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Abstract
Automated identification of the primary components of a neuron and extraction of its sub-

cellular features are essential steps in many quantitative studies of neuronal networks. The

focus of this paper is the development of an algorithm for the automated detection of the lo-

cation and morphology of somas in confocal images of neuronal network cultures. This

problem is motivated by applications in high-content screenings (HCS), where the extrac-

tion of multiple morphological features of neurons on large data sets is required. Existing al-

gorithms are not very efficient when applied to the analysis of confocal image stacks of

neuronal cultures. In addition to the usual difficulties associated with the processing of fluo-

rescent images, these types of stacks contain a small number of images so that only a small

number of pixels are available along the z-direction and it is challenging to apply conven-

tional 3D filters. The algorithm we present in this paper applies a number of innovative ideas

from the theory of directional multiscale representations and involves the following steps: (i)

image segmentation based on support vector machines with specially designed multiscale

filters; (ii) soma extraction and separation of contiguous somas, using a combination of

level set method and directional multiscale filters. We also present an approach to extract

the soma’s surface morphology using the 3D shearlet transform. Extensive numerical ex-

periments show that our algorithms are computationally efficient and highly accurate in seg-

menting the somas and separating contiguous ones. The algorithms presented in this paper

will facilitate the development of a high-throughput quantitative platform for the study of neu-

ronal networks for HCS applications.

Introduction
The ability of neurons to form mature synapses and functional connections in culture is a fun-
damental property that has allowed the first milestone studies in molecular neuroscience. In re-
cent years, improved neuronal culturing techniques combined with sophisticated fluorescence
microscopy have significantly expanded the initial scope of in vitro studies. They are now in-
strumental tools for large-scale studies of cultured neuronal networks used to identify

PLOSONE | DOI:10.1371/journal.pone.0121886 April 8, 2015 1 / 22

a11111

OPEN ACCESS

Citation: Ozcan B, Negi P, Laezza F, Papadakis M,
Labate D (2015) Automated Detection of Soma
Location and Morphology in Neuronal Network
Cultures. PLoS ONE 10(4): e0121886. doi:10.1371/
journal.pone.0121886

Academic Editor: Irene Georgakoudi, Tufts
University, UNITED STATES

Received: October 15, 2014

Accepted: February 4, 2015

Published: April 8, 2015

Copyright: © 2015 Ozcan et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All data files used to
validate the algorithms are publicly available from the
Harvard Dataverse database at http://thedata.
harvard.edu/dvn/dv/NeuronalCultures. (doi:10.7910/
DVN/28661).

Funding: Funding provided by National Science
Foundation (http://www.nsf.gov) GRANTS: DMS
1320910 (MP,DL) and DMS 1008900 (DL) and
National Institutes of Health (http://www.nih.gov/)
grant: R01 MH095995 (FL). The funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0121886&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://thedata.harvard.edu/dvn/dv/NeuronalCultures
http://thedata.harvard.edu/dvn/dv/NeuronalCultures
http://dx.doi.org/10.7910/DVN/28661
http://dx.doi.org/10.7910/DVN/28661
http://www.nsf.gov
http://www.nih.gov/


phenotypic changes induced by chemical or biological agents in the context of brain disease
models. Yet, such revolution in the field has not been paralleled by adequate quantitative meth-
ods for neuronal feature detection, extraction and analysis, limiting the potential throughput of
in vitromodels.

Automated identification of the primary components of a neuron and extraction of its sub-
cellular features are essential steps in such quantitative studies. High-content screenings
(HCS), for instance, require the identification and extraction of multiple morphological fea-
tures of neurons, such as soma shape and volume, neurite length and branching properties.
Such complex information, usually compiled from multi-channel fluorescence images, requires
automated processing methods to handle large batches of data and establish a confident statis-
tical basis for a reliable prediction model. With the rapid and widespread rise in the use of HCS
in basic science settings, automated detection of cell compartments from fluorescent images is
an area of very active research [1–4].

In this paper, we concentrate on the automated detection of soma location and surface mor-
phology in fluorescent images of cultured neurons, a challenging problem that has special im-
portance for several reasons. In particular, in vitro phenotypic screenings of large scale
neuronal cultures for drug-discovery and biomarker identification frequently require to quan-
tify spatial distribution and expression levels of analytes of interest inside the soma [5, 6]. In
addition, the detection of soma locations is a critical step to compute the centerline trace and
extract the graph representation of each individual neuron, since the location of the soma is the
main vertex of such a graph [7, 8]. Furthermore, accurate extraction of soma’s surface mor-
phology is one of the most important characteristics for discriminating different types of neu-
rons [9].

Of all sub-cellular components of a neuron, somas are among the most challenging to detect
automatically in fluorescence images, due to the lack of robust markers and the uneven distri-
bution of fluorescence signals. Automated soma/cell detection methods in many image analysis
packages rely on contrast enhancement and image intensity thresholding [10, 11] and attempt
the identification of somas by generating binary masks. These methods can be quite effective in
phase-contrast microscopy [11, 12], but the extension of these methods to images captured by
other types of microscopy is difficult and not always very effective. In fluorescence imaging, in
particular, the image contrast is typically much lower and high fluorescent intensity values can
be found outside the soma region. In fluorescent image of neuronal cultures, somas are usually
visible with the aid of the Microtubules Associated Protein 2 (MAP2) antibody staining or nu-
clei markers (such as DAPI or TROPO-3), neither of which are soma-selective. The MAP2 pro-
tein is diffusely distributed in the somato-dendritic compartment and, as a result, MAP2 masks
include both somas and dendrites. Nuclear staining, on the other hand, targets only nuclear
DNA and excludes the cytoplasmic region of the soma surrounding the nucleus.

To address this problem, a number of methods have been proposed to process images in
which somas and other structures exist in the same fluorescence channel. Some of these meth-
ods use combinations of smoothing and morphological operators [7, 13, 14] or specialized fil-
ters such as the Laplacian-of-Gaussian (LOG) [15] and can be rather effective to detect somas
in 2D. However these types of methods tend to be rather inaccurate since they are very sensitive
to the irregularities of the fluorescence signal and have proven to be either impractical or ineffi-
cient to extend to 3D. In particular, the use of LOG to detect local maxima of the fluorescence
intensity signal can lead to a high degree of false positives due to the irregular intensity profiles,
causing detection of more than one soma candidate within a given neuron. To address these
limitations, several ideas have been proposed, such as the detection of the soma area in the
three 2D orthogonal projection images of the original 3D image stack using 2D morphological
closing [8]. Of special note is the algorithm recently proposed by [16] that, in addition to
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combining smoothing, morphological operators and adaptive thresholding to detect the soma
volume from the 2D orthogonal projection images, applies an ingenious variant of the Rayburst
sampling method [17] to capture the surface of the soma.

None of those methods, though, are directly applicable to the type of imaging data which
are the preferred platform for HCS. Confocal images of neuronal cultures used for HCS typical-
ly consist of stacks containing 15–30 images, so that the ‘data cube’ is very thin along one of its
axes: only 15–30 pixels are available along the z-direction, as compared with the x and y direc-
tions where the typical length can be 512 pixels or more. As a result, it is inefficient or even im-
possible to process these data as true volumes using conventional 3D filters or adapting some
of the ideas mentioned above. For example, the 2D orthogonal projections into the planes con-
taining the z axis would not be very informative for the detection of the soma volume, due to
the lack of a sizeable z dimension. An additional challenge is that, due to the acquisition pro-
cess, in cultured neuronal images the contrast changes significantly along the stack and reduces
very rapidly on the optical slices that are farther away from the light source.

To address these challenges, in this paper we introduce an innovative method for the auto-
mated detection and accurate segmentation of somas from high-resolution confocal images of
cultured neurons. Our approach includes two separate algorithms for the 2D and 3D analysis.
Due to the difficulty in processing confocal imaging data as true volumes, it is customary to
convert the MAP2-stained confocal image stacks into 2D images by projecting the stacks along
the z-axis. Consistently, our first soma detection algorithm is designed to deal with these types
of 2D images. Our approach includes an SVM-based segmentation routine to separate the neu-
rons from the background, followed by a dedicated routine to separate the somas from the
neurites. The latter routine combines innovative ideas from the theory of directional multiscale
representations (developed by some of the authors) together with variational methods. This ap-
proach enables very accurate detection of the somas in 2D, including the separation of clus-
tered or contiguous somas. Our second algorithm is designed to extract the volumetric
information of somas from the 3D image stacks and relies on our 2D soma detection algorithm
to de-block the image stacks into subvolumes containing a single soma. Within each block, we
apply a specialized surface detection routine, based again on our multiscale-analysis frame-
work, to efficiently extract the surface morphology of the soma.

Materials and Methods

Specimen preparation and imaging
The image datasets used in the present work are primary hippocampal neuronal cultures that
were prepared in Dr. Laezza’s Laboratory at the Department of Pharmacology & Toxicology of
the University of Texas Medical Branch.

Banker’s style hippocampal neuron cultures were prepared from embryonic day 18 (E18)
rat embryos as described in previous work [5]. Briefly, following trituration through a Pasteur
pipette, neurons were plated at low density (105 × 105 cells/dish) on poly-L-lysine-coated cov-
erslips in 60 mm culture dishes in MEM supplemented with 10% horse serum. After 24 h, cov-
erslips (containing neurons) were inverted and placed over a glial feeder layer in serum-free
MEM with 0.1% ovalbumin and 1 mM pyruvate (N2.1 media; Invitrogen, Carlsbad, CA) sepa-
rated by approx. 1 mm wax dot spacers. To prevent the overgrowth of the glia, cultures were
treated with cytosine arabinoside at day 3 in vitro (DIV).

Hippocampal neurons (DIV14) were fixed in fresh 4% paraformaldehyde and 4% sucrose in
phosphate-buffered saline (PBS) for 15 min. Following permeabilization with 0.25% Triton X-
100 and blocking with 10% BSA for 30 min at 37°C, neurons were incubated overnight at room
temperature with the following primary antibodies: mouse anti-FGF14 (monoclonal 1:100;
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Sigma Aldrich, St Louis, MO), rabbit anti-PanNav (1:100; Sigma, St Louis, MO) and chicken
anti-MAP2 (polyclonal 1:25000; Covance, Princeton, NJ) diluted in PBS containing 3% BSA.
Neurons were then washed 3 times in PBS and incubated for 45 min at 37°C with appropriate
secondary antibodies as described for brain tissue staining. Coverslips were then washed 6
times with PBS and mounted on glass slides with Prolong Gold anti-fade reagent.

Confocal images were acquired with a Zeiss LSM-510 Meta confocal microscope with a 63X
oil immersion objective (1.4 NA). Multi-track acquisition was done with excitation lines at 488
nm for Alexa 488, 543 nm for Alexa 568 and 633 nm for Alexa 647. Respective emission filters
were band-pass 505–530 nm, band-pass 560–615 nm and low-pass 650. Z-stacks were collected
at z-steps of 1 μmwith a frame size of 512 × 512, pixel time of 2.51 μs, pixel size 0.28 × 0.28 μm
and a 4-frame Kallman averaging. Acquisition parameters, including photomultiplier gain and
offset, were kept constant throughout each set of experiments.

All the animal procedures were performed in accordance to the University of Texas Medical
Branch at Galveston, Institutional Animal Care and Use Committee(IACUC) approved proto-
cols. The University of Texas Medical Branch at Galveston operates in compliance with the
United States Department of Agriculture Animal Welfare Act, the Guide for the Care and Use
of Laboratory Animals, and IACUC approved protocols.

Shearlet transform
We recall some background on the shearlet transform. This method will play a major role in
our algorithm.

The shearlet framework is one of the most prominent methods to have emerged in the area
of multiscale analysis in recent years [18]. It was introduced to overcome the limitations of con-
ventional wavelets in dealing with multidimensional data, and it offers the advantage of com-
bining multiresolution analysis of classical wavelets with high directional sensitivity, so that it
is especially efficient at handling images containing edges and surface boundaries. In fact, the
analyzing atoms of the shearlet system form a collection of waveforms {ψa,s,p} defined not only
over a range of scales and locations, like wavelets, but also over a range of orientations. As a re-
sult, the shearlet transform, defined by projecting an image f into the set of analyzing shearlets,
maps the input image f into a transformed image

f�!Sf ða; s; pÞ ¼ h f ;ca;s;pi;

where the values Sf(a, s, p) depend on a scale variable a> 0, a shear variable s 2 R, controlling
orientations, and a location variable p 2 R

n, where n = 2 for a planar image or n = 3 for a 3D-
image (e.g., an image stack). In a nutshell, the elements Sf(a, s, p) encode the information of
the image f in a localized elongated window centered at p whose orientation is controlled by s
and whose size is controlled by a, with the window becoming increasingly thinner at finer
scales, i.e., as a becomes smaller.

The most remarkable property of the shearlet transform is that it provides a precise analyti-
cal and computational tool to detect edges and surface boundaries of an image f. In particular,
if f is an image containing an edge, then the shearlet transform Sf(a,s,p) exhibits rapid decay, as
a becomes smaller, everywhere except for those points p located on the edge and those s corre-
sponding to the normal orientation to the edge at p, with a similar property holding for a 3D-
image [19–21]. This implies that one can detect edges and surfaces in 2D and 3D images, re-
spectively, by computing the shearlet transform. This method was successfully implemented
and illustrated by one of the authors and other collaborators [22, 23]. More generally, one can
use the shearlet transform to study local directional patterns in images. This idea plays a major
role in the construction of our soma detection algorithm.
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2D soma detection algorithm
Our algorithm for 2D soma detection is applied on 2D images obtained by projecting a confo-
cal image stack (comprising typically about 15–30 optical sections) along the axis perpendicu-
lar to the image plane (the z axis). This 3D-to-2D conversion is common in manual or semi-
manual analysis of neuronal cultures. The most common projections are the average intensity
projection (AIP) that outputs an image, wherein each pixel stores the average intensity over all
images in stack at corresponding pixel location, and themaximum intensity projection (MIP),
that creates an output image where each of the pixels contains the maximum value over all im-
ages in the stack at the particular pixel location.

Our algorithm follows the procedure shown in Fig. 1 and consists of the following steps: (1)
a preprocessing routine to denoise the image; (2) a segmentation routine to separate the neu-
rons from the background and to prepare the data for the next processing steps; (3) a routine
that extracts the somas from the segmented images and includes Directional Ratio and level set
routines; (4) a routine to separate those somas that are clustered together. As we will describe
below, each step of the algorithm is completely automatic and does not require manual
intervention.

Image preprocessing. The design of a highly efficient data preprocessing module is essen-
tial to take full advantage of the capabilities of instrumentation and enable accurate and robust
processing of the acquired data. Our preprocessing algorithm addresses the major source of
degradation of confocal images: the noise introduced by the random nature of the photon-
counting process at the detector, which can be modeled as a Poisson-distributed random

Fig 1. Proposed algorithm for 2D soma detection.

doi:10.1371/journal.pone.0121886.g001
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process. To remove the noise, we apply the shearlet shrinkage denoising algorithm from [24,
25]. This algorithm is a refinement of the celebrated wavelet shrinkage denoising method and
consists of the following steps. First the image is transformed using the continuous shearlet
transform. Next the shearlet transform coefficients are filtered using an appropriate shrinkage
function whose parameters are automatically determined from the data, based on the estimate
of the noise level [24]. Finally the denoised image is obtained by computing the inverse shearlet
transform. The excellent denoising performance of this algorithm takes advantage of the spar-
sity properties of shearlets, that have optimally sparse representation properties for a large class
of images [18, 26]. Thanks to these sparsity properties, this method is particularly efficient at
removing noise without blurring edges [24, 27]. Overall, the boundaries of the structures in an
image look sharper after the application of this denoising method.

Segmentation. Segmentation has to goal to separate the neurons from the background.
For this task, we adopted an algorithm recently developed by some of the authors that is based
on support vector machines (SVMs) and whose main novelty is the use of features generated
by a set of multiscale isotropic Laplacian filters acting as self-steerable filters for a quick and ef-
ficient binarization of the axonal and dendritic structure [28–30]. As for many algorithms of
this type, the proper classification stage of the algorithm is preceded by a training stage of the
classifier. This is the most computationally-intensive part of the algorithm but need to be run
only once as long as the segmentation algorithm is applied to images of the same type (e.g.,
same cell type and microscope setting). The whole procedure is fully automated. We refer the
reader to the references cited above for more details about the algorithm.

Soma extraction. Our method to identify the soma within the segmented neuron applies
an innovative idea that takes advantage of the directional sensitivity of the shearlet transform
in order to separate isotropic blob-like regions from anisotropic vessel-like structures. The
mathematical framework for this method was developed by the authors in [31, 32], where we
introduced the following measure of directional coherence. We define the Directional Ratio of
an image f at scale a> 0 and location p 2 R

2 as the quantity

Daf ðpÞ ¼
inf sfjSf ða; s; pÞjg
supsfjSf ða; s; pÞjg

where Sf(a, s, p) is the shearlet transform of f defined above. This quantity, that ranges between
0 and 1, measures the strength of the directional coherence of f at scale a and location p. In
[31], we proved that if f is a cartoon-like neuron, that is, an idealized model image containing a
union of blob-like and vessel-like structures, then, when a is sufficiently small, there exists a
threshold which is significantly less than 1 such that the Directional Ratio doesn’t exceed that
threshold when p is located inside the vessel-like structure. On the other hand, the Directional
Ratio varies wildly in more isotropic (e.g., blob-like) structures. This suggests that we can iden-
tify the somas with respect to the neurites, if we compute the Directional Ratio inside the al-
ready segmented neuronal structure at an appropriate scale and set a small threshold. The
existence of such a threshold even in the discrete setting was verified numerically in [31].

For the discrete implementation of the Directional Ratio, in this paper, we will use a discrete
version of the shearlet transform defined in Section 1, of the form

Sf ðj; ‘; kÞ ¼ h f ;cj;‘;ki:

Here the generator function ψ is compactly supported, with support contained in a rectangle
whose length is controlled by the scaling parameter j 2 N, the orientation is controlled by ℓ 2 Z

and the location is controlled by k 2 Z
2. As we will show below in our numerical tests, when

we computed the discrete Directional Ratio on segmented images of neuronal cultures, we
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observed very low values inside the neurites and much larger values (close to 1) inside the
soma, according to the prediction of the theory [32]. However, near the boundary of the soma,
the Directional Ratio is low, due to the strong directionality induced by the boundary. As a re-
sult, the application of a threshold allows us to identify a region strictly inside the soma, but not
the entire soma. To detect the entire soma including the region close to the boundary, we need
to ‘expand’ the region we discovered using the method of the Directional Ratio. To achieve
this, we apply a classical level set method [33, 34].

Recall that the level set method is a variational approach introduced to track evolution of
curves and shapes without having to parameterize these objects. The main idea is to identify a
curve (or interface) Γ as the zero level set of a three-dimensional level set function ϕ and to fol-
low the changes of Γ = {(x, y) : ϕ(x, y) = 0} from the evolution of ϕ. The motion of ϕ is deter-
mined by the level set equation

@�

@t
¼ vjr�j;

where v is the speed of propagation of Γ in the normal direction. In our numerical tests, we
used the boundary curve of the region found by the Directional Ratio approach inside the
soma as the initialization curve Γ of the level set evolution equation. We set the speed of propa-
gation of Γ in the normal direction proportional toM − jr(Da f)j, wherer(Da f) is the gradi-
ent of the Directional Ratio, pointing in the direction of the interior of the soma, andM is the
maximum of the magnitude of the gradient of the Directional Ratio. This way, Γ evolves out-
wards, in the direction of the boundary of the segmented region (as shown in Fig. 2) and the ve-
locity of evolution becomes slower and eventually stops when Γ reached the boundary of the
segmented region. Note that, for our numerical implementation of the level set method, we
have adapted the implementation of B. Sumengen [35] based on [33].

Separation of clustered somas. The method described above to separate somas from
neurites in the segmented images of neuronal cultures may inadvertently detect multiple con-
tiguous somas as a single soma. To address this issue, we designed a refinement of the soma ex-
traction routine that proceeds as follows. After running our soma extraction routine, if the

Fig 2. Application of level set method to detect soma area. The figure shows a detail from a segmented
image of a neuron (MIP) where colors correspond to the values of the Directional Ratio values and range
between 1 (=red) and 0 (=blue). The application of the threshold value 0.9 identifies a region strictly inside the
soma, with boundary curve Γ (in the left panel). The level set method evolves the boundary curve Γ with a
velocity in the normal direction (indicated by the arrows in the right panel) that depends on the magnitude of
the gradient of the Directional Ratio.

doi:10.1371/journal.pone.0121886.g002
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resulting soma area is too large (according to a criterion described below), we re-compute the
Directional Ratio at a coarser scale, that is, by changing the scale parameter j in such a way that
the supports of the analyzing functions are longer. By measuring the strength of the directional
coherence at a coarser scale, the application of a threshold on the Directional Ration will pro-
duce some smaller regions contained in the inner part of the segmented area. This is illustrated
in Fig. 3. Next, similar to the above procedure, we apply the level set method by using the
boundary curves of these inner regions as the initialization curves of the level set evolution
equation. As the numerical test below will show, by propagating these curves until they touch
each other, we are able to separate contiguous somas.

We still need to clarify how to determine if the soma area detected by the algorithm is too
big. This situation is interpreted as an indication that multiple somas appear in the MIP of the
image as one contiguous soma region. In fact, we assume that somas in these images have simi-
lar surface areas (obviously, not similar shapes in general) and this observation applies to pri-
mary neuronal cultures which have fairly homogeneous populations. For instance, in our
examples below, the vast majority of neurons in the cultures derive from pyramidal-like princi-
pal cells. To separate these large regions into multiple contiguous somas, we assume that soma
areas are normally distributed. In practice, we applied the Kolmogorov-Smirnov test to validate
this assumption on a representative set of confocal images of neuronal cultures and found that

Fig 3. Separation of clustered somas. The figure illustrates the application of the multiscale Directional Ratio in combination with the level set method to
separate contiguous somas on the MIP of a confocal image of a neuronoal network culture. (A) Segmented image (detail). (B) Directional Ratio plot using
directional filters of length 20 pixels (note that the diameter of a soma is about 40 pixels). (C) The blue region shows the points where the Directional Ratio
exceeds the threshold 0.9, identifying the more isotropic region. (D) Directional Ratio plot using directional filters of length 40 pixels; to note that the larger
values of the Directional Ratio are now concentrated within a smaller set inside the blob-like regions. (E) The blue region shows the points where the
Directional Ratio in panel D exceeds the threshold 0.9, identifying the more isotropic region; note that contiguous somas are now split into two regions.
(F) Soma detection obtained from the application of the level set method, using the initialization curves determined by the boundary of the initial soma
region in (E).

doi:10.1371/journal.pone.0121886.g003
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our assumption is correct. Based on this observation, we used the 3-σ rule as a criterion to iden-
tify regions containing multiple somas. That is, if the detected area differs from the expected
soma area more than three times the estimated standard deviation, then we conclude that the
area contains two somas. Similarly, for the case of multiples contiguous somas, we can argue
that if a detected area differs from N times the expected soma area more than three times the
standard deviation, then we conclude that the area contains N+1 somas. In practice, however,
we found that it is extremely rare to find more than two contiguous somas in typical fluores-
cence images of neuronal cultures. Yet, as we observed, the method that we described can be
applied to multiple contiguous somas.

Note that, in our implementation of the algorithm, the soma detection and separation of
contiguous somas are processed automatically, without external intervention. Following the
computation of Directional Ratio with filters of length 20 pixels (about 1/2 of a typical soma’s
diameter), if the criterion indicated above signals the presence of areas containing two somas,
then the Directional Ratio is re-computed using filter length of 40 pixels (about the diameter of
a typical soma). This is illustrated in Fig. 3.

3D soma detection algorithm
In this section, we present an algorithm for the 3D detection of soma location and surface mor-
phology from confocal image stacks of neuronal cultures. As indicated above, it is very chal-
lenging to extract volumetric information in this situation, due to the small number of pixels
(typically about 15–30 pixels) available along the z direction and to the very low contrast of the
images at the bottom of the stack. However, we present a method that is able to recover the sur-
face morphology and capture the volume of the soma.

Our approach follows the procedure shown in Fig. 4 and it consists of the following steps:
(1) a preprocessing routine to denoise the images and enhance the contrast of the images locat-
ed at the bottom of the stack; (2) a 3D de-blocking routine that uses the 2D soma detection rou-
tine from above to extract subvolumes containing a single soma; (3) a surface detection routine
based on the application the shearlet transform; (4) a routine that extracts the soma volume
starting from the surface information. The sections below discuss each step in detail.

Data preprocessing. Our preprocessing stage includes a denoising algorithm which is the
same shealet-based algorithm described above for the 2D case and is applied to each image of
the stack. However, we found that, even after denoising, the level of fluorescent intensity in the
images was still rather uneven and this may cause some difficulties in the successive processing
stages (e.g., holes in the extracted solid). To mitigate this effect, we applied a simple smoothing
filter that is implemented by convolving the image stack with a 3D Gaussian kernel of size 33

and standard deviation σ = .6. The value of σ and the size of the filter were determined after ex-
tensive numerical testing to provide the most satisfactory performance for surface detection.
Fig. 5 illustrates our preprocessing method on a representative image of a neuron from a 3D
confocal stack.

Deblocking. The 3D image stacks are deblocked into sub-stacks containing a single soma
to reduce computational cost and simplify the processing needed to extract the surface mor-
phology of the soma.

In confocal images of neuronal cultures, it is extremely rare to find completely overlapped
somas. Thus, it is possible to partition the image plane into subregions containing a single
soma. To deblock the 3D image stacks, we utilized the 2D soma detection algorithm presented
above. From the output of this algorithm, we obtained information about the spatial localiza-
tion of each soma from two-dimensional MIPs in directions parallel to each coordinate axis.
We applied on these 2DMIPs the 2D-soma detection algorithm to derive masksMi in the 2D-
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image plane (that we identify each time with the xy-plane) such thatMi(x, y) = 1 if (x, y) be-
longs to the support of the i-th soma (in the image plane) andMi(x, y) = 0 otherwise. Finally,
we obtained the 3D sub-stack containing the i-th soma as the sub-stack associated with the re-
gion of the image plane whereMi = 1. This non-necessarily rectangular mask tightly encloses
each soma and contains the 2D-support region of the soma within each image slice.

Surface detection. The detection of the somas’ surface was achieved using a specialized
shearlet-based surface detection routine that was developed by some of the authors [22, 23].
This routine was applied within the 3D subvolumes identified in the deblocking step.

Fig 5. Image preprocessing. (A) MIP image of a representative neuron from a confocal image stack. (B) Shearlet-based denoised version of the same
image. (C) Smoothed version of the denoised image, where the smoothing is obtained by convolving the image with a Gaussian kernel of size 3 × 3 and
standard deviation σ = .6

doi:10.1371/journal.pone.0121886.g005

Fig 4. Proposed algorithm for 3D detection of soma location and surfacemorphology.

doi:10.1371/journal.pone.0121886.g004
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The advantage of applying the surface detection routine within these smaller volumes rather
than over the entire stack is that the run-time of the algorithm is significantly reduced despite
the linear computational cost growth with the increase of volume size. Fig. 6 illustrates the ap-
plication of our surface detection routine for the extraction of the upper soma region from con-
focal image stacks of neuronal cultures. The figures show that this approach is very efficient at
detecting the upper section of the soma’s surface. However, we found that, due to the very low
image contrast in the bottom part of the stack, the algorithm is unable to extract a complete
surface boundary in the bottom section of the soma, even though the mask we found above
tightly encloses the soma.

Volume extraction. Due to the difficulty in extracting the surface boundary of the soma in
the bottom section of the confocal image stack, we cannot directly compute the volume of the
soma from its surface information. Fig. 7 shows the bottom slices from a typical confocal image
stack. Panels in this figure show that it is difficult to identify the soma’s contour.

Unfortunately, the application of a conventional image enhancement approach may also
fail to improve the low signal-to-noise ratio of the images. On the other hand, the inspection of
the images suggests that the soma’s support region does not change significantly from an opti-
cal section to the next one in this region of the stack (by contrast, there is often significant vari-
ability in the top optical sections). Therefore, we applied the following simple, yet effective
strategy to detect a soma’s 3D support in each image stack. We computed the average of three

Fig 6. Shearlet-based surface detection of a soma. The figure shows two views of the surface morphology reconstruction of a soma obtained by
processing a confocal image stack with the shearlet surface detection routine.

doi:10.1371/journal.pone.0121886.g006

Fig 7. Bottom stack images.Representative images extracted from the bottom section of a confocal image stack of a neuronal culture. (A) Bottom image of
the confocal stack; it is located the farthest from the light source. (B-C) Successive images in the stack, showing that the image contrast degrades
significantly at the bottom of the confocal image stack.

doi:10.1371/journal.pone.0121886.g007
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successive images in a substack and use this value as an intensity threshold for the correspond-
ing image. We applied this thresholding approach within the region identified by the mask we
obtained from the 2D soma detection algorithm. We applied this approach only for the images
located in the bottom half of the substack. Note that the extracted region may still contain
some gaps. Hence, we applied a combination of filling and erosion operators [36, 37] to im-
prove soma detection. An illustration of the application of this approach is given in Fig. 8
where we show a representative image of a neuron from the bottom of a confocal stack, the bi-
nary mask of the region obtained from the application of this localized thresholding strategy,
and the final detected soma obtained after the application of the morphological operators. We
remark that this simple thresholding procedure is successful because it is applied inside the
box obtained by the masksMi which tightly encases the soma.

After having used the shearlet-based surface detection routine, we combined the regions the
soma occupies in the images of the bottom half of the stack with the respective regions in the
images of the top half of the stack to extract the entire volume. Fig. 9 shows some examples of
soma extraction in 3D from confocal image stacks of neuronal cultures using the procedure de-
scribed above. In each cases, the 3D image stacks consist of 512 × 512 × 25 voxels.

Results
In this section, we illustrate the application of our soma detection algorithms on several confo-
cal image stacks of neuronal cultures. For our tests, we considered several ‘standard’ field-of-
view images in low-density neuronal cultures, as commonly used in phenotypic screenings of
analytes for drug-discovery or biomarker identification (cf. [5, 6, 38, 39]). These images contain
a relatively small number of neurons, typically about 5–10. We show below that our algorithm
can automatically extract soma locations from any such image in about 40 seconds. Note that a
large number of such images, usually 50–100 or more, need to be analyzed in studies like those
in the cited literature. As we further explain below in the Discussion, our algorithms are scal-
able and can be applied without changes to larger images of neuronal cultures containing more
neurons. To illustrate this capability, we also show the application of the soma detection algo-
rithm on a tiled and stitched large field-of-view image containing more than 40 neurons.

2D soma detection
We considered ten image stacks with different sizes to test our 2D algorithm for soma detec-
tion. The stacks we considered comprise between 10 and 25 images each and contain between

Fig 8. Extraction of soma support. The figure illustrates the detection of the cross section of the soma from a representative image taken from the bottom of
a confocal image stack. (A) Denoised image. (B) Region obtained by applying the thresholding strategy within the region identified by the 2D mask as
described in the text. (C) Detected support region obtained after applying a combination of filling and erosion operators to the image from Panel B.

doi:10.1371/journal.pone.0121886.g008
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2 and 8 neurons. From each stack, we generated the MIP images and then processed the result-
ing 2D images using the algorithm described above. Fig. 10 illustrates the various steps of our
algorithm on a representative MIP image from this set of ten image stacks. In particular, it
shows the pre-processing, segmentation and soma detection on an images of size 512 × 512
pixels containing eight somas. The figure also illustrates the capability of the algorithm to sepa-
rate contiguous somas, using the method of Directional ratio described above.

For the validation of the algorithm, we first tested the ability to identify the correct somas
and separate the contiguous ones. The results are reported in Table 1 and show that the algo-
rithm is able to correctly identify and separate the somas in all 10 confocal image stacks.

To quantitatively validate the performance of our algorithm on soma segmentation, we em-
ployed standard statistical measures of the performance of a binary classification test [40]
whose definitions are as follows. The True Positive Rate TPR (also called Sensitivity) measures
the proportion of correctly identified soma pixels with respect to the total number of true soma
pixels, which are manually identified by a domain-expert (who identifies somas without knowl-
edge of the algorithm results). That is, denoting by TP (= true positive) the number of correctly
identified soma pixels and by FN (= false negative) the number of true soma pixels incorrectly

Fig 9. 3D soma detection. (A—B) Visualization of two representative image stacks of neuronal cultures. Note that the stacks have a very limited extension
along the z direction where less that 10 μm are available, corresponding to about 25–30 optical slices. (C—D) The images illustrate, in red color, the detection
of the somas from the confocal image stacks shown above.

doi:10.1371/journal.pone.0121886.g009
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Fig 10. Illustration of 2D soma detection algorithm. (A) Denoised image, obtained using a shearlet-based denoising routine on the MIP of the image
stack. Image size = 512 × 512 pixels (1 pixel = 0.28 × 0.28μm). (B) Segmented binary image. (C) Directional Ratio plot; the values range between 1, in red
color (corresponding to more isotropic regions), and 0, in blue color (corresponding to more anisotripc regions); note that the Directional Ratio is only
computed inside the segmented region, i.e., inside the red region in Panel B. (D) Detection of initial soma region, obtained by applying a threshold to the
values of the Directional Ratio in Panel C. (E) Soma detection, obtained by applying the level set method with the initialization curve determined by the
boundary of the initial soma region in Panel D. (F) Separation of contiguous somas; two regions from Panel E are recognized as too large and hence divided
using the level set method.

doi:10.1371/journal.pone.0121886.g010

Table 1. Validation of soma count.

Stack Number of somas Correct detection False detections Contiguous Soma Presence

Stack 1 7 7 0 No

Stack 2 6 6 0 Yes

Stack 3 7 7 0 Yes

Stack 4 8 8 0 Yes

Stack 5 4 4 0 No

Stack 6 7 7 0 No

Stack 7 5 5 0 No

Stack 8 4 4 0 No

Stack 9 2 2 0 No

Stack 10 5 5 0 No

Performance on soma detection and separation of contiguous somas.

doi:10.1371/journal.pone.0121886.t001
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rejected, we define:

TPR ¼ TP
TP þ FN

:

The False Positive Rate FPR (which is the complement of the Specificity) measures the propor-
tion of pixels incorrectly identified as soma pixels with respect to the total number of true soma
pixels. That is, denoting by FP (= false positive) the pixels incorrectly selected as soma pixels,
we adopted a special rate for the purposes of this work defined by

FPR ¼ FP
TP þ FN

:

This rate is a penalty akin to wrong soma pixel detections. When our FPR is compared with the
traditional FPR given by

FPR ¼ FP
TN þ FP

;

one realizes that the commonly used FPR would be practically equal to zero because false soma
detections are always in numbers that are an order of magnitude less than the number of back-
ground voxels, due to the inherent sparsity of the neuronal tissue in these images. Hence, we
decided to introduce a new metric which expresses false soma detections as a percentage of
soma volume measured in pixels/voxels. Finally, the Dice Coefficient DC (also called F1 score),
that is used to compare the similarity between two samples or measures, is

DC ¼ 2TP
2TP þ FN þ FP

:

Note that the denominator 2TP + FN + FP = TP + FP + FN + TP is the sum of the detected pix-
els and the true soma pixels.

The results, reported in Table 2 show the True Positive Rate, False Positive Rate and Dice
Coefficient for the somas shown in Fig. 11. The results in the tables show that our method
yields average TPR equal to 0.95, indicating that we get a very high proportion of true soma
pixels; the value of the average FPR is 0.18, indicating that our approach tends to err on the
side of false positives (i.e., we tend to over-segment). The average Dice coefficient is 0.89, indi-
cating that the automated soma detection is very close to the manual segmentation overall.

To illustrate the capabilities of our approach on a larger field-of-view image, we applied our
2D soma detection algorithm on a tiled and stitched large field-of-view image of size
1894 × 1894 pixels containing about 45 neurons. The soma detection and segmentation result
is reported in Fig. 12. The figure shows that our algorithm can reliably detect essentially all
somas also in this larger image. Note that the soma detection algorithm is not expected to work
for the somas overlapping the border of the image, as their shapes may be inconsistent with the
model used by our method based on the Directional Ratio. Our method is also very effective in
separating contiguous somas, even though it fails in some cases. About the center of the figure,
three contiguous somas are correctly separated (shown in light blue, green and orange colors);
however, in the top right region, where there is another set of three contiguous somas, the algo-
rithm is only able to separate two of them. This is due to the fact two of the three soma are rath-
er small and the area they occupy is not recognized as a location of multiple somas.

3D soma detection
We considered several image stacks with different sizes to test our 3D algorithm for soma de-
tection. Some of these stacks are shown in Fig. 9. The image stacks were processed using the
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3D algorithm presented above and some representative visual results are shown in the same
Figure.

To validate the performance of our shearlet-based surface detection routine, we used a syn-
thetic 3D image consisting of an ellipsoid and the Pratt’s figure of merit as objective measure
of performance.

The Pratt’s Figure of Merit was originally introduced by Pratt to assess the performance of
edge detectors [41] and is defined to penalize (i) the missing true edge/boundary points (false
negatives), (ii) the points miss-classified as edge points due to noise (false positives) and (iii)
the failure to detect the correct edge location. Given the detected edge pixels NI and the true
edge pixels NB, the Pratt’s Figure of Merit is defined as:

FOM ¼ 1

max ðNI;NBÞ
XNB

i¼1

1

1þ a d2
i

where di is the distance between a detected edge pixel and the nearest true edge pixel, and a ¼ 1
9

is an empirical calibration constant. FOM varies in the range [0, 1], where 1 is the optimal
value. Even though Pratt’s FOM was originally defined for edges in planar images, it can be
adapted to assess the quality of surface detection. We tested the performance of our shearlet-
based surface detection algorithm, assessed in terms of the Pratt’s FOM, on an ellipsoid that is

Table 2. Segmentation performance.

Image and soma TPR FPR DC

A 1 0.83 0.04 0.88

A 2 0.95 0.06 0.94

A 3 0.97 0.09 0.94

A 4 0.84 0.08 0.87

A 5 0.97 0.05 0.96

A 6 0.98 0.06 0.96

A 7 0.85 0.09 0.87

B 1 0.98 0.14 0.92

B 2 0.79 0.12 0.82

B 3 0.92 0.08 0.92

B 4 0.99 0.14 0.92

B 5 1 0.6 0.76

B 6 0.94 0.3 0.83

B 7 0.99 0.18 0.91

C 1 0.97 0.09 0.94

C 2 0.99 0.12 0.93

C 3 0.99 0.49 0.79

C 4 0.99 0.15 0.92

C 5 0.94 0.28 0.84

C 6 1 0.31 0.86

C 7 0.98 0.25 0.88

average 0.95 0.18 0.89

Performance metrics results on the soma segmentation of Fig. 11. Labels A, B and C refer to panels A, B

and C, respectively, of Fig. 11. TPR = True Positive Rate, FPR = False Positive Rate; DC = Dice

Coefficient.

doi:10.1371/journal.pone.0121886.t002
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convolved with a Gaussian smoothing kernel, for varying choices of the standard deviation σ.
We found that the value of FOM is above 0.9, implying negligible loss in detection accuracy, as
long as σ is below 0.6.

We recall that our algorithm for the extraction of the volume of the soma from the 3D con-
focal image stacks combines the information of the surface of the soma on the top half of the
stack, with the information about the soma’s support in the bottom half of the stack, extracted
with the localized thresholding strategy described above. Similar to the 2D case, we validated
the performance of the detection of the soma volume using True Positive Rate, False Positive
Rate and Dice Coefficient. Table 3 reports the performance metrics, in terms of the True Posi-
tive Rate, our special False Positive Rate and Dice Coefficient, for several somas extracted from
the image stacks of Fig. 9. Note that stack 1 has dimensions 142.86μm(512) × 142.86μm(512) ×

Fig 11. Performance of soma segmentation. 2D segmentation and soma detection of representative MIP images. The Performance metrics for the
segmentation of the somas contained in these images are reported in Table 2.

doi:10.1371/journal.pone.0121886.g011

Fig 12. 2D soma detection on large field-of-view image. Left: Tiled and stitched confocal fluorescent image (MIP view) of a neuronal culture. Image
size = 1894 × 1894 pixels (1 pixel = 0.28 × 0.28μm). (B) Segmented binary image. Right: Soma detection and separation of contiguous somas. Segmented
neurites are shown in red color. Detected somas are shown in light blue; in case of contiguous somas, the separated somas appear in green and orange
colors.

doi:10.1371/journal.pone.0121886.g012
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9.30μm(31) (in parenthesis is the pixel number). Similarly for stack 2: 142.86μm(512) ×
142.86μm(512) × 7.80μm(26); for stack 3: 142.86μm(512) × 142.86μm(512) × 8.70μm(29); for
stack 4: 142.86μm(512) × 142.86μm(512) × 9.00μm(30). As in the 2D case, the gold standard
for the metrics used is the manual segmentation obtained by a domain expert, where the do-
main expert extracted the boundary of the soma in each optical slice in order to derive the vol-
ume. Note that the performance values are slightly lower that the 2D measures. This may be
attributed to the difficulty in assessing the soma volume in the lowest optical slices, where the
image contrast is very low; to the uncertainty associated to the slice-by-slice manual validation,
and to the fact that surface detection is a natively 3D process eventually interpolating between
neighbouring voxels in consecutive optical slices.

Computational efficiency, hardware and software
We implemented the numerical codes for the method illustrated above using MATLAB 7.12.0
(R2011a). The tests for the 2D soma detection were performed using a MacBook with Intel
Core i7 2.66 GHz and 4 GB RAM. Even though we did not optimize the computational effi-
ciency of the routines, the computation times were very reasonable. On a 2D image of size
512 × 512 pixels, the average computational time for the shearlet-based denoising was approxi-
mately 11 seconds; the average computational time for the 2D segmentation routine was ap-
proximately 8 seconds; the computational time of the Directional Ratio routine that was used
to initialize the soma detection depended slightly on the choice of parameters (number of di-
rectional bands and filter length) and ranged between 0.2 and 0.6 seconds; the average compu-
tational time for the level set method implementation and completion of soma segmentation
was about 25 seconds. Tests for the 3D soma detection were performed using MATLAB
7.10.0.499(R2010a) on a 64 bit window 7 machine with Intel Core i5 2.50 GHz and 4 GB RAM.
For the 3D soma detection, each image stack was first denoised slice-by-slice using the 2D
Shearlet based routine indicated above. On an image stack of size 512 × 512 × 30, the average
computational time for denoising was about 330 seconds, corresponding to an average of
about 11 seconds for denoising each slice. The 3D soma surface extraction and volume con-
struction took on average 155 seconds for a single soma. Note that this 3D routine calls the 2D-
soma detection routine, thus the overall computational time is affected by the number of direc-
tional filters used in the implementation of the 3D shearlet transform. In our tests, we used 12
directional filters. Our Matlab routines for shearlet-based denoising and Directional Ratio are

Table 3. 3D Segmentation performance.

Stack, Soma TPR FPR DC

Stack 1, soma 1 0.86 0.06 0.90

Stack 1, soma 2 0.88 0.10 0.89

Stack 2, soma 1 0.79 .07 0.85

Stack 2, soma 2 0.83 0.10 0.86

Stack 2, soma 3 0.83 0.11 0.86

Stack 3, soma 1 0.78 0.05 0.85

Stack 4, soma 1 0.95 0.23 0.87

Average 0.85 0.10 0.87

Performance metrics results on 3D soma segmentation. TPR = True Positive Rate, FPR = False Positive

Rate; DC = Dice Coefficient.

doi:10.1371/journal.pone.0121886.t003
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available at www.math.uh.edu/~dlabate/software.html. As mentioned above, we used the level
set method implementation of Sumengen [35].

Discussion
The methods we proposed for the automated detection of soma location and morphology in
confocal images of neuronal cultures is scalable and can be easily applied to images larger than
those considered in this paper, containing a larger number of cells. In fact, all steps of the algo-
rithm, i.e., preprocessing, segmentation and soma extraction, can be performed without
changes on larger images, provided that hardware can manage the data size (e.g., sufficient
computer RAM). The computational cost of our algorithms depends linearly on the size of the
data, which is reasonable for most applications. Several standard methods can be applied for
speed improvement and management of larger data sets within the proposed framework.

The routines for denoising and surface detection, in particular, rely on the discrete shearlet
transform. These routines are scalable and their computational cost grows linearly with the
data size [23, 24]. Recently, a faster implementation of the discrete shearlet transform that uses
a Graphic Processor Unit (GPU) was introduced and was reported to achieve a 20–30 times
speed improvement over the Matlab implementation used for the results reported in this paper
[42]. This implementation can be easily adapted to our algorithm since it implements the same
shearlet decomposition and the code is publicly available [42].

The main computational cost of our algorithms is due to the routine for the soma segmenta-
tion that applies a level set method and requires the numerical solution of a partial differential
equation. This routine is scalable and a GPU implementation was proposed [43] that could
possibly be adapted to achieve computational speed improvement.

Parallelization is also a valuable strategy for handling larger images and reducing computa-
tional time of the algorithm. The deblocking strategy used in our method to separate the image
stacks into sub-volumes makes it possible to parallelize our routines for volume and surface ex-
traction. The level-set method can also be applied in parallel for each soma, following the appli-
cation of the Directional Ratio routine. However, the Directional Ratio routine must be
computed for each image in a stack, in order to identify soma locations and possible
contiguous somas.

The accuracy of our algorithms critically depends on the segmentation routine since the
soma area is found within the segmented region. Any pixels discarded during segmentation
will not be classified as soma pixels. Despite this potential weakness, we found that the segmen-
tation routine is very reliable for the type of data we consider, as clear the performance metric
results showing consistently high values for the True Positive Rate. Consequently, we consis-
tently identify pixels in neurites with high accuracy during segmentation. On the other hand,
the performance metric tables show that, even with respect to the very penalizing FPR we
adopted, we score reasonably low values of False Positive Rate. However, in some cases, this pe-
nalizing FPR tends to be relatively high indicating that, in general, we tend to positively identify
a non-negligible number of pixels that are not in the soma. We attribute the main cause of this
type of error to the level set method and, more precisely, the fact that the level curve propagated
by the evolution equation does not always stop within the soma. For example in the detection
of soma 5 in Fig. 11, Panel B, and soma 3 in Fig. 11, Panel C, we measure large values of FPR
because the level set curve is propagated beyond the soma and partially inside the neurites.
Note that, in these cases, the shape of the somas is rather elongated and the neurites emerging
from the somas are not very thin, making it rather difficult to establish where the soma ends
and the neurites start. Nevertheless, we think that it is possible to refine the algorithm in order
to control this error in future work. For example, we could introduce a constraint or a penalty
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term in the level set routine to ensure that the detected soma region does not become
too elongated.

Even though our algorithms were designed to process confocal images of neuronal cultures,
several of our ideas are applicable to other types of imaging data. In particular, the segmenta-
tion routine has been tested on other confocal image stacks [28] and is expected to work on
brightfield microscopy images as well. Similarly the method of Directional Ratio and surface
detection based on the shearlet transform are expected to work with other types of imaging
data. In addition, our shearlet-based surface detection routine can be considered as a useful al-
ternative to Rayburst sampling methods used by other authors, such as [16]. With respect to
the Rayburst sampling method, our approach is computationally less intensive as the shearlet
transform requires a number of computation essentially linear with the data size. Moreover, it
is less sensitive to local irregularities of a surface due to the intrinsic smoothing effect of shear-
let filtering. On the other hand, our de-blocking routine is specifically designed for confocal
images of neuronal cultures, where only a small number of pixels are available along the z axis
and neurons don’t overlap along the z direction. For neuronal tissues, where it is possible to
have higher numbers of optical slices, neurons may overlap in a truly 3D sense. In this latter
case, we anticipate that de-blocking can be adapted to resolve contiguous cells in each of the
three coordinate planes and thus separate in 3D contiguous cells.

Conclusion
We have introduced a novel method for the automated detection of soma location and mor-
phology in confocal images of neuronal cultures. In addition to the usual difficulties associated
with processing fluorescent images, this task presents an additional challenge in that these
types of confocal image stacks usually contain a small number of images (about 15–25). Conse-
quently, only a small number of pixels are available along the z-direction and the use of stan-
dard 3D filters to process the data volume is inefficient or impractical. The approach we
developed addresses these challenges by relying on a number of innovative ideas and tech-
niques ranging from Fourier Analysis and differential equations, to statistics and computer vi-
sion. Accurate extraction of the somas in MIP images is achieved using an SVM-based
segmentation routine followed by the application of Directional Ratio, a method derived from
the theory of directional multiscale representations, and a level set method. This approach is
also applied to reliably and efficiently separate contiguous somas in MIP images. Next, assisted
by the 2D soma detection result, the accurate extraction of the surface and volume of the soma
from the 3D image stack is obtained with an application of another multiscale method, the
shearlet transform.

Automated detection and segmentation of somas in confocal images of neuronal cultures is
a fundamental analytical tool not only for the identification and discrimination of neurons but
more generally for the detection, analysis and profiling of complex phenotypes from cultured
neuronal networks. The methods proposed and illustrated in this paper will facilitate the devel-
opment of a high-throughput quantitative platform for the study of neuronal networks for ap-
plications including High Content analysis.
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