to appear in the literature and it is based on a novel application of the
shearlet framework, where the scaling parameter of the dilation matrix need to
be chosen ‘higher-than-parabolic’ (the precise definition will be given below).
This result is both of theoretical and practical interest. On the theoretical side,
it is remarkable that the standard shearlet transform based on parabolic scal-
ing is not sensitive to the edge flatness, and that non-parabolic (anisotropic)
scaling is required for this task. The proof of this new result adapts the general
organization of the proofs in [9] (for the 2D case) and [11] (for the 3D case);
however the main argument used for the most critical part of the proof, namely
the part dealing with the ‘slow-decaying’ terms in the edge detection estimate,
is new. On the practical side, this new result suggests that discrete multiscale
directional transforms could potentially take advantage of non-parabolic scal-
ing to encode more informative and discriminating features of imaging data.
Even though the actual implementation of this idea is beyond the scope of this
paper, a very simple numerical experiment reported below indicates that this
idea is feasible.

We also recall that the analysis of singularities is related to the so-called
geometric separation problem [4], aiming at separating into geometrically dis-
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tinct components functions or distributions containing different types of sin-
gularities, e.g., point, lines and curve singularities. It was shown that the mi-
crolocal properties of the continuous shearlet [12] and curvelet transforms [4]
are critical to separate different types of singularities, and these results are
the groundwork for powerful numerical algorithms for image inpainting [7,19].
The new ideas presented this paper could potentially extend the current re-
sults allowing for the separation of curve singularities with different flatness
properties, e.g., linear and non-linear singularities.

We finally remark that historically the idea of using wavelet-like transforms
to perform microlocal analysis is older than wavelets and can be traced back to
the FBI transform of Bros and Iagolnitzer [1] and the wave packets by Cordoba
and Fefferman [3]. These methods define implicitly a kind of anisotropic scaling
and were shown to be able to resolve the wavefront set of distributions. The
curvelet and shearlet transforms were introduced more recently and can be
seen as a refinement and more flexible versions of these older transforms. We
refer to [2] for a more detailed discussion of the comparison between these
various ideas.

1.1 Paper organization

The rest of the paper is organized as follows. In Section 2, we recall the defini-
tion of the continuous shearlet transform and its main properties and introduce
the version of the continuous shearlet transform that will be used in this paper.
In Section 3, we present our main result about the shearlet characterization
of the local flatness of edge points in functions of two variables. In Section 4,
we extend the result from Section 3 to the 3-dimensional setting.

2 The continuous shearlet transform in R2

We briefly recall below the definition and main properties of the continuous
shearlet transform, originally introduced in [20].

2.1 Continuous shearlets in the plane

For a fixed 0 ≤ β < 1, a continuous shearlet system generated by ψ ∈ L2(R2)
is a collection of functions of the form

{ψa,s,p(x) = |detM(a, s)|− 1
2ψ(M(a, s)−1(x− p)) : a > 0, s ∈ R, p ∈ R2}, (1)

where the matrix M(a, s) is either Mh(a, s) =

(
a −aβs

0 aβ

)
or Mv(a, s) =(

aβ 0

−aβs a

)
.
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It is easy to verify that Mh(a, s) can be factored out as the product

B(s)A(a) of the anisotropic dilation matrix A(a) =
(
a 0

0 aβ

)
and the shear ma-

trix B(s) =
(

1 −s

0 1

)
. A similar factorization holds for Mv(a, s). When β = 1/2,

the anisotropic dilation matrix A(a) is associated with the so-called parabolic
scaling, meaning that the action of A(a) on elements of R2 produces a scaling
that, along one coordinate axis, is quadratic with respect to the other coor-
dinate direction. The parabolic scaling is the standard choice in the classical
theory of curvelets [2] and shearlets [20]. The scaling becomes increasingly
more anisotropic when β < 1/2 and less anisotropic when β > 1/2. In the
limiting case where β = 1, then A(a) is the (isotropic) dyadic dilation matrix,
which is used in classical wavelets. The other limiting case, where β = 0, cor-
responds to the situation of ‘extreme’ anisotropic scaling where dilation occurs
along one coordinate axis only.

For appropriate choices of the generator function ψ, the continuous shear-
lets are associated with a continuous reproducing formula. More precisely, let
ψ(h), ψ(v) ∈ L2(R2) be given by in the Fourier domain by

ψ̂(h)(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2ξ1 ), ψ̂(v)(ξ1, ξ2) = ψ̂1(ξ2) ψ̂2( ξ1ξ2 ), (2)

where ξ = (ξ1, ξ2) ∈ R2. Correspondingly, we define the horizontal and vertical
continuous shearlets by

ψ(h)
a,s,p(x) = |detMh(a, s)|− 1

2ψ(h)(Mh(a, s)−1(x− p)), a > 0, s ∈ R, p ∈ R2,

and

ψ(v)
a,s,p(x) = |detMv(a, s)|−

1
2ψ(v)(Mv(a, s)

−1(x− p)), a > 0, s ∈ R, p ∈ R2,

respectively. The following proposition is a simple extension of a result from [20]
(the original proof for β = 1/2 extends almost verbatim to the case of general
0 ≤ β ≤ 1).

Proposition 1 Let ψ(d) ∈ L2(R2), for d ∈ {h, v}, be given by (2), where ψ1,
ψ2 ∈ L2(R) satisfy the conditions∫ ∞

0

|ψ̂1(aω)|2 da
a

= 1, for a.e. ω ∈ R; ‖ψ2‖2 = 1. (3)

Then any f ∈ L2(R2) satisfies the formula

f =

∫
R2

∫
R

∫ ∞
0

〈f, ψ(d)
a,s,p〉ψ

(d)
a,s,t

da

a3
ds dp, (4)

where the equality is understood in the L2 sense.
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In many applications, it is useful to impose additional assumptions on the
functions ψ1, ψ2 in (2), to improve the localization properties of the shearlets

ψ
(h)
a,s,p. Namely, both functions are assumed to be C∞c in the Fourier domain

with

supp ψ̂1 ⊂ [−2,−1

2
] ∪ [

1

2
, 2] and supp ψ̂1 ⊂ [−1, 1].

In this case, by writing the continuous horizontal shearlets in the Fourier
domain as

ψ̂(h)
a,s,p(ξ1, ξ2) = a

1+β
2 ψ̂1(a ξ1) ψ̂2(aβ−1( ξ2ξ1 − s)) e

−2πiξ·p,

it follows by the assumptions on ψ1 and ψ2 that the functions ψ̂
(h)
a,s,p have

supports:

supp ψ̂(h)
a,s,p ⊂ {(ξ1, ξ2) : ξ1 ∈ [− 2

a ,−
1
2a ] ∪ [ 1

2a ,
2
a ], | ξ2ξ1 − s| ≤ a

1−β}.

That is, the support of ψ̂
(h)
a,s,p is a pair of trapezoids, symmetric with respect

to the origin, oriented along a line of slope s. The trapezoidal supports be-
comes increasingly more elongated as a→ 0. Very similar properties hold for
the continuous vertical shearlets. In summary, the continuous shearlets form
a collection of well-localized functions ranging over a multitude of scales, ori-
entations and locations, associated with the variable a, s and p, respectively.
The action of anisotropic dilations and shear matrices is illustrated in Fig. 1.

Fig. 1 Anisotropic scaling. The image shows the effect of the anisotropic scaling matrix
A(a) and the shear matric B(s), for a = 0.2 and 0.1, s = 0 and s = 1, on the support region

(in black) of the shearlet generator ψ̂(h) (in the Fourier domain) using different values of
the anisotropy parameter β. Left panel: β = 1

2
(parabolic scaling); right panel: β = 0.

Using the horizontal and vertical shearlets, we define the (fine-scale) con-
tinuous shearlet transform on L2(R2) as the mapping

f ∈ L2(R2 \ [−2, 2]2)∨ → SHψf(a, s, p), a ∈ (0, 14 ], s ∈ [−∞,∞], p ∈ R2,
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given by

SHψf(a, s, p) =

{
SH(h)

ψ f(a, s, p) = 〈f, ψ(h)
a,s,p〉, if |s| ≤ 1

SH(v)
ψ f(a, 1s , p) = 〈f, ψ(v)

a,s,p〉, if |s| > 1.

In this expression, it is understood that the limit value s = ±∞ is defined and

that SHψf(a,±∞, p) = SH(v)
ψ f(a, 0, p).

The term fine-scale refers to the fact that this shearlet transform is only
defined for the scale variable a ∈ (0, 1/4], corresponding to “fine scales”. In
fact, for this range of scales, the shearlet transform SHψf defines an isometry
on L2(R2\ [−2, 2]2)∨, the subspace of L2(R2) of functions with Fourier-domain
support away from [−2, 2]2, but not on L2(R2). This is not a limitation since
the shearlet-based analysis of singularities we will present below is based on
asymptotic estimates, as a approaches 0. In the following, for brevity, we will
drop the wording ‘fine-scale’ and, henceforth, simply refer to this transform as
the continuous shearlet transform.

2.2 Non-parabolic scaling and edge flatness

Results available in the literature about shearlet-based analysis of singularities
set the anisotropy parameter as β = 1/2 in the definition of the matrix M(a, s).
The same assumption β = 1/2 is made for curvelets in [2] and also for the
recently proposed approach in [21], that uses compactly supported shearlets.
This choice of β is appropriate for the detection of the location and orientation
of the edge points. Indeed, as it was observed in [14], other choices of β ∈ (0, 1)
are possible and would also allow to detect the location and orientation of
edges so that there is (apparently) no advantage in using a different β. The
new observation we make in this paper is that, by choosing 0 ≤ β < 1/2 in
the continuous shearlet transform, we are able to detect the degree of flatness
of an edge curve; this is not true if β = 1/2. The critical difference is that,
when β = 1/2, the asymptotic decay rate of the continuous shearlet transform
at an edge point p0, for s corresponds to the normal direction at p0, is of the
order (a3/4) independently of the flatness of the edge at p0. By contrast, when
0 ≤ β < 1/2, the asymptotic decay rate for the same values of p0 and s is
dependent on the flatness of the edge at p0, so that it is possible to distinguish
edge points with different flatness by their asymptotic decay.

In the following, to simplify notation and avoid making the arguments
more technical, we will choose the special value β = 0 in the definition of the
matrix M(a, s) (other choices of β ∈ (0, 1/2) give a similar result). Therefore,

henceforth we assume β = 0 so that Mh(a, s) =
(
a −s

0 1

)
and Mv(a, s) =(

1 0

−s a

)
. We will make a similar assumption for the 3D case in Section 4.
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3 Shearlet analysis of piecewise smooth edges in the plane

In this section, we show that the continuous shearlet transform (with β = 0)
provides a precise geometric characterization for the piecewise smooth edge of
a planar region, including its flatness. Before presenting our main theorems, we
define below the class of functions we will consider and the notion of flatness.

3.1 Our 2D image model

As an idealized model of images with edges, we consider functions of the form
f =

∑
i χSi , where the sets Si ⊂ R2 are compact and disjoint (Si ∩ Sj = ∅

if i 6= j), and their boundary curves, denoted by ∂Si, are smooth except
possibly for finitely many corner points. To define the notion of a corner point,
let α(t) be the parametrization of a boundary curve ∂S with respect to the
arc length parameter t. For any t0 ∈ (0, L) and any j ≥ 0, we assume that
limt→t−0

α(j)(t) = α(j)(t−0 ) and limt→t+0
α(j)(t) = α(j)(t+0 ) exist. Also, let

n(t−), n(t+) be the outer normal direction(s) of ∂S at α(t) from the left
and right, respectively; if they are equal, we write them as n(t). Similarly,
for the curvature of ∂S, we use the notation κ(t−), κ(t+) and κ(t). We say
that p = α(t0) is a corner point of ∂S if: either (i) α′(t−0 ) 6= ±α′(t+0 ) or
(ii) α′(t−0 ) = ±α′(t+0 ), but κ(t−0 ) 6= κ(t+0 ). When (i) holds, we say that p is a
corner point of first type and, when (ii) holds, we say that p is a corner point of
second type. On the other hand, if α(t) is infinitely many times differentiable
at t0, we say that α(t0) is a regular point of ∂S. The boundary curve α(t) is
piecewise smooth if the values α(t) are regular points for all 0 ≤ t ≤ L, except
for finitely many corner points.

Note that it is not necessary to require infinite regularity. We can replace
the piecewise smooth boundary with a piecewise regular boundary of finite
order, say Cm (for sufficiently large m), and derive a result similar to the one
below at the cost of heavier notation. To keep notation simpler, we will only
examine the case of piecewise smooth boundaries below.

3.2 Definition of flatness

Let y = f(x), a < x < b, be a section of a smooth boundary curve ∂S of a
planar region S ⊂ R2. Given x0 ∈ (a, b), via a translation and a rotation of
the coordinates, we may assume that f(x0) = 0, f ′(x0) = 0. If there exists a
k ≥ 2 such that f (m)(x0) = 0 for 0 ≤ m ≤ k− 1 and f (k)(x0) 6= 0, we say that
the curve is k-flat (or that its degree of flatness is k) at p0 = (x0, f(x0)). If
no such k exists at p0, we say that the boundary curve is ∞-flat at p0. In this
case, we assume that ∂S has the finite type property at p0 in the sense that if
f (m)(x0) = 0 for all m ≥ 2, then ∂S is a line segment near p0. For example, if
S is a polygonal planar region, then the boundary curve ∂S is ∞-flat at each
point that is not a corner point. If S is a compact region whose boundary has
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nonvanishing curvature everywhere (e.g., a disk), then the boundary curve is
2-flat at each point. Clearly, a larger k at p0 means a flatter boundary at p0.

We can extend the notion of flatness at a corner point using right- and
left-derivatives. That is, given y = f(x), a < x ≤ x0, via a translation and
a rotation of the coordinates, we may assume that f(x0) = 0, f ′(x−0 ) = 0.
If there exists a k ≥ 2 such that f (m)(x−0 ) = 0 for 0 ≤ m ≤ k − 1 and
f (k)(x−0 ) 6= 0, we say that the curve is left-k-flat at p0 = (x0, f(x0) or that
its degree of left-flatness is k. If no such k exists at p0, we say that the curve
is left-∞-flat at p0. Similarly, for a function y = f(x), x0 ≤ x < b, we define
right-flatness by using the right-derivative f (m)(x+0 ).

3.3 Main theorems (2D case)

Let p0 = α(t0) be a regular point and let s0 = tan(θ0) with θ0 ∈ (−π2 ,
π
2 ). Let

Θ(θ0) = [cos θ0, sin θ0]. We say that s0 corresponds to the normal direction of
∂S at p0 if Θ(θ0) = ±n(t0). When α(t0) is a corner point, we can identify two
outer normal directions n(t−0 ) and n(t+0 ).

We are now ready to state our main results. The first theorem below char-
acterizes regular edge points; the second one deals with then presence of corner
points.

Theorem 1 Let B = χS, where S ⊂ R2 is compact and its boundary, denoted
by ∂S, is a simple curve, of finite length L, that is smooth except possibly for
finitely many corner points. Let ψ1, ψ2 be chosen such that

• ψ̂1 ∈ C∞c (R), supp ψ̂1 ⊂ [−2,− 1
2 ] ∪ [ 12 , 2], is odd, nonnegative

on [ 12 , 2] and it satisfies

∫ ∞
0

|ψ̂1(aξ)|2 da
a

= 1, for a.e. ξ ∈ R;

• ψ̂2 ∈ C∞c (R), supp ψ̂2 ⊂ [−
√
2
4 ,
√
2
4 ], is even, nonnegative,

decreasing in [0,
√
2
4 ), and ‖ψ2‖2 = 1.

(i) If p0 /∈ ∂S then, for all s ∈ R,

lim
a→0+

a−N SHψB(a, s, p0) = 0, for all N > 0.

(ii) If p0 ∈ ∂S is a regular point, s does not correspond to the normal direction
of ∂S at p0, then

lim
a→0+

a−N SHψB(a, s, p0) = 0, for all N > 0.

(iii) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S
at p0, and ∂S is k-flat at p0, then

0 < lim
a→0+

a−(
1
2+

1
k ) |SHψB(a, s0, p0)| <∞.



Microlocal analysis of edge flatness through directional multiscale representations 9

(iv) If p0 ∈ ∂S is a regular point, s0 corresponds to the normal direction of ∂S
at p0 and ∂S is linear near p0, then

0 < lim
a→0+

a−
1
2 |SHψB(a, s0, p0)| <∞.

Statement (iv) of Theorem 1 can be seen a limiting case of statement (iii),
obtained by taking the limit as k →∞, when ∂S is linear near p0.

Remark 1 Theorem 1 shows that the continuous shearlet transform SHψ not
only identifies through its asymptotic decay as a → 0 the location and local
orientation of an edge, but also its local flatness. If, for example, Q ∈ ∂S and
∂S is linear near Q (that is, k =∞) then by statement (iv), for s = sQ corre-
sponding to the normal orientation to ∂S at Q, the function SHψB(a, sQ, Q)
has slow asymptotic decay as (a1/2). If instead P ∈ ∂S and ∂S is an arc of
a circle near P (that is, k = 1/2) then by statement (iii), for s = sP corre-
sponding to the normal orientation to ∂S at P , the function SHψB(a, sP , P )
has slow asymptotic decay as (a1).
The microlocal properties of the continuous shearlet transform are confirmed
by a simple numerical experiment illustrated in Fig. 2, showing that the de-
cay observed for the discrete shearlet transform at representative edge points
located at the boundary of a disk and the side of a rectangular region are
consistent with the predictions of Theorem 1. A more detailed investigation
of the implication of Theorems 1 and 2 in discrete applications is beyond the
scope of this paper and will be addressed in a separate work.

Fig. 2 Decay of the discrete shearlet transform for linear and circular edges. The plot
in the right panel shows the magnitude of the discrete shearlet transform S(i, s, p) =
|SHψ(2−i, s, p)| for points P and Q located, respectively, on the boundary of a disk and
of a rectangular region (shown in the left panel), as a function of the index i. The symbols
sP and sQ denote the shear variable for orientations perpendicular to the edge at P and
Q, respectively. As i increases (corresponding to finer scales as 2−i becomes smaller), the
decay rate of S(i, sP , P ) is faster than S(i, sQ, Q), as predicted by Theorem 1.
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Theorem 2 Let B,ψ1, ψ2 be chosen as in Theorem 1.

(i) If p0 ∈ ∂S is a corner point of the first type and s does not correspond to
any of the normal directions of ∂S at p0, then

lim
a→0+

a−
5
2 |SHψB(a, s, p0)| <∞.

(ii) If p0 ∈ ∂S is a corner point of the second type and s does not correspond
to any of the normal directions of ∂S at p0, then

0 < lim
a→0+

a−
5
2 |SHψB(a, s, p0)| <∞.

(iii) Let p0 ∈ ∂S be a corner point of the first type. Assume that s = s0 corre-
sponds to say the right (resp. left) normal direction of ∂S at p0 and ∂S is
right- (resp. left-) k-flat at p0 with 2 ≤ k ≤ ∞. Then

0 < lim
a→0+

a−(
1
2+

1
k ) |SHψB(a, s0, p0)| <∞.

(iv) Let p0 ∈ ∂S be a corner point of the second type and suppose that ∂S is left-
k1-flat and right-k2-flat at p0, with 2 ≤ k1, k2 ≤ ∞. Let k = max{k1, k2}.
If s = s0 corresponds to one of the normal directions of ∂S at p0, then

0 < lim
a→0+

a−(
1
2+

1
k ) |SHψB(a, s0, p0)| <∞,

For brevity, statements (iii) and (iv) of Theorem 2 contain the limiting
case k →∞, when ∂S is linear near p0. It is understood that, for k =∞, we
have 1

2 + 1
k = 1

2 .

3.4 Proof of Theorem 1

The proof requires several steps and its general organization follows the proof
in [9]. First, we apply the divergence theorem to write the Fourier transform
of B = χS as a line integral over ∂S. Next, we use a localization result to
show that the estimates of the integral transform SHψB(a, s, p) only depend
on the values of the integral near p. Finally, we analyze the localized integral
for different values of the shear variable s. The easier parts (i)-(ii) of the proof
are very similar to the argument in [9] and will not be repeated. Parts (iii)
and (iv) of the proof are most critical for the result as they show the lower
bound for the estimate at the edge point. Here we use original arguments never
appeared before.
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3.4.1 Divergence theorem and localization lemma.

Using the divergence theorem, we can express the Fourier transform of B as
a line integral:

B̂(ξ) = χ̂S(ξ) = − 1

2πi|ξ|

∫
∂S

e−2πiξ·xΘ(θ) · n(x) dσ(x)

= − 1

2πiρ

∫ L

0

e−2πiρΘ(θ)·α(t)Θ(θ) · n(t) dt (5)

where ξ = ρΘ(θ), Θ(θ) = (cos θ, sin θ). Using (5), we have that

SHψB(a, s, p)

= 〈B,ψa,s,p〉

=

∫ 2π

0

∫ ∞
0

B̂(ρ, θ) ψ̂
(d)
a,s,p(ρ, θ) ρ dρ dθ

= − 1

2πi

∫ 2π

0

∫ ∞
0

∫ L

0

ψ̂
(d)
a,s,p(ρ, θ)e

−2πiρΘ(θ)·α(t)Θ(θ) · n(t) dt dρ dθ, (6)

where the upper-script in ψ
(d)
a,s,p is either d = h, when |s| ≤ 1, or d = v, when

|s| > 1.
For ε > 0, let D(ε, p) be the ball in R2 of radius ε and center p, and

Dc(ε, p) = R2 \D(ε, p). Hence, using (6), we can write the shearlet transform
of B as

SHψB(a, s, p) = I1(a, s, p) + I2(a, s, p),

where

I1(a, s, p)

= − 1

2πi

∫ 2π

0

∫ ∞
0

∫
∂S∩D(ε,p)

ψ̂
(d)
a,s,p(ρ, θ)e

−2πiρΘ(θ)·α(t)Θ(θ) · n(t) dt dρ dθ, (7)

I2(a, s, p)

= − 1

2πi

∫ 2π

0

∫ ∞
0

∫
∂S∩Dc(ε,p)

ψ̂
(d)
a,s,p(ρ, θ)e

−2πiρΘ(θ)·α(t)Θ(θ) · n(t) dt dρ dθ. (8)

The following result shows that I2 has rapid decay as a→ 0. Its proof can
be found in [9].

Lemma 1 (Localization Lemma) Let I2(a, s, p) be given by (8). For any
positive integer N , there is a constant CN > 0 such that

|I2(a, s, p)| ≤ CN a
N
2 ,

asymptotically as a→ 0, uniformly for all s ∈ R.
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We can now proceed with the proof of Theorem 1.

Let α(t) be the boundary curve ∂S, with 0 ≤ t ≤ L and p0 ∈ ∂S. Since
p0 is a regular point, we can assume without loss of generality that p0 = α(1)
and write the boundary curve near p0 as C = ∂S ∩D(ε, (0, 0)), where

C = {α(t) : 1− ε < t < 1 + ε}.

Rather than using the arclength representation of C, we can also write the
curve C as {(G(u), u), −ε < u < ε} or {(u,G(u)), −ε < u < ε}, where G(u) is
a smooth function. Since the two parametrizations can be handled in a very
similar way (by interchanging the role of horizontal and vertical shearlets),
in the following we will only consider the form C = {(G(u), u), −ε < u < ε}.
Furthermore, via a translation and rotation of the coordinates, we may assume
p0 = (0, 0) that C has horizontal tangent at p0, so that G(0) = 0 and G′(0) = 0.

We notice that, if G is linear in a nighborhood of p0, then G = 0 in the
modified coordinates. In this case ∂S is ∞-flat at p0. If G is not linear near
p0, since G(u) is of finite type, in the modified coordinate system we have
G(u) = Aku

k +O(uk+1) with Ak 6= 0 for some k ≥ 2. In this case, ∂S is k-flat
at p0.

It is sufficient to examine the case of the horizontal shearlets only; the case
of vertical shearlets is similar.

• Parts (i)-(ii). The proof of these cases is essentially identical to the proof
of parts (i)-(ii) of Theorem 3.1 in [9], after replacing β = 1

2 with β = 0. This
proof follows from Lemma 1.

• Part (iii). We have that p0 = (0, 0) and s0 = 0, so that tan θ0 = 0 (since
G′(0) = 0). It follows that G(u) = Aku

k + O(uk+1) near u = 0 with Ak 6= 0
for some k ≥ 2. By Lemma 1, we need to estimate the integral I1 at s0 = 0,
p0 = (0, 0). In the following when no confusion will occur, for brevity we will
simply denote p0 as 0. Using polar coordinates, we can express I1(a, 0, 0) as

I1(a, 0, 0)

= −a
− 1

2

2πi

∫ ∞
0

∫ 2π

0

ψ̂1(ρ cos θ)ψ̂2(a−1 tan θ)

∫ ε

−ε
e−2πi

ρ
a cos θ(Aku

k+O(uk+1))+sin θ u

×(− cos θ + sin θ O(uk−1) du dθ dρ.

By Lemma 1, to complete the proof of this case it is sufficient to show that

0 < lim
a→0+

a−(
1
2+

1
k ) |I1(a, 0, 0)| <∞.

In the expression of I1, the interval [0, 2π] of the integral in θ can be broken
into the subintervals [−π2 ,

π
2 ] and [π2 ,

3π
2 ]. On [π2 ,

3π
2 ], we let θ′ = θ− π so that

θ′ ∈ [−π2 ,
π
2 ] and sin θ = − sin θ′, cos θ = − cos θ′. Using this observation and

the fact that ψ̂1 is an odd function, it follows that I1(a, 0, 0) = I10(a, 0, 0) +
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I11(a, 0, 0), where

2πi a
1
2 I10(a, 0, 0)

= cos θ

∫ ∞
0

∫ π
2

−π2
G(ρ, a, θ)

∫ ε

−ε
e−2πi

ρ
a (cos θ(Aku

k+O(uk+1))+u sin θ)du dθ dρ

+ cos θ

∫ ∞
0

∫ π
2

−π2
G(ρ, a, θ)

∫ ε

−ε
e2πi

ρ
a (cos θ(Aku

k+O(uk+1))+u sin θ) du dθ dρ,

2πi a
1
2 I11(a, 0, 0)

= − sin θ

∫ ∞
0

∫ π
2

−π2
G(ρ, a, θ)

∫ ε

−ε
e−2πi

ρ
a (cos θ(Aku

k+O(uk+1))+u sin θ)O(uk−1)du dθ dρ

− sin θ

∫ ∞
0

∫ π
2

−π2
G(ρ, a, θ)

∫ ε

−ε
e2πi

ρ
a (cos θ(Aku

k+O(uk+1))+u sin θ)O(uk−1) du dθ dρ,

and G(ρ, a, θ) = ψ̂1(ρ cos θ)ψ̂2(a−1 tan θ).

For θ ∈ (−π2 ,
π
2 ), let t = a−1 tan θ and u = a

1
k v. Using this change of

variables and the observation that a→ 0 implies θ → 0, it is easy to see that:

lim
a→0

1

a
u sin θ = lim

a→0

1

a
a1+

1
k tv cos θ = 0,

lim
a→0

1

a
cos θ(Aku

k +O(uk+1)) = lim
a→0

1

a
cos θ[ak

1
kAkv

+a1+
1
kO(vk+1)] = Akv

k.

It follows that

lim
a→0+

2πi a−(
1
2+

1
k )I10(a, 0, 0)

=

∫ ∞
0

ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)

∫ ∞
−∞

e−2πiρAkv
k

dv dt dρ

+

∫ ∞
0

ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)

∫ ∞
−∞

e2πiρAkv
k

dv dt dρ

=

∫ ∞
0

ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)

∫ ∞
0

4

k
cos(2πρAku)u−1+

1
k du dt dρ

=
2

k
γ( 1

k ) |2πAk|−
1
k

∫ ∞
0

ψ̂1(ρ)ρ−
1
k dρ

∫ 1

−1
ψ̂2(t) dt > 0,

where γ(α) =
π

1
2 2αΓ (α2 )

Γ ( 1
2−

α
2 )

and Γ (µ) =
∫∞
0
xµ−1e−xdx. In the last equality, we

used the fact that ̂|x|−1+α(ξ) = γ(α)(2π)−α|ξ|−α, for 0 < α < 1. The positivity

of the last expression above follows from the assumptions on ψ̂1, ψ̂2.
The integral I11can be analyzed using a similar calculation. However, since

there is a factor O(uk−1) in the expression of I11, this calculation now yields
that

lim
a→0+

2πia−(
1
2+

1
k )I11(a, 0, 0) = 0.
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Combining this estimate with the estimate for I10, we can conclude that

0 < lim
a→0+

2πia−(
1
2+

1
k )|I1(a, s0, 0)| <∞.

This completes the proof of part (iii).

• Part (iv). Since ∂S is ∞-flat at p0, we have that G(u) = 0 for all u
in a neighborhood of u = 0. We can proceed as in the proof pf part (iii) by
using polar coordinates to express I1(a, 0, 0) and breaking up the integral as
a sum I10(a, 0, 0) + I11(a, 0, 0). To analyze the integral I10, we use the change
of variable t = a−1 tan θ (but we use no change of variable for u). Using this
change of variable and the observation that

lim
a→0

1

a
(u sin θ) = lim

a→0

1

a
(atu cos θ) = tu

it follows that

lim
a→0+

2πi a−
1
2 I10(a, 0, 0) =

∫ ∞
0

ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)

∫ ∞
−∞

e−2πiρvt dv dt dρ

+

∫ ∞
0

ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)

∫ ∞
−∞

e2πiρvt dv dt dρ

= 2ψ̂2(0)

∫ ∞
0

ψ̂1(ρ)

ρ
dρ > 0,

where the positivity of the last expression follows from the assumptions on ψ̂1,
ψ̂2. This completes the proof of part (iv).

We can now proceed with the proof of Theorem 2. As in the proof above,
parts (i), (ii) are similar to [9], while parts (iii) and (iv) require a new argument.

3.4.2 Proof of Theorem 2.

When p0 is a corner point of ∂S, we can write the boundary curve near p0 as
C = ∂S ∩D(ε, (0, 0)) = C− ∪ C+, where

C− = {α(t) : 1− ε < t ≤ 1}, C+ = {α(t) : 1 ≤ t < 1 + ε}.

Similar to the regular point case, we can express each portion of the curve using
a representation of the form (G(u), u) or (u,G(u)). Since the two cases can be
handled in a very similar way, in the following we will only consider the first
one of the two representations. Using an appropriate translation and rotation,
we may assume that p0 = (0, 0) and that at least one of the two portions of C
has horizontal tangent at p0. That is, we write C+ = {(G+(u), u), 0 ≤ u < ε}
and C− = {(G−(u), u), −ε < u ≤ 0}, where G+(u) and G−(u) are smooth
functions on [0, ε) and (−ε, 0], respectively. According to the observation above,
we may assume G+(0) = G−(0) = 0 and (G+)′(0) = 0. If p is of the first kind,
then (G−)′(0) 6= 0. If p is of the second kind, then (G−)′(0) = 0.
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For the remaining of the proof below, it will be sufficient to examine the
case of the horizontal shearlets only; the case of vertical shearlets is similar.

• Parts (i)-(ii). The proof of these statements follows using the same
arguments of the proof of parts (i) and (ii) of Theorem 3.1 in [9], after replacing
β = 1

2 with β = 0.

• Part (iii). As argued above, near p0 = (0, 0) we write the boundary curve
as C− ∪C+ where C+ = {(G+(u), u), 0 ≤ u ≤ ε} and C− = {(G−(u), u), −ε ≤
u ≤ 0}, and G+(u) and G−(u) are smooth functions on [0, ε] and [−ε, 0],
respectively with G−(0) = 0 and G+(0) = 0. We may assume that s0 = 0 so
that (G−)′(0) = 0, or (G+)′(0) = 0, but not both.

We will only examine the case corresponding to the right normal direction
at p0, since the case corresponding to the left normal direction at p0 can be
analyzed very similarly.

In this case, we can assume that (G+)′(0) = 0 so that (G−)′(0) 6= 0. From
part (i), the C− section of the curve yields a higher order of decay than the
order of decay given by C+. Thus, in this case, we only need to examine the
curve G+(u). We consider separate cases depending on k being finite or not
(recall that the curve C+ is right-k-flat at p0).

Case 1: Suppose that G+(u) is not linear near 0, so that 2 ≤ k <∞. The
analysis of this case is similar to the proof of part (iii) of Theorem 1. That is,
after applying the localization Lemma, and splitting the integral I1, given by
(7), into I10 + I11, we only need to estimate I10. This leads to the very similar
estimate:

lim
a→0+

2πi a−(
1
2+

1
k )I10(a, 0, 0)

=

∫ ∞
0

ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)

∫ ∞
0

e−2πiρAkv
k

dv dt dρ

+

∫ ∞
0

ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)

∫ ∞
0

e2πiρAkv
k

dv dt dρ

=

∫ ∞
0

ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)

∫ ∞
0

2
k cos(2πρAku)u−1+

1
k du dt dρ

= 1
kγ( 1

k )|2πAk|−
1
k

∫ ∞
0

ψ̂1(ρ)ρ−
1
k dρ

∫ 1

−1
ψ̂2(t) dt > 0,

where γ(α) =
π

1
2 2αΓ (α2 )

Γ ( 1
2−

α
2 )

and Γ (µ) =
∫∞
0
xµ−1e−xdx. As in the proof of The-

orem 1, the positivity of the last expression follows from the assumptions on
ψ̂1, ψ̂2.

Case 2: Suppose that G+(u) is linear near 0 so that k = ∞. Now we
can follow the argument in the proof of part (iv) of Theorem 1. This leads
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ultimately to the following estimate of the integral I10:

lim
a→0+

2πi a−
1
2 I10(a, 0, 0) =

∫ ∞
0

ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)

∫ ∞
0

e−2πiρvt dv dt dρ

+

∫ ∞
0

ψ̂1(ρ)

∫ 1

−1
ψ̂2(t)

∫ ∞
0

e2πiρvt dv dt dρ

= ψ̂2(0)

∫ ∞
0

ψ̂1(ρ)

ρ
dρ > 0.

The positivity of the last expression follows from the assumptions on ψ̂1, ψ̂2.

• Part (iv). As in the proof of part (iii), we can write C+ = {(G+(u), u), 0 ≤
u ≤ ε} and C− = {(G−(u), u), −ε ≤ u ≤ 0}, where G+(u) and G−(u)
are smooth functions on [0, ε] and [−ε, 0], respectively, with G−(0) = 0 and
G+(0) = 0. We may also assume that s0 = 0. Hence, since p0 is a corner
point of the second type, we have that (G−)′(0) = (G+)′(0) = 0. We consider
different cases separately depending on the values of the degree of flatness.

Case 1: Suppose that k1 = k2 = 2. In this case, we can write G+(u) =
A2u

2 + O(u3) and G−(u) = B2u
2 + O(u3) with A2 6= 0, B2 6= 0. Since p0 is

a corner point of the second type, we must have A2 6= B2. As above, we can
repeat the argument from the proof of part (iii) of Theorem 1 for both curves
C+ and C−. The estimate for each curve will yield a limit

lim
a→0+

2πi a−1I10(a, 0, 0) = Ci > 0, i = 1, 2,

where the constant C1 from C+ is different from the constant C2 from C−.
Thus the lower bound constant in this case is C1 − C2 6= 0.

Case 2: Suppose that k1 6= k2. Assume first that 2 = k1 < k2 ≤ ∞ so that
k = max{k1, k2} = k2. Using again the arguments in the proof of part (iii) of
Theorem 1, we can estimate the decay rate associated with each curve C+ and
C−. This argument shows that that the decay rate a1 from C+ is higher than

the decay rate a
1
2+

1
k2 from C−. Thus altogether the decay rate in this case is

a
1
2+

1
k2 .

If 2 = k2 < k1 ≤ ∞, we can use the same argument to conclude that the

decay rate is a
1
2+

1
k1 . The general case k1 6= k2 follows in a similar way.

This finishes the proof of Theorem 2. ut

4 Shearlet analysis of edges in dimension n = 3

The shearlet-based analysis of edges extends naturally to the 3-dimensional
setting. If f = χΩ , where Ω ⊂ R3 is a compact set with piecewise smooth
boundary, it was shown that the 3D shearlet transform SHψf has ‘slow’ asymp-
totic decay at fine scales when the location variable p is at the boundary of Ω
and the shear variables correspond to the normal orientation of the boundary
at p; for all other cases, SHψf has rapid asymptotic decay at fine scales [10,
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11]. In this section, we show that, similar to the 2-dimensional setting, it is
possible to define a variant of the shearlet transform that is able not only to
detect the boundary points, but also to identify the flatness of the surface
boundary. Since the arguments are similar to the 2D case, in the following we
will only present a result for a solid region with smooth boundary. The case
of piecewise regular boundaries can be derived by adapting the ideas of the
2-dimensional case.

4.1 Continuous shearlets in R3

Let us briefly recall the definition of the 3-dimensional continuous shearlet
transform. Similar to the 2-dimensional case, for a fixed β = (β1, β2), with
0 < β1, β2 < 1, we define the pyramid-based shearlet systems generated by
ψ(d),∈ L2(R3), for d = {1, 2, 3}, as the functions

{ψ(d)
a,s,p(x) = |detM (d)

as |−
1
2ψ(d)((M (d)

as )−1(x−p)) : a > 0, s = (s1, s2) ∈ R2, p ∈ R3},

where

M (1)
as =

(
a −aβ1 s1 −aβ2 s2

0 aβ1 0
0 0 aβ2

)
, M (2)

as =

(
aβ1 0 0
−aβ1 s1 a −aβ2 s2

0 0 aβ2

)
, M (3)

as =

(
aβ1 0 0
0 aβ2 0

−aβ1 s1 −aβ2 s2 a

)
.

For ξ = (ξ1, ξ2, ξ3) ∈ R3, ξ1 6= 0, we choose generators ψ(d), d = 1, 2, 3, such
that

ψ̂(1)(ξ) = ψ̂(1)(ξ1, ξ2, ξ3) = ψ̂1(ξ1) ψ̂2( ξ2ξ1 ), ψ̂2( ξ3ξ1 ),

ψ̂(2)(ξ) = ψ̂(2)(ξ1, ξ2, ξ3) = ψ̂1(ξ2) ψ̂2( ξ1ξ2 ), ψ̂2( ξ3ξ2 ),

ψ̂(3)(ξ) = ψ̂(3)(ξ1, ξ2, ξ3) = ψ̂1(ξ3) ψ̂2( ξ2ξ3 ), ψ̂2( ξ1ξ3 ),

where ψ1, ψ2 satisfy the same assumptions as in the 2D case.

Similar to the 2D case, the continuous shearlets ψ
(d)
a,s,p are well localized

waveforms associated with various scales controlled by a, orientations con-
trolled by the two shear variables s1, s2 and locations controlled by p. These
properties are more visible in the Fourier domain. For example, the shearlets

ψ
(1)
a,s1,s2,p have the form:

ψ̂(1)
a,s1,s2,p(ξ) = a

1+β1+β2
2 ψ̂1(a ξ1) ψ̂2(aβ1−1( ξ2ξ1 −s1)) ψ̂2(aβ2−1( ξ3ξ1 −s2)) e−2πiξ·p,

showing that their Fourier support are contained in trapezoidal regions with
scales and orientations controlled by a and s = (s1, s2), respectively.

For f ∈ L2(R3), we define the 3D (fine-scale) pyramid-based continuous
shearlet transform f → SHψf(a, s1, s2, p), for a > 0, s1, s2 ∈ R, p ∈ R3 by

SHψf(a, s1, s2, p) =


〈f, ψ(1)

a,s1,s2,p〉 if |s1|, |s2| ≤ 1,

〈f, ψ(2)

a, 1
s1
,
s2
s1
,p
〉 if |s1| > 1, |s2| ≤ |s1|

〈f, ψ(3)

a,
s1
s2
, 1
s2
,p
〉 if |s2| > 1, |s2| > |s1|.
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Note that, depending on the values of the shearing variables, the 3D continuous
shearlet transform only involves one specific pyramid-based shearlet system.

As in the 2D case, for the geometric analysis of edge points conducted
in this paper, we will not choose β = (β1, β2) = ( 1

2 ,
1
2 ), corresponding to

parabolic scaling, as this choice leads to a transform which can only detect
the location and orientation of the edge points, but cannot detect the flatness
of the boundary surface. Instead, we choose the special anisotropic scaling
parameters β(1) = (0, 1) and β(2) = (1, 0). Corresponding to β(1), for exam-
ple, the continuous shearlets in the first pyramidal region have the following
expression in the Fourier domain:

ψ̂(1,1)
a,s,p(ξ1, ξ2, ξ3) = aψ̂1(a ξ1) ψ̂2(a−1( ξ2ξ1 − s1)) ψ̂2( ξ3ξ1 − s2) e−2πiξ·p, (9)

where the upper index (1, 1) refers to d = 1 and β = β(1). Similarly, for
β(2), the continuous shearlets in the first pyramidal region have the following
expression in the Fourier domain:

ψ̂(1,2)
a,s,p(ξ1, ξ2, ξ3) = aψ̂1(a ξ1) ψ̂2( ξ2ξ1 − s1) ψ̂2(a−1( ξ3ξ1 − s2)) e−2πiξ·p.

Similarly we define ψ
(2,1)
a,s,p, ψ

(2,2)
a,s,p, ψ

(3,1)
a,s,p and ψ

(3,2)
a,s,p. Corresponding to these two

possible choices β(i), i = 1, 2, we have two distinct versions of the 3D (fine-
scale) pyramid-based continuous shearlet transform

f → SH(i)
ψ f(a, s, p), i = 1, 2.

We will apply both transforms to derive our main result in the next section.

4.2 Shearlet analysis of surface boundaries

As a model of a 3-dimensional objects, we consider functions of the form
f = χΩ , where Ω ⊂ R3 is compact and its boundary ∂Ω is a 2-dimensional
smooth manifold. We denote the outer normal vector at p0 ∈ ∂Ω by

n(p0) = (cos θ0 sinφ0, sin θ0 sinφ0, cosφ0),

for some angles θ0 ∈ [0, 2π], φ0 ∈ [0, π]. Similar to the 2D case, we say that
s = (s1, s2) corresponds to the normal direction n(p0) if s1 = tan θ0 and
s2 = cotφ0 sec θ0.

Given a point p = (p1, p2, p3) ∈ ∂Ω and a neighborhood of p in ∂Ω, there
are three possible parametrizations of the surface in this neighborhood:

Σ1 = {(G(u), u2, u3), (u2, u3) ∈ O1}, or Σ2 = {(u1, G(u), u3), (u1, u3) ∈ O2}

or Σ3 = {(u1, u2, G(u1, u2)), (u1, u2) ∈ O3},

where O1 is a neighborhood of (p2, p3) in yz plane, O2 is a neighborhood
of (p1, p3) in xz plane and O3 is a neighborhood of (p1, p2) in xy plane. To
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define a notion of flatness in the 3-dimensional setting, we refer below to the
parametrization Σ1, but it is easy to extend the same idea to Σ2 and Σ3.

For p ∈ Σ1, if G is not linear near p, we assume that there exists 2 ≤ k <∞
such that by a translation and a rotation of the coordinates if necessary, we
have p = (0, 0, 0) so that near (0, 0), we have G(u2, u3) = Aku

k
2 + Bku

k
3 +

A1(u2)u3+A2(u2)u23+ · · ·+Ak−1(u2)uk−13 +O(|u3|k+1) or G(u2, u3) = Aku
k
2 +

Bku
k
3 +B1(u3)u2 +B2(u3)u22 + · · ·+Bk−1(u3)uk−12 +O(|u2|k+1).

If there is a 2 ≤ k < ∞ such that Ak 6= 0 or Bk 6= 0, then we say ∂Ω
is k-flat at p or that its degree of flatness is k at p. If G is linear near p,
then G = 0 under the new coordinates and in this case we say that ∂Ω is
∞-flat at p, as for the 2-dimensional case. There is still one possible situation
to consider, where there is a 2 ≤ k < ∞ such that Ak = 0 and Bk = 0. In
this case we say that ∂Ω is overflat at p. When Ak = 0, the projection of
the surface Σ1 onto xy plane is a curve that is k-flat at (0,0), while Bk = 0
means that the projection of the surface Σ1 onto xz plane is a k-flat curve at
(0,0). When ∂Ω is overflat at p, then projection of the surface Σ1 onto xz
plane is a k-flat curve at (0,0). When ∂Ω is overflat at p, then projection of
the surface Σ1 onto xy plane is a segment of y axis and the projection of the
surface Σ1 onto xz plane is a segment of z axis, which are ∞-flat at (0, 0) for
both curves. Thus it is no surprise to see that the decay rate for the case of
overflat is the same for the case of ∞-flat.

The following Theorem shows that the continuous shearlet transform char-
acterizes the geometry of the boundary set ∂Ω, including its local flatness.
Note that, unlike the corresponding 2-dimensional result in Sec. 3, in this case

we need to use two versions of the shearlet transform, i.e., SH(1)
ψ and SH(2)

ψ , for
different values of the anisotropy parameter β.

Theorem 3 Let f = χΩ be as above and ψ1 ψ2 be chosen as in Theorem 1.

(i) If p0 /∈ ∂Ω then, for i = 1 or i = 2,

lim
a→0+

a−N SH(i)
ψ f(a, s, p0) = 0, for all N > 0.

(ii) If p0 ∈ ∂Ω and s = (s1, s2) does not correspond to the normal direction of
∂Ω at p, then, for i = 1 or i = 2,

lim
a→0+

a−N SH(i)
ψ f(a, s, p0) = 0, for all N > 0.

(iii) If p0 ∈ ∂Ω, ∂Ω is k-flat at p0, with 2 < k <∞), and s = (s1, s2) correspond
to the normal direction of ∂Ω at p0, then either

0 < lim
a→0+

a−(1+
1
k ) |SH(1)

ψ f(a, s, p0)| <∞

or

0 < lim
a→0+

a−(1+
1
k ) |SH(2)

ψ f(a, s, p0)| <∞
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(iv) If p ∈ ∂Ω, ∂Ω is overflat at p0 and s = (s1, s2) corresponds to the normal
direction of ∂Ω at p0, then

lim
a→0+

a−1 |SH(1)
ψ f(a, s, p0)| <∞ and lim

a→0+
a−1 |SH(2)

ψ f(a, s, p0)| <∞

(v) If p0 ∈ ∂Ω, ∂Ω is ∞-flat at p0 and s = (s1, s2) corresponds to the normal
direction of ∂Ω at p0, then

0 < lim
a→0+

a−1 |SH(1)
ψ f(a, s, p0)| <∞ and 0 < lim

a→0+
a−1 |SH(2)

ψ f(a, s, p0)| <∞

Proof. The proof follows the main architecture of the proof of Theo-
rem 1, that is: (1) we apply the divergence theorem (in 3D) to write the
Fourier transform of f as a surface integral over ∂Ω; (2) we use the localiza-

tion properties of shearlets to write the shearlet transform SH(i)
ψ f(a, s, p) as a

sum I1(a, s, p)+I2(a, s, p), where I1 depends by the values of the integrals near
p and I2 depends by the values of the integrals away p; (3) since I2 decays

rapidly as a → 0, the asymptotic decay rate of SH(i)
ψ f(a, s, p), as a → 0, is

completely controlled by the asymptotic decay rate of the integral I1a, s, p),
as a→ 0. Steps (1) and (2) above are the same as in Theorem 3.1 in [11] and
will not be repeated here. Thus, in the arguments below, we only discuss how
to analyze the integrals

I1(a, s1, s2, p) =

∫ 2π

0

∫ π

0

∫ ∞
0

T1(ρ, θ, φ) ψ̂
(d)
a,s1,s2,p(ρ, θ, φ) ρ2 sinφdρ dφ dθ,

where

T1(ρ, θ, φ) = − 1

2πiρ

∫
∂Ω∩D(ε,p)

e−2πiρΘ(θ,φ)·xΘ(θ, φ) · n(x) dσ(x)

and D(ε, p) is the ball in R3 of radius ε and center p. It is understood that, if
needed, one can replace the set ∂Ω∩D(ε, p) with a rectangular neighbourhood
of (p2, p3) in yz plane: {(u1, u2) : |u1 − p2| < ε, |u2 − p3| < ε}.

As in the 2-dimensional case, for p ∈ ∂Ω, via translation and rotation we
can change coordinates so that p0 = (0, 0, 0) and the tangent plane to the
surface ∂Ω at p0 is the plane z = 0. As in the 2D case, we can represent the
surface ∂Ω near p0 using the three possible parametrizations Σi, i = 1, 2, 3,
indicated above. It will be sufficient to consider only the parametrization Σ1 =
{(G(u2, u3), u2, u3), (u2, u3) ∈ O1}, where O1 is a neighborhood of (0, 0) in

the yz plane, that can be analyzed using the continuous shearlets {ψ(1,1)
a,s,t } and

{ψ(1,2)
a,s,t } associated with the first pyramidal region. The other cases (involving

the parametrization Σ2 and Σ3) can be handled using a very similar argument
(using the continuous shearlets associated with the other pyramidal regions).

• Parts (i)-(ii). The proof of these cases is essentially the same as the
proof of parts (i) and (ii) of Theorem 3.1 in [11].
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• Part (iii). Due to our assumption that p0 = (0, 0, 0), we have that
G(0, 0) = 0. Due to the assumption on the orientation of the surface ∂Ω
near p0, we have that s1 = s2 = 0, so that θ0 = 0, φ0 = π

2 (recall that
s1 = tan θ0, s2 = cotφ0 sec θ0). In this setting, we can replace ∂Ω ∩D(ε, p) by
{(G(u2, u3), u2, u3) : |u1| < ε, |u2| < ε} in the definition of T1(ρ, θ, φ), where
G(0, 0) = Gu2

(0, 0) = Gu3
(0, 0) = 0.

We start by considering the integral I1 associated with the shearlet trans-

form SH(1)
ψ . Under the assumption we made, we have that

I1(a, s1, s2, p) =

∫ 2π

0

∫ π

0

∫ ∞
0

T1(ρ, θ, φ) ψ̂
(1,1)
a,s1,s2,p(ρ, θ, φ) ρ2 sinφdρ dφ dθ,

where

T1(ρ, θ, φ) =
−1

2πiρ

∫ ε

−ε

∫ ε

−ε
e−2πiρΘ(θ,φ)·(G(u2,u3),u2,u3))Θ(θ, φ) · n(u) dσ(u)

=
−1

2πiρ

∫ ε

−ε

∫ ε

−ε
e−2πiρΘ(θ,φ)·(G(u2,u3),u2,u3))Θ(θ, φ)·(−1, Gu2 , Gu3)du2du3.

By dividing the interval of integration θ ∈ [0, 2π] in the integral I1 into the
two subintervals [−π2 ,

π
2 ] and [π2 ,

3π
2 ], we can write I1 = I11 + I12, where I11

and I12 are the terms in I1 corresponding to the intervals [−π2 ,
π
2 ] and [π2 ,

3π
2 ]

respectively. It is easy to verify that I11 is the complex conjugate of I12 and,
thus, it will be sufficient to analyze I11.

In T1(ρ, θ, φ), we have that

Θ(θ, φ) · (−1, Gu2
, Gu3

) = − cos θ sinφ+ sin θ sinφGu2
(u) + cosφGu3

(u)

and the right hand side can be replaced by − cos θ sinφ since, as the argument
below will the term sin θ sinφGu2

(u) + cosφGu3
(u) yields a higher order of

decay. In fact, due to the assumptions on G, we have that Gu2
(u) = O(|u|)

and that Gu3
(u) = O(|u|).

Using the expression of ψ̂
(1,1)
a,s,p from (9), with p = (0, 0, 0), s1 = s2 = 0) and

the change of variable aρ→ ρ, we hence obtain

I11(a, 0, 0, 0)

=
1

2aπi

∫ π
2

−π2

∫ π

0

∫ ∞
0

ψ̂1(ρ sinφ cos θ)ψ̂2(a−1(tan θ))ψ̂2(cotφ sec θ)

×
∫ ε

−ε

∫ ε

−ε
e2πi

ρ
aΘ(θ,φ)·(G(u2,u3),u2,u3) sinφ cos θ du2du3 ρ sinφdρ dφ dθ,

where Θ(θ, φ) = (sinφ cos θ, sinφ sin θ, cosφ).
By the assumption on the flatness, we have either Ak 6= 0 or Bk 6= 0. Let

us consider the two cases separately.
Case Ak 6= 0. Under this assumption, we write G(u2, u3) as

G(u2, u3) = Aku
k
2+Bku

k
3+A1(u2)u3+A2(u2)u23+· · ·+Ak−1(u2)uk−13 +O(|u3|k+1).
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In the integral I11, we will use the change of variables t1 = a−1(tan θ), t2 =

cotφ sec θ, u2 = a
1
k v1, and u3 = av2. Since a → 0 implies θ → 0, φ → π

2 , we
have that

lim
a→0

1

a
cos θ sinφG(u2, u3)

= lim
a→0

1

a
cos θ sinφ

(
Aku

k
2 +Bku

k
3 +A1(u2)u3 +A2(u2)u23 + · · ·+Ak−1(u2)uk−13

+O(|u3|k+1)
)

= lim
a→0

1

a
cos θ sinφ

(
aAkv

k
1 + akBku

k
3 + aA1(a

1
k v1)v2 + a2A2(a

1
k v1)v22 + · · ·

+ak−1Ak−1(a
1
k v1)vk−12 + ak+1O(|v2|k+1)

)
= Akv

k
1

and that

lim
a→0

1

a
(sin θ sinφu2 + cosφu3) = lim

a→0

1

a

(
at1(a

1
k v1)(cos θ sinφ) + at2v2 cos θ

)
= t2v2.

From these observations, it follows that

lim
a→0+

a−(1+
1
k )Re[πi I11(a, 0, 0, 0)]

=

∫ ∞
0

ψ̂1(ρ) Re

[∫ ∞
−∞

∫ ∞
−∞

∫ 1

−1

∫ 1

−1
ψ̂2(t1)ψ̂2(t2)e2πiρ(Akv

k
1+v2t2)dt1dt2dv1dv2

]
ρdρ

=

∫ ∞
0

ψ̂1(ρ) Re

[∫ ∞
−∞

∫ ∞
−∞

ψ2(ρv1)ψ2(ρv2)dv1dv2

]
ρdρ

=

∫ ∞
0

ψ̂1(ρ) Re

[∫ ∞
−∞

e2πiρAkv
k
1 dv1

∫ ∞
−∞

ψ2(ρv2)dv2

] ∫ 1

−1
ψ̂2(t1)dt1ρdρ

= ψ̂2
2(0)

∫ ∞
0

ψ̂1(ρ)

ρ
dρ 6= 0,

where the positivity of the last expression follows from the assumptions on ψ̂1,

ψ̂2. As we observed above, the estimate on I11 implies the estimate on SH(1,1)
ψ .

In fact, the last limit implies that

0 < | lim
a→0+

a−(1+
1
k ) SH(1,1)

ψ f(a, s, p0)| <∞.

Case Bk 6= 0. In this case, we write G(u2, u3) as

G(u2, u3) = Aku
k
2+Bku

k
3+B1(u3)u2+B2(u3)u22+· · ·+Bk−1(u3)uk−12 +O(|u2|k+1).

Then the same argument as above applied to SH(1,2)
ψ will yield that

0 < | lim
a→0+

a−(1+
1
k ) SH(1,2)

ψ f(a, s, p0)| <∞.
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This completes the proof of part (iii).

• Part (iv). The analysis of SH(1,1)
ψ f(a, s, p0) and SH(1,2)

ψ f(a, s, p0) is very

similar. Thus, we will only present the argument for SH(1,1)
ψ f(a, s, p0). As ar-

gued above, ultimately this requires to estimate the integral I11.
Proceeding in a similar way to part (iii), for I11 we use the change of

variables t1 = a−1(tan θ), t2 = cotφ sec θ and u2 = v1, u3 = av2. Similar to
the proof of part (iii), we have

lim
a→0

1

a
cos θ sinφG(u2, u3) = A1(v1)v2

and

lim
a→0

1

a
(sin θ sinφu2 + cosφu3) = t1v1 + t2v2.

Using the change of variables and these limits we have that

lim
a→0+

πia−1Re[I11(a, 0, 0, 0)]

=

∫ ∞
0

ψ̂1(ρ)Re

[∫ ∞
−∞

∫ ∞
−∞

∫ 1

−1

∫ 1

−1
ψ̂2(t1)ψ̂2(t2)e2πiρ(A1(v1)v2+v1t1+v2t2)dt1dt2dv1dv2

]
ρdρ

=

∫ ∞
0

ψ̂1(ρ)Re

[∫ ∞
−∞

∫ ∞
−∞

e2πiρA1(v1)v2ψ2(ρv1)ψ2(ρv2)dv1dv2

]
ρdρ.

The right hand side of the last identity is obviously finite. However, we cannot
ensure that this quantity is also nonzero, except for the special case A1(v1) = 0.
Hence we cannot derive a lower bound in this case.

One can analyze in a similar way the shearlet transform SH(12)
ψ f(a, s, p0),

by replacing A1(v1)v2 with B1(v2)v1. This finishes the proof of part (iv).

• Proof of part (v). Again, the analysis of SH(1,1)
ψ f(a, s, p0) and SH(1,2)

ψ f(a, s, p0)

is very similar. Thus, we will only present the argument for SH(1,1)
ψ f(a, s, p0).

As above, the argument reduces ultimately to estimate the integral I11.
In this case, we use the change of variables t1 = a−1(tan θ), t2 = cotφ sec θ,

u2 = v1 and u3 = av2. Since G(u2, u3) = 0 in this case, we have

lim
a→0+

a−1Re[πi I11(a, 0, 0, 0)]

=

∫ ∞
0

ψ̂1(ρ)Re

[∫ ∞
−∞

∫ ∞
−∞

∫ 1

−1

∫ 1

−1
ψ̂2(t1)ψ̂2(t2)e2πiρ(v1t1+v2t2)dt1dt2dv1dv2

]
ρdρ

=

∫ ∞
0

ψ̂1(ρ)Re

[∫ ∞
−∞

∫ ∞
−∞

ψ2(ρv1)ψ2(ρv2)dv1dv2

]
ρdρ

=

∫ ∞
0

ψ̂1(ρ)Re

[∫ ∞
−∞

∫ ∞
−∞

ψ2(v1)ψ2(v2)dv1dv2

]
ρ−1dρ

= (ψ̂2(0))2
∫ ∞
0

ψ̂1(ρ)ρ−1dρ 6= 0.

This finishes the proof of part (v) and hence the proof of Theorem 3. ut
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