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ABSTRACT

Wavelets with composite dilations extend the traditionavelet ap-
proach by allowing for the construction of waveforms defimed
only at various scales and locations but also according tious
orthogonal transformations. The shearlets, which yieltinoglly
sparse representations for a large class of 2D and 3D dateeis t
most widely known example of wavelets with composite dilas.
However, many other useful constructions are obtainedinvithis
framework. In this paper, we examine the hyperbolic shearke
variant of the shearlet construction obtained as a systenebflo-
calized waveforms defined at various scales, locations apdta-
tions, where the directionality is controlled by orthogbtransfor-
mations producing a sort of shearing along hyperbolic cirvhe
effectiveness of this new representation is illustratedfyylications
to image denoising. Our results compare favourably againstar
denoising algorithms based on wavelets, curvelets and stiphis-
ticated multiscale representations.

Index Terms— Wavelets with composite dilations, directional
wavelets, multiresolution analysis, shearlets, congsrl

1. INTRODUCTION

Among the different methods proposed during the last detade
overcome the limitations of traditional multiscale refetsations in
dealing with multidimensional data [1], [2], wavelets withmposite
dilations offer a particularly general framework whichoails one to
derive a variety of powerful data representation scheriésvelets
with composite dilationsoriginally introduced in [3, 4], are defined
as the collections of functions ib*(R™) of the form

{0k = |det AP/2p(BeA” - —k): j € Z,0 € Ak € Z"},

wherey € L*(R™), A is an expanding invertible x n matrix, B,
is a matrix for which|det B,|] = 1 andA is a countable indexing
set. In this approach, the matriced are associated with scaling
transformations and the matric& are associated with various or-
thogonal transformations. As a result, it is possible tostat a
variety of systems which go far beyond traditional waveleith re-
spect to their ability to deal with the geometry of the data.

A particularly important example of wavelets with compesit
dilations are theshearletswhich, in dimensions. = 2, are obtained
by using anisotropic dilation matrices and shearlet mesriaf the
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Fig. 1. The tiling of the frequency plane induced by the shearlets.
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The shearlet tiling of the frequency plane is shown in FigiHanks
to their ability to deal with anisotropic features efficignshearlets
provide nearly optimally sparse representations for aelatgss of
images [5] and have been successfully applied to a varieityag-
ing applications [6, 7, 8, 9, 10].

Many other useful constructions besides shearlets can be ob
tained within the framework of wavelets with composite tidas.
In fact, even the contourlets [11] and some of their variaais be
derived from this approach, as recently observed in [12]. r&fler
to [12, 13] for additional constructions, including theugtration of
their potential in image processing applications.

The goal of this paper is to examine the so-callggberbolic
shearlets a special construction derived from the framework of
wavelets with composite dilations which was originallyraduced
in [13] as a variant of the shearlets. Thanks to the speciaingé-
ric properties of this construction which will be illusteat in this
paper, it is anticipated that the applications of this newtiszale
representation can have a high impact on deconvolution #met o
image enhancement tasks, as indicated by the novel decdiopss
suggested in [14] and by the techniques for dealing with omadiur
recently proposed in [15].

The organization of the paper is as follows. After defining th
hyperbolic shearlets in Section 2, their discrete impletatémm is
presented in Section 3. We demonstrate experimental seaufec-
tion 4 and conclude with a brief discussion in Section 5.

2. HYPERBOLIC SHEARLETS

The system of hyperbolic shearlets is obtained from the etve
with composite dilations (1), in dimension = 2, by using thehy-
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Fig. 2. Tiling of the frequency domain associated with an hypedm}stem of wavelets with composite dilations. (a) ThetstgrshapeS is
arectangle. (b) The starting shafiés a trapezoid. (c) The starting shafiés a rectangle and cone restricted set of filters are rotatachd
the origin.

perbolicmatrices A maps the hyperbolg; &2 = k to the the hyperbold: & = 2k,
A0 so thatA® maps the hyperbolic strigé(r,t) : 1 < r < 2} to
By = {by = ( 0 )\@) WAVAS the hyperbolic strip{¢(r,t) : 2° < r < 2'7'}. By defining a set
of generatorsl consisting of appropriate characteristic sets in the

whereX > 1 is a fixed parameter; for the dilations matrices, it is frequency domain, it can be established that the hyperisgtem

. . L ) V2 0 of wavelets with composite dilations
possible to choose the isotropic dilation matfix= ( 0 \/5)

5 0 {D4Dp, T,V : ke Z? (€}
the parabolic dilations matrid = ( ) which is used in the S o
0 V2 is a Parseval frame of?(R?) which implies its transform is in-

shearlet construction. The construction resulting froesénchoices  yertible and well-conditioned. We refer to [13] for addital detail
of matrices can be interpreted as a transformation of tharkte zpout this construction.

tiling (see Fig. 1) under a nonlinear change of coordinatasthe Notice that, as the valugincreases in magnitude, the hyperbolic
following, we will set\ = v/2, but the discussion below can be {rapezoids become increasingly narrow and asymptotieglyoach
easily extended to other choices far either the horizontal or the vertical axis. Hence, to resiie system

For eachk > 0, the setH;, = {(&,&) € R® :+ &1& = k} in the finite discrete setting, the indicésind/ can be limited to a
consists of two branches of hyperbolas. Notice that, for@my finite range and the asymptotic regions not covered becduthiso
(€1,&2) € Hy, every other poing’ on the same branch of hyperbola discretization can then be dealt with by partitioning up ¢benple-
has the unique representatigh= (17", £27%), wherey > 1is  ment with a Laplacian Pyramid filtering. An example of thentl
fixed, for somet € R. This means any = (£1,&2) in the first  of the frequency plane associated with this constructidiustrated
guadrant can be parametrized by in Fig. 2(a). Simple modifications of this construction |gadthe

€rt) = (VF (VD)L VF (VD)) frequency tilings shown in Fig. 2(b)-(c).
wherer > 0, t € R. This implies that 3. IMPLEMENTATION

&2
r=&6&, 2= 5_1 The hyperbolic shearlets are implemented by designinglaatimn

. . of filters {G,.¢} that correspond to the appropriate elements of the
Foranyk: < k2, a set{¢(r,t) : k1 g r < ka}is anhypertiollc hyperbolic shearlet systefs; ¢ = | det A['/2y(B,A7 - —k)}.
stripand, forms < mo, ase§(r,t) : ki <7 < k2,m1 <20 S These filters are derived by directly applying the matriggsand
ma} IS anhyperbollchtrape;0|d f he riah he h By to a sequence of filter values to generate the specific spiaial
l;:cl)r anyk # 0, the action ofB3, on the right preserves the hy- 4,60y tiling associated with the hyperbolic systemz (). Ap-
perbolasi;; since propriate window adjustments are done by keeping trackeohthl-
-t tiple assigned location points due to the pixelation. Extaspf this
(V2) 0
§Be = (&,&) ( 0 (\/5)5> construction are shown in Fig. 3 and an example of a hyperfitiér
o, , in both time and frequency domain is shown in Fig. 4.
(&(V2)™" &(vV2)) The synthesis filters are found by using the techniques given
= 1,72 16, 17, 18, 19, 20, 21], which solve the multi-channel dectution
(11,72),

problem (MDP). In 1983, Berenstegt al. considered the following

andmrz = ,5152', Hencg, the right action of the matricés maps MDP: Given a collection{h; ?;51 of finite impulse response filters
an hyperbolic strip into itself.

Consider the action of the dilation matricés, fori € Z, where " R (d > 2), find a collection{h } ;" of finite impuise response

. m—1 7 . .
A'iis one of the examples provided above. It is easy to verifytha fIters such thad ;=" h; x hi = 5, whered is a Dirac delta func-

maps the hyperbolé& ¢> = k to a new hyperbola. For example, if tion. This equation in the Fourier-Laplace domain is known as the
V2 0

analytic Bezout equation. The recent methods for solviegMiDP
A (g — ! ic7 in a discrete setting provide a more effective way of cortsing
={a" = 0 V3 i€}, appropriate synthesis filters [19],[20]. Thus, using theshods,
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Fig. 3. lllustrations of filter constructions where the number arins

ples used are small for the purpose of presentation. Theesag

on the left are the sequences of poifi{§T, £7)}A_, contained in

the regionS. The images on the right are the sequences of points

{7, 73) }n=1 where(y, 773 ) = [(€7', €5 )a'be].
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Fig. 4. An example of a hyperbolic filter. (a) Time Domain. (b)
Frequency Domain.

we are no longer constrained in the traditional ways to erbagher
dimensional directional analysis and synthesis filtersdi\ahal de-
tail about this implementation are found in [13] and [21].

4. EXPERIMENTAL RESULTS

In this section, we present numerical experiments on imag®ra-
tion to demonstrate the effectiveness of the hyperboliadéerepre-
sentation and its corresponding discrete implementatidvesillus-
trate the denoising capability of these discrete trans$dognmeans
of hard thresholding. Recall that theard thresholding algorithm
consists in setting to zero the transform coefficients whaisso-
lute values fall below a certain threshdld which depends on the
standard deviation of the noige Although hard thresholding is a
rather crude form of thresholding and more sophisticatethous
such as [7] are available, this method is a good indicatiah®fpo-
tential of a transform in image restoration applicationsté\that the
point of this paper is not to extensively study the denoisiagabil-
ities of hyperbolic shearlets but rather to illustrate theifility of
the framework of composite wavelets to generate useful éed-e
tive directional representations and its competitiveraggsnst other
transform-based methods. A more extensive comparisonotligr
denoising algorithms including methods which are not tiauns-
based will be addressed elsewhere.

Given noisy observationg = = + n, wheren is zero-mean
white Gaussian noise with varianeé, the objective is to estimate
x. By adapting the standard wavelet shrinkage approach 22],
apply hard thresholding on the subband coefficients of thews
decompositions. In particular, we choose the threslidle- Ko,
wherec? is the noise variance in each subband &nd a constant.
We setK = 2 for all subbands.

Fig. 5. Images used for the experiments. From left to rigtebra
(256 x 256), Baboon(512 x 512), andLeopards(512 x 512).

pare it against three different competing discrete mudtesdrans-
forms: the nonsubsampled wavelet transform, denoted by NSW
the curvelet transform [23], denoted by curv, and the nosauipled
contourlet transform [11], denoted by NSCT. We implemensche
transform to4 decomposition levels and we choose the thresholds to
beT; = Ko, whereo? is the noise variance in each subband and
K is a constant. For these competing transforms, we chiose4

for the highest subband ardd = 3 for the other subbands as done
in [11].

The discrete hyperbolic shearlet transforms we testedhae t
cone-based hyperbolic transform (c-hyper) shown in Figz)2a0d
the hyperbolic transform (hyper) shown in Fig. 2 (a). We uded
peak signal-to-noise ratio (PSNR) to measure the perfoceat
different transforms. Recall that, given &h x N imagez and its
estimatet, the PSNR in decibels (dB) is defined as

PSNR = 20log,, ”;LN

—&F’

where||.||» is the Frobenius norm.
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Fig. 6. Denoising results. (a) Noisy image with= 30, PSNR=
18.56 dB. (b) c-hyper estimate, PSNR=24.67 dB. (c) hypémese,
PSNR= 24.38 dB. (d) NSWT estimate, PSNR= 21.41 dB. (e) curv
estimate, PSNR=22.26 dB. (f) NSCT estimate, PSNR=23.69 dB.

In Tables I, Il and 1ll, we show the results obtained by vasiou
decompositions on Zebrg Baboonand alLeopardsimage, respec-
tively. These images are shown in Fig. 5. The highest PSNR for
each experiment is shown in bold. As it can be seen from tHesab
all of the new transforms provide superior or comparablelteso
that obtained using NSWT, NSCT and curvelets. Indeed, inesom
cases, the hyperbolic shearlets provide improvement afynéalB

To assess the denoising performance of our method, we conor more compared to the competing transforms.



Fig. 6 shows the denoisétkbraimage obtained with the various
transforms. Note that the hyperbolic shearlets exhibitshrhetter
reconstructions of edge and curve features thus attestegftec-
tiveness of the proposed transform. Further results anghadsons
on image denoising and image enhancement can be found in [13]

Table I: Denoising results usirkebraimage.

[ o [ Noisy | c-hyper] hyper | NSWT | curv [ NSCT |
[10] 2811 30.77 | 30.45] 26.32 | 26.39 ] 29.58 |
[15[ 24.58 | 28.28 | 27.83| 24.09 | 24.63 | 27.17 |
[20 [ 22.09] 2657 | 26.16 | 22.86 | 23.42 | 25.65 ]
[25] 20.15| 25.49 | 25.15] 22.04 | 22.89 | 24.56 |
[30 [ 18.56 | 24.67 | 24.38 | 21.41 | 22.26 | 23.69 |
Table II: Denoising results usingaboonimage.
[ o [ Noisy | c-hyper| hyper [ NSWT | curv | NSCT |
[10 [ 28.14] 29.44 | 29.61 | 26.32 | 26.14] 29.02 |
[15[ 24.61] 27.27 | 27.31 | 24.25 | 24.31] 26.62 |
[20 [ 2212 25.74 | 25.78 | 23.24 | 23.72] 25.12 |
[25[ 20.18 ] 24.30 | 24.35 | 22.58 | 23.61] 24.08 |
[30 [ 18.59 | 23.49 | 23.47 | 22.06 | 23.43] 23.32 |
Table Ill: Denoising results usingeopardsimage.
[ o [ Noisy | c-hyper| hyper [ NSWT | curv | NSCT |
[10 ] 28.14] 32.32 | 32.26 | 28.88 | 29.80 31.05 |
[15[ 24.61] 30.15 | 30.21 | 27.33 | 28.43] 28.89 |
[20 [ 22.12] 28.62 | 28.84 | 26.25 | 27.50 ] 27.48 |
[25] 20.18 2751 | 27.76 | 2528 | 26.66 | 26.41 |
[30 [ 1859 26,55 | 27.01 | 24.40 | 25.99] 25.52 |

5. DISCUSSION AND CONCLUSION

Hyperbolic shearlets illustrate the flexibility of the framork of

wavelets with composite dilations to build redundant nschile and
multidirectional decomposition transforms endowed wjtbdal ge-
ometric features. They have particular utility when it cant@appli-

cations such as deconvolution [14], [15]. Yet the abilityd&al with

directional informations efficiently also proves to be hjgéffective

at representing complex images as illustrated by theiopednce
in denoising. In addition, the new filter design methodolaigst

comes from the direct application of thé and B, structure ma-
trices employed in this work is of interest by itself as itoalk for

very complicated spatial-frequency tiling to be constedctUnlike

competing methodologies, the degrees of flexibility of qupraach

allow for very redundant decompositions and excellentatioaal

selectivity, which are the main reasons for the very goounegion

performance we obtained. In addition, these multi-chafsied
implementations are highly efficient and parallelizabteparticular,

givenm filters, the algorithms takes only(mN? log V) operations
in a serial formulation for arlv x N image and this is highly effi-
cient compared to the nonsubsampled contourlet transfertimad

in [8].
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