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Abstract. Region-of-interest computed tomography (ROI CT) aims at re-
constructing a region within the field of view by using only ROI-focused pro-

jections. The solution of this problem is known to be challenging since CT

reconstruction methods designed to work with full projection data may per-
form poorly or fail completely when applied to ROI CT. In this work, we study

the ROI CT problem in the presence of measurement noise. The presence of

noise motivates relaxing data fidelity and data consistency requirements of to-
mographic reconstruction. Under the assumption of a robust width prior that

guarantees a form of geometrical stability for data satisfying appropriate spar-

sity norms, we derive error bounds for robust and stable recovery. Based on this
framework, we introduce a novel iterative reconstruction algorithm from ROI-

focused projection data that is guaranteed to converge with controllable error
while satisfying predetermined fidelity and consistency tolerances. Numerical

tests on experimental data show that our algorithm for ROI CT performs very

competitively with respect to state-of-the-art methods.

1. Introduction. Computed tomography (CT) is a non-invasive scanning method
that is widely employed in medical and industrial imaging to reconstruct the un-
known interior structure of an object from a collection of projection images. In
many applications of CT, one is interested in recovering only a small region-of-
interest (ROI) within the field of view at a high resolution level. Such applications
include contrast-enhanced cardiac imaging and surgical implant procedures where
it is necessary to ensure the accurate positioning of an implant. The ability of per-
forming accurate ROI reconstruction using only ROI-focused scanning offers several
potential advantages, including the reduction of radiation dose, the shortening of
scanning time and the possibility of imaging large objects. However, when pro-
jections are truncated as is the case for ROI-focused scanning, the reconstruction
problem may be severely ill-posed[1] and conventional reconstruction algorithms,
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Figure 1. Illustrations of recoverable regions for truncated pro-
jection data: (a) initial DBP methods [3, 5, 6] require at least one
projection view in which the complete object is covered, (b) inte-
rior reconstruction is possible given a known subregion [4, 7, 8, 9]
and (c) no assumptions are made other than that the shape of the
ROI is convex and approximate sparsity within a ridgelet domain
(this paper). The gray dashed line indicates the measured area on
the detector array for one particular source angle.

e.g., Filtered Back-Projection, may perform poorly or fail. Further, it is known
that the interior problem, where projections are known only for rays intersecting a
region strictly inside the field of view, is in general not uniquely solvable [1].

To address this challenge, methods for local CT reconstruction typically require
restrictions on the geometry and location of the ROI or some prior knowledge of the
solution inside the ROI. For instance, analytic ROI reconstruction formulas associ-
ated with the differentiated back-projection (DBP) framework [2, 3, 4] require that
there exists a projection angle θ such that for angles in its vicinity, complete (i.e.
non-truncated) projection data is available [3, 5, 6]; hence such formulas may fail if
the ROI is located strictly inside the scanned object (see illustration in Fig 1). Other
results show that restrictions on the ROI location can be removed provided that the
density function to be recovered is known on a subregion inside the ROI (Fig. 1(b))
or has a special form, e.g., it is piecewise constant inside the ROI [4, 7, 8, 9].
However, even when ROI reconstruction is theoretically guaranteed, stable numer-
ical recovery often requires require a regularization, e.g., L1-norm minimization of
the gradient image [4, 8] or singular value decomposition of the truncated Hilbert
transform [9, 10].

One major aim of this paper is to derive reconstruction performance guarantees
for ROI CT in the setting of noisy projection data. To this end, we introduce a
novel theoretical approach based on a robust width prior assumption [11, 12], a
method guaranteeing a form of geometrical stability for data satisfying an appro-
priate sparsity condition. Using this framework, we can establish error bounds for
noisy reconstruction in both the image and projection spaces. A novelty of our
approach is that the image and projection data are handled jointly in the recovery,
with sparsity prior in both domains. Moreover, a measurement fidelity and con-
sistency requirements are relaxed to handle the presence of noise. This approach
leads to an extrapolation scheme for the missing projection data that is guided
by the data fidelity and consistency terms. Our implementation of the recovery is
then achieved by an iterative, Bregman-based convex optimization algorithm that
is adapted to our theoretical findings.

Iterative algorithms for CT reconstruction found in the literature typically fo-
cus on the minimization of a fidelity norm measuring the distance between observed
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and reconstructed projections within the ROI (i.e., not taking the image domain re-
construction error into account); see, for example, the simultaneous iterative recon-
struction technique (SIRT) [13], the maximum likelihood expectation-maximization
algorithm (MLEM) [14], the least-squares Conjugate Gradient (LSCG) method [15,
16], and Maximum Likelihood for Transmission Tomography (MLTR) [17]. We ob-
served that the performance of these methods on ROI CT reconstruction, in the
presence of measurement noise, is increasingly less reliable as the ROI size decreases.
To overcome this issue, our method relaxes the consistency requirement of the recon-
struction algorithm since measured data may fall outside the range of the forward
projection due to the noise. This added flexibility is especially advantageous when
another prior, namely the sparsity of solution, is included.

Sparsity assumptions have already been applied in the literature to reduce mea-
sured data and mitigate the effect of noise in the recovery from linear measure-
ments [18, 19]. However, most theoretical results are based on randomized mea-
surements that are different in nature from the deterministic way the projection
data is obtained in CT. Nevertheless, it is generally agreed that sparsity is a pow-
erful prior in the context of tomography when conventional recovery methods lead
to ill-posedness[20, 21]. In this paper, we have incorporated an assumption of ap-
proximate sparseness by minimizing the `1 norm of the wavelet coefficients of the
projected data in our recovery algorithm while retaining given tolerances for fidelity
and consistency of the recovered data. One of our main results is that we can guar-
antee that our iterative algorithm reaches an approximate minimizer with those
prescribed tolerances within a finite number of steps. To validate our method, we
also demonstrate the application of our algorithm for ROI reconstruction from noisy
projection data in the 2D fan-beam reconstruction. Our approach yields highly ac-
curate reconstructions and outperforms existing algorithms especially for ROIs with
a small radius.

The remainder of the paper is organized as follows. In Sec. 2, we formulate the
ROI reconstruction problem and introduce a notion of data fidelity and consistency
in the context of ROI CT. In Sec. 3, we recall the definition of robust width and
prove that, under appropriate sparsity assumptions on the data, it is feasible to find
an approximate solution of a noisy linear problem with controllable error. Based on
this formulation, in Sec. 4 we introduce a convex optimization approach to solve the
ROI CT problem from noisy truncated projections and show that we can control
reconstruction error under predetermined fidelity and consistency tolerances. We
finally present numerical demonstrations of our method in Sec. 5.

2. Data consistency and fidelity in the ROI reconstruction problem. In
this section, we introduce the main notations used for ROI CT and show how
the non-uniqueness of the reconstruction problem in the presence of noise leads to
two requirements, i.e., data fidelity and data consistency, that cannot be satisfied
simultaneously but can be relaxed.

Let W denote a projection operator mapping a density function f on R2 into
a set of its linear projections. A classical example of such operator is the Radon
transform, defined by

Wradonf(θ, τ) =

∫
`(θ,τ)

f(x) dx,

where `(θ, τ) = {x ∈ R2 : x · eθ = τ} is the line that is perpendicular to eθ =
(cos θ, sin θ) ∈ S1 with (signed) distance τ ∈ R from the origin. This transform
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maps f ∈ L2(R2) into the set of its line integrals defined on the tangent space of
the circle

T = {(θ, τ) : θ ∈ [0, π), τ ∈ R}.
Another classical example of a projection operator W is the fan-beam transform
[22].

The goal of ROI tomography is to accurately reconstruct a function from its
projections within a subregion inside the field of view, while the rest of the image
is essentially ignored. More precisely, let us denote the ROI by S ⊂ R2 and define
the subset of the tangent space associated with the rays that intersect the ROI S
by:

P(S) = {(θ, τ) ∈ T : `(θ, τ) ∩ S 6= ∅} .
Corresponding to the set P(S), we define the mask function M on T by

M(θ, τ) =

{
1, (θ, τ) ∈ P(S)

0, otherwise.
, (1) ?eq:maskfn?

We formulate the ROI reconstruction problem as the problem of reconstructing f
restricted to S from truncated projection data:

y0(θ, τ) = W̃f(θ, τ), for (θ, τ) ∈ P(S), (2) ?eq:problem?

where W̃ is the composition of the mask function M and the projection operator
W , i.e., W̃ = MW . For simplicity, we assume in the following that the ROI S ⊂ R2

is a disk with center pROI ∈ R2 and radius RROI > 0. In this case, it is easy to
derive that P(S) = {(θ, τ) ∈ T : |τ − pROI · eθ| < RROI}. The situation where S
is a disk is natural in practical situations due to the circular trajectory of the x-ray
source in many projection geometries.1

The inversion of W is ill-posed in general, and the ill-posedness may be more
severe in the situation where the projection data are incomplete, as in the case
given by (2). It is known that the so-called interior problem, where Wf(θ, τ) is
given only for |τ | ≤ a and a is a positive constant, is not uniquely solvable in
general [1]. A unique solution of the interior problem can be guaranteed if the
density function f is assumed to be piece-wise polynomial in the interior region
[23]. However, this assumes the ideal case of a noiseless acquisition and it leaves
the problem of stability in the presence of noise open.

To address the problem of reconstructing f from (2) in a stable way, a natural

choice is to look for a solution f̂ ∈ L2(R2) that minimizes the L2 error (cf. [6])∥∥∥W̃f − y0

∥∥∥2

2
. (3) ?eq:L2recon1?

A general solution of this minimization problem is given by:

f̂ = W̃+y0 +
[
I − W̃+W̃

]
v (4) ?eq:LS-solution?

where v ∈ L2
(
R2
)
, I is the identity operator and (·)+

denotes the Moore-Penrose

pseudoinverse operator. The solution f̂ is not unique unless N
{
W̃
}

= {0} (here

N {·} denotes the null space), because then W̃+W̃ = I.

1More general convex ROIs can be handled by calculating the minimal enclosing disk for this
ROI and reconstructing the image inside this disk.
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Figure 2. Illustration of the parallel-beam projection geometry
and the regions corresponding to the object being imaged and the
ROI. (a) image domain, (b) Radon-transform domain.

Often, an additional regularity assumption is made to ensure uniqueness by min-

imizing ‖f̂‖22 = ‖W̃+y0‖22 + ‖
[
I − W̃+W̃

]
v‖22. This amounts to setting v = 0 and

consequently f̂ = W̃+y0.
In this paper, we investigate the reconstruction from truncated projections in

the presence of measurement noise. In this case, the ROI reconstruction problem
consists in recovering an image f from the noisy truncated data:

y0(θ, τ) = (MW ) f(θ, τ) + (Mν) (θ, τ) = W̃f(θ, τ) +Mν(θ, τ) (5) ?eq:noisemodel?

for (θ, τ) ∈ P(S), where ν denotes the noise term. If Mν 6= 0, ‖MWf−y0‖22 > 0 and
an arbitrary extension y of y0 may not be in the range of the truncated projection
operator W ; consequently, ‖y −Wf‖2 > 0. In the following, we will use y as a
separate auxiliary variable, denoting the extrapolated measurements of y0. Setting
tolerances, we formulate the two following constraints:{

‖My − y0‖22 ≤ α (data fidelity)

‖y −Wf‖22 ≤ β (data consistency)
(6) ?eq:constraints?

where α is a data fidelity parameter (chosen in accordance with the noise level) and
β is a data consistency parameter. By setting α = 0, a solution can be obtained that
maximizes the data fidelity with respect to the measurement data, i.e., My = y0.
Alternatively, setting β = 0 maximizes the data consistency of the solution, i.e.,
y = Wf , so that the data fidelity constraint becomes ‖MWf − y0‖22 ≤ α. In
the presence of noise, the parameters α and β generally cannot be set to zero
simultaneously, as y0 may not be in the range of W̃ .

The selection of α and β allows us to trade off data fidelity versus data consis-
tency, as illustrated in Fig. 3. By letting β > 0, data consistency errors are allowed
and the solution space of the ROI problem is effectively enlarged, giving us better
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Figure 3. Schematic illustration of the solution space for y, given
a current estimate f , as intersection of the balls ‖My − y0‖2 ≤ α

and ‖y −Wf‖2 ≤ β, as well as solutions favored by the sparsity
prior ‖y‖]. Data consistent solutions may have a non-zero data
fidelity, while data fidelity solutions are in general not consistent.
We control the reconstruction error by combining fidelity and con-
sistency constraints with the additional sparsity assumption.

control on the denoising and extrapolation process of y0. The leverage of the data
fidelity and data consistency constraints with the additional sparsity assumption
enables us to establish performance guarantees in both the image and projection
spaces. Our method will find a pair (y?, f?) where y? is an approximate extension
of y0 in (5) according to the data consistency constraint and f? is an approximate
image reconstruction according to the data fidelity constraint (6). Specifically, we
will define an iterative algorithm based on convex optimization which is guaranteed

to provide an approximation
(
ỹ?, f̃?

)
of (y?, f?) in a finite number of iterations

and is within a predictable distance from the ideal noiseless solution of the ROI
problem. We remark that, due to the non-injectivity of the truncated projection
operator, data fidelity in the projection domain does not automatically imply a
low reconstruction error in the image domain. To address this task, we introduce
a compressed sensing framework to control data fidelity and reconstruction error
by imposing an appropriate sparsity norm on both the projection data and the
reconstructed image.

3. Application of robust Width to ROI CT reconstruction. The robust
width property was introduced by Cahill and Mixon [11] as a geometric criterion
that characterizes when the solution to a convex optimization problem provides an
accurate approximate solution to an underdetermined, noise-affected linear system
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by assuming an additional structure of the solution space. This property is related to
the Restricted Isometry Property (RIP) that is widely used in compressed sensing,
especially in conjunction with randomized measurements [18]. We adapt the result
by Cahill and Mixon to our setting because it offers more flexibility than the usual
assumptions in compressed sensing and leads to an algorithmic formulation of ROI
reconstruction that includes a sparsity norm and a performance guarantee.

We start by defining a notion of compressed sensing space that provides the
appropriate approximation space for the solutions of the noisy ROI reconstruction
problem.

Definition 3.1. A compressed sensing (CS) space
(
H,A, ‖·‖]

)
with bound L con-

sists of a Hilbert space H, a subset A ⊆ H and a norm or semi-norm ‖·‖] on H such
that

1. 0 ∈ A
2. For every a ∈ A and z ∈ H, there exists a decomposition z = z1 + z2 such

that

‖a+ z1‖] = ‖a‖] + ‖z1‖]
with ‖z2‖] ≤ L‖z‖2.

Remark 1. We have the upper bound

L ≤ sup

{ ‖z‖]
‖z‖2

: z ∈ H \ {0}
}
. (7) ?eq:L_upperbound?

Remark 2. Suppose H is a Hilbert space, A ⊆ H, ‖·‖] is a norm such that

1. 0 ∈ A
2. For every a ∈ A and z ∈ H, there exists a decomposition z = z1 + z2 such

that 〈z1, z2〉 = 0 and

‖a+ z1‖] = ‖a‖] + ‖z1‖] , z2 ∈ A (8) ?eq:property?

3. ‖a‖] ≤ L‖a‖2 for every a ∈ A

Then
(
H,A, ‖·‖]

)
is a CS space with bound L.

This follows from the observation that, since some z2 ∈ A is orthogonal to z1,
then

‖z2‖] ≤ L‖z2‖2 ≤ L
√
‖z1‖22 + ‖z2‖22 = L‖z‖2.

Example 1. A standard example for a CS space is that of K sparse vectors [11].
This structure is defined by choosing an orthonormal basis {ψj}∞j=1 in a Hilbert

space H. The set A consists of vectors that are linear combinations of K basis
vectors. The norm ‖·‖] is given by

‖v‖] =

∞∑
j=1

|〈v, ψj〉| .

In this case, for any a ∈ A, which is the linear combination of {ψj}j∈J with |J | ≤
K and z ∈ H, we can then choose the decomposition z2 =

∑
j∈J 〈z, ψj〉ψj and

z1 = z − z2. We then see that (8) holds and, since a is in the subspace spanned by

{ψj}j∈J , by the equivalence of `1 and `2-norms for finite sequences, ‖a‖] ≤
√
K‖a‖2.
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Definition 3.2. A linear operator Φ : H → H̃ satisfies the (ρ, η) robust width

property (RWP) over B] =
{
x ∈ H : ‖x‖] ≤ 1

}
if

‖x‖2 < ρ ‖x‖]
for every x ∈ H s.t. ‖Φx‖2 ≤ η‖x‖2.

The following theorem extends a result in [11]. In particular, we consider an
approximate solution x̃? of x? such that ‖x̃?‖2 ≤ ‖x?‖2 + δ, in order to account for
data fidelity, consistency and sparsity trade-offs (see further).

Theorem 3.3. Let
(
H,A, ‖·‖]

)
be a CS space with bound L and Φ : H → H̃ a

linear operator satisfying the RWP over B], with ρ, η.

For x\ ∈ H, ε > 0, e ∈ H̃ with ‖e‖2 ≤ ε, let x? be a solution of

∆],Φ,ε

(
Φx\ + e

)
= arg min

x∈H
‖x‖] subject to ‖Φx−

(
Φx\ + e

)
‖2 ≤ ε.

Then for every x\ ∈ H and a ∈ A, any approximate solution x̃? of x? such that
‖x̃?‖2 ≤ ‖x?‖2 + δ, δ ≥ 0, satisfies

‖x̃? − x\‖2 ≤ C1ε+ γρ
∥∥x\ − a∥∥

]
+

1

2
γρδ,

provided that ρ ≤
(

2γ
γ−2L

)−1

for some γ > 2 and with C1 = 2/η.

Proof. See Appendix 6.1.

We now adapt the CS reconstruction theorem (Theorem 3.3) to the CT ROI
problem. We adopt the same notations as in Sec. 2 for the symbols W , M and ỹ0

and we treat the projection data f and image space data y jointly.

Theorem 3.4. Let H =
{

(y, f) : ‖ (y, f) ‖H = ‖f‖22 + ‖y‖22 <∞
}

, A ⊂ H and

E = {(y, f) ∈ H : y = Wf, My = ỹ0} ,

Let

Φ =

(
I −W
M 0

)
. (9) ?eq:Phi?

Suppose
(
H,A, ‖·‖]

)
is a CS space and Φ : H → H̃ satisfies the (ρ, η)-RWP over

the ball B]. Then, for every
(
y\, f \

)
∈ E, a solution (y?, f?),

(y?, f?) = arg min
(y,f)∈H

‖(y, f)‖] s.t. ‖My−ỹ0−ν‖2 ≤ αand‖y−Wf‖2 ≤ β (10) ?eq:problem-1?

satisfies:

‖f? − f \‖2 ≤ C1

√
α2 + β2 + C2ργ and ‖y? − y\‖2 ≤ C1

√
α2 + β2 + C2ργ.

where aforementioned conditions for C1, C2, ρ, γ are applicable.

Additionally, for all
(
y\, f \

)
∈ E any approximate solution

(
ỹ?, f̃?

)
to (10) with∥∥∥(ỹ?, f̃?)∥∥∥

]
≤ ‖(y?, f?)‖] + δ satisfies

‖f̃? − f \‖2 ≤ C1

√
α2 + β2 + C2ργ +

1

2
ργδ and

‖ỹ? − y\‖2 ≤ C1

√
α2 + β2 + C2ργ +

1

2
ργδ,
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where C1 = 2/η and C2 = infa∈A
∥∥(y\, f \)− a∥∥

]
, provided ρ ≤

(
2γ
γ−2L

)−1

for some

γ > 2.

Proof. Let e = (0, ν), x = (y, f), x\ =
(
y\, f \

)
Φx− Φx\ − e =

(
I −W
M 0

)(
y − y\
f − f \

)
−
(

0
ν

)
=

(
y − y\ −W

(
f − f \

)
M
(
y − y\

)
− ν

)
=

(
y −Wf

My − ỹ0 − ν

)
using

(
y\, f \

)
∈ E ⊂ H, i.e. y\ = Wf \ and My\ = ỹ0. Then

‖Φx−
(
Φx\ + e

)
‖2H = ‖y −Wf‖22 + ‖My − ỹ0 − ν‖22 ≤ α2 + β2

The conclusion then follows from Theorem 3.3, with ε =
√
α2 + β2.

Remark 3. Suppose a solution (y?, f?) exists. If the ROI problem has a unique
solution (y?, f?) ∈ H, then Theorem 3.4 shows that this solution is close to any(
y\, f \

)
∈ A, with error controlled by

√
α2 + β2.

If we do not know whether the ROI problem has a unique solution, but
(
y\, f \

)
∈

E , the space of consistent functions, satisfying data fidelity, then also in this case
our solution (y?, f?) is close to

(
y\, f \

)
as stated above.

In case we only obtain an approximate solution
(
ỹ?, f̃?

)
with

∥∥∥(ỹ?, f̃?)∥∥∥
]
≤

‖(y?, f?)‖] + δ then,
(
ỹ?, f̃?

)
is close to

(
y\, f \

)
, with an approximation error

controlled by

2

η

√
α2 + β2 + ργ inf

a∈A

(∥∥(y\, f \)− a∥∥
]

)
+

1

2
ργδ.

Note that the approximation error has three components: a first component depends
on the data fidelity and consistency parameters, a second component is determined
by the (worst-case) approximate sparsity of any plausible solution a ∈ A and the
third component is due to the approximate minimizer. In practice, exact numerical
minimization of (10) is difficult to achieve, as we will point out in Sec. 4.

Theorem 3.4 expresses error bounds for complete image and projection data,
i.e., irrespective of the ROI. However, the reconstruction of the exterior of the
ROI is severely ill-posed: due to the nullspace of Φ, impractically strong sparseness
assumptions are required to recover a stable reconstruction. Therefore, for a CS
space with RWP (ρ, η), we may expect the error bounds C1 and C2 to be very
large, especially when the radius of the ROI is small. To correct this situation, we
restrict RWP within a linear subspace of the Hilbert space so that error bounds are
obtained for linear projections onto a subspace spanned by a confined area such as
the ROI. The next theorem gives the framework for constructing such projections.

Theorem 3.5. Let H =
{

(y, f) : ‖ (y, f) ‖H = ‖f‖22 + ‖y‖22 <∞
}

,
E = {(y, f) ∈ H : y = Wf, My = ỹ0} and

Φ : H → H̃ =

(
I −W
M 0

)
. (11) ?eq:Phi-1?
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Figure 4. Commutative diagram of the measurement operator Φ
and the restricted measurement operator Φ′ (see Theorem 3.5).
The following relationship holds: PH̃′Φ = Φ′PH′ .

Let PH̃′ =

(
My

M

)
be an orthogonal projection of H̃ onto H̃′ ⊂ H̃, with

My defined such that MMy = M . Additionally, let PH′ =

(
My

Mf

)
be an

orthogonal projection of H onto H′ ⊂ H (see Fig. 4), with Mf and My intertwining
operators w.r.t. W (i.e., WMf = MyW ). The solution space A ⊂ H′. Let Φ′

denote the restriction of the measurement operator Φ to H′:

Φ′ : H′ → H̃′ = PH̃′ΦPH′ . (12) {?}

Suppose
(
H′,A, ‖·‖]

)
is a CS space and Φ′ satisfies the (ρ, η)-RWP over the ball

B]. Then, for every
(
y\, f \

)
∈ E, a solution (y?, f?) ∈ H′,

(y?, f?) = arg min
(y,f)∈H′

‖(y, f)‖] s.t. ‖My−ỹ0−ν‖2 ≤ αand‖My (y −Wf) ‖2 ≤ β

(13) ?eq:problem-1-1?
satisfies:

‖M
(
ỹ? − y\

)
‖2 ≤ ‖My

(
ỹ? − y\

)
‖2 ≤ C1

√
α2 + β2 + C2ργ and

‖Mf

(
f̃? − f \

)
‖2 ≤ C1

√
α2 + β2 + C2ργ (14) {?}

where C1 = 2/η and C2 = infa∈A
∥∥(y\, f \)− a∥∥

]
, provided ρ ≤

(
2γ
γ−2L

)−1

for some

γ > 2.

Proof. See Appendix 6.2.

Remark 4. Theorem 3.5 generalizes Theorem 3.4 to give performance guarantees
for stable reconstruction within the ROI: for a CS space with (ρ, η)-RWP, the opera-
tors My and Mf define a subspace H′ and determine the error bounds through (14).
We have some flexibility in the choice of these operators. In particular, M = MMy

implies that the orthogonal projection My is subject to ‖My‖2 ≤ ‖Myy‖2 ≤ ‖y‖2.
For practical algorithms using fan-beam and cone-beam geometries, calculating

Mf based on the relationship WMf = MyW is not trivial. The dependence of the
solution method on Mf can be avoided by solving (13) as follows:

(y?, f?) = arg min
(y,f)∈H

‖(y, f)‖] s.t. ‖My−ỹ0−ν‖2 ≤ αand‖My (y −Wf) ‖2 ≤ β,

(15) ?eq:problem-1-3?
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where the minimum is now taken over H instead of over H′. As we show in Exam-
ple 2 below, we can always choose My such that ‖PH′ (y, f)‖] ≤ ‖(y, f)‖] . Corre-
spondingly,

min
(y,f)∈H′

‖(y, f)‖] = min
(y,f)∈H

‖PH′ (y, f)‖] ≤ min
(y,f)∈H

‖(y, f)‖] .

Moreover, since H′ ⊂ H, we find that min(y,f)∈H′ ‖(y, f)‖] = min(y,f)∈H ‖(y, f)‖],
i.e., (15) gives the exact minimizer for (13). In case that, due to the use of a numer-

ical method, we only obtain an approximate solution to (15) with
∥∥∥(ỹ?, f̃?)∥∥∥

]
≤

‖(y?, f?)‖] + δ where
(
ỹ?, f̃?

)
is the true solution of (15), we have again the ap-

proximation bounds following from Theorem 3.4:

‖Mf

(
f̃? − f \

)
‖2 ≤ C1

√
α2 + β2 + C2ργ +

1

2
ργδ and

‖My

(
ỹ? − y\

)
‖2 ≤ C1

√
α2 + β2 + C2ργ +

1

2
ργδ.

Example 2. We construct a CS space (H′,A, ‖·‖]) for which Φ′, given by (11),

satisfies the (ρ, η)-RWP over B].

LetH =
{

(y, f) : y ∈ `2
(
Z2
)
, f ∈ `2

(
Z2
)}

. Let T be the discrete wavelet trans-
form on `2 (Z), with compactly supported wavelets, acting along the first dimension
of y (i.e., along the detector array position). Define the sparsity transform

Ψ =

(
T

TW

)
, (16) {?}

and the sparsity norm:

‖(y, f)‖] = ‖Ψ (y, f) ‖`1,2 =

∑
j

(∑
i

∣∣∣(Ty)ij

∣∣∣)2

+

(∑
i

∣∣∣(TWf)ij

∣∣∣)2
1/2

(17) {?}
where ‖Ψ (y, f) ‖`1,2 is a mixed `1,2 norm. Here, i is the index associated with
the offset and j is index associated with the angle. With this natural choice of
sparsifying norm (`1 norm of the wavelet coefficients in the projection domain) the
transform basis functions can be associated with the ridgelets [24]. Additionally,
define the solution space A as:

A =
{

(y, f) ∈ `2
(
Z2
)
| ∀j∈ Z :

(
(Ty):,j , (TWf):,j

)
is a K-sparse vector

}
(18) {?}

where (·):,j denotes a vector slice. Then for (y, f) ∈ A, we have that

‖(y, f)‖] ≤ C
√
K ‖(y, f)‖2 , (19) {?}

with C the upper frame bound of Ψ, or equivalently,

sup
y∈A

‖(y, f)‖]
‖(y, f)‖2

≤ C
√
K. (20) ?eq:csspace-bound?

Next, we need to construct a projection operator My such that M = MMy. For
our practical algorithm (see Remark 4), we require that ‖PH′ (y, f)‖] ≤ ‖(y, f)‖] .
In fact, this requirement can be accomplished by selecting a diagonal projection
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operator acting in the ridgelet domain for My, i.e., My = T ∗DyT with Dy a diagonal
projection:

‖PH′ (y, f)‖] =
(
‖TMyy‖2`1,2 + ‖TWMff‖2`1,2

)1/2
=
(
‖TMyy‖2`1,2 + ‖TMyWf‖2`1,2

)1/2
=
(
‖DyTy‖2`1,2 + ‖DyTWf‖2`1,2

)1/2
.

With this choice it follows that ‖DyTWf‖2`1,2 ≤ ‖TWf‖2`1,2 so that

‖PH′ (y, f)‖] ≤
(
‖Ty‖2`1,2 + ‖TWf‖2`1,2

)1/2
= ‖(y, f)‖] .

To ensure that MT ∗DyT = My so that also ‖My‖2 ≤ ‖Myy‖2 = ‖DyTy‖2, one
can design Dy as an indicator mask function that selects all wavelet and scaling
functions that overlap with the ROI projection P(S).

4. Sparsity-inducing ROI CT reconstruction algorithm (SIRA). In this
section, we present an algorithm to solve the constrained optimization problem:

(̂y, f) = arg min
(y,f)∈H

‖(y, f)‖] s.t. ‖My − y0‖2 ≤ α and ‖y −Wf‖2 ≤ β.

By Theorem 3.4, a solution or approximate solution of this problem will yield an
approximate solution of the ROI problem with a predictable error.

Algorithm 1. For y, f , y(i), f (i), p̃ and q̃ ∈ H, let the Bregman divergence be (see
[25]):

Dp̃,q̃
Ψp

(
y, f ; y(i), f (i)

)
= ‖(y, f)‖] −

∥∥∥(y(i), f (i)
)∥∥∥

]
−
〈
p̃, y − y(i)

〉
−
〈
q̃, f − f (i)

〉
.

With M and W as defined in Sec. 2, let the objective function H (y, f ; y0) be

H (y, f ; y0) =
β

2
‖My − y0‖2 +

α

2
‖y −Wf‖2 (21) ?eq:H?

where α > 0 and β > 0. The Bregman iteration is then defined as follows:

(y(i+1), f (i+1)) = arg min
(y,f)

Dp̃(i),q̃(i)

Ψp

(
y, f ; y(i), f (i)

)
+H (y, f ; y0) ; (22) {?}

p̃(i+1) = p̃(i) −∇yH
(
y(i+1), f (i+1); y0

)
;

q̃(i+1) = q̃(i) −∇fH
(
y(i+1), f (i+1); y0

)
.

We have the following result.

Theorem 4.1. Let δ̃ > 0. Assume that there exists a point (y\, f \) for which

H
(
y\, f \; y0

)
< δ̃. Then, if H

(
y(0), f (0); y0

)
> δ̃, for any τ > 1 there exists i? ∈ N

such that H
(
yi? , f i? ; y0

)
≤ τ δ̃. More specifically

H
(
yi, f i; y0

)
≤ δ̃ +

D0

i

with D0 = Dp̃0,q̃0
Ψp

(
y\, f \; y(0), f (0)

)
≥ 0.

To prove this result, we need the following observation showing that under the
Bregman iteration, the Bregman divergence and the objective function are both
non-increasing. The following result is adapted from [25, Proposition 3.2].
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Proposition 1. Let δ̃ > 0. Assume that, for a given (y\, f \), we have that

H
(
y\, f \; y0

)
< δ̃. Then, as long as H

(
y(i), f (i); y0

)
> δ̃, the Bregman divergence

between (y\, f \) and (y(i), f (i)) is non increasing, i.e.,

Dp̃i,q̃i
Ψp

(
y\, f \; y(i), f (i)

)
≤ Dp̃i−1,q̃i−1

Ψp

(
y\, f \; y(i−1), f (i−1)

)
(23) ?eq:D_decreasing?

and the objective function H, given by (21), is also non increasing,

H
(
y(i), f (i); y0

)
≤ H

(
y(i−1), f (i−1); y0

)
. (24) ?eq:H_decreasing?

Proof. See Appendix 6.3.

For implementation purposes, it is convenient to replace the Bregman iteration
with the following Bregman iteration variant [26]:

Algorithm 2.

ε(i+1) = y(i) −Wf (i)

y
(i+1)
0 = y

(i)
0 +

(
My(i) − y0

)
(y(i+1), f (i+1)) = arg min

(y,f)
‖(y, f)‖] +

β

2
‖My − y(i+1)

0 ‖2

+
α

2
‖y −Wf − ε(i+1)‖2 (25) {?}

The following Proposition shows that the minimization in equations (22) and
(25) are equivalent.

Proposition 2. The minimum values obtained in each iteration step of Algo-
rithm 2, are identical to the corresponding values for Algorithm 1:

min
(y,f)
‖(y, f)‖] +

β

2
‖My − y(i+1)

0 ‖2 +
α

2
‖y −Wf − ε(i+1)‖2

= min
(y,f)

Dp̃(i),q̃(i)

Ψp

(
y, f ; y(i), f (i)

)
+H (y, f ; y0) .

Proof. See Appendix 6.4.

Remark 5. For the objective function H (y, f ; y0) as defined in (21), we have that

from H
(
y(i?), f (i?); y0

)
≤ τ δ̃ it follows that

β‖My(i?) − y0‖2 ≤ 2τ δ̃ and α‖y(i?) −Wf (i?)‖2 ≤ 2τ δ̃.

Therefore, if α > 0 and β > 0, if we choose δ̃ = αβ/ (2τ) then we have that
‖My(i?)−y0‖2 ≤ α and ‖y(i?)−Wf (i?)‖2 ≤ β. This way, we obtain the approximate

solution
(
ỹ?, f̃?

)
=
(
y(i?), f (i?)

)
for (10).

The limiting cases α = 0 or β = 0 can also be solved using the above algorithm,
but the function H (y, f ; y0) needs to be modified.

In case β = 0, we minimize H (y, f ; y0) = 1
2‖My − y0‖2 while imposing data

consistency through the constraint y = Wf . Similarly, Theorem 4.1 will imply that
‖My(i?) − y0‖2 ≤ 2τ δ̃ = α.

In case α = 0, we minimize H (y, f ; y0) = 1
2‖y − Wf‖2 while enforcing strict

data fidelity, i.e., My = y0. Then Theorem 4.1 will imply that ‖y(i?) −Wf (i?)‖2 ≤
2τ δ̃ = β.

The character of the reconstruction obtained in the limiting cases is illustrated
in Fig. 3.
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The following proposition outlines a practical approach to select the data fidelity
and consistency parameters based on the measured projection data y0. When α and
β are within suitable ranges, it can be guaranteed that the conditions of Proposi-
tion 1 are satisfied.

Proposition 3. Choose δ̃ as in Remark 5. With the initialization y(0) = My0

and f (0) = W̃+y(0), for α > 0, the initial conditions for Proposition 1 (namely,

H
(
y(0), f (0); y0

)
> δ̃ and ∃

(
y\, f \

)
: H

(
y\, f \; y0

)
< δ̃) are satisfied if at least one

of the following conditions holds:

τ
(
‖
(
I − W̃W̃+

)
y0‖2 − ‖

(
I −WW+

)
y0‖2

)2

< β ≤ τ‖
(
I −WW̃+

)
y0‖22

τ‖
(
I − W̃W̃+

)
y0‖22 < α

Proof. See Appendix 6.5.

Similarly, for α = 0, it can be shown that

τ‖
(
I − W̃W̃+

)
y0‖22 < β ≤ τ‖

(
I −WW̃+

)
y0‖22.

5. Results and discussion. In this section, we evaluate the ROI reconstruction
performance of the convex optimization algorithm SIRA from Sec. 4 as a function
of the data fidelity and consistency parameters as well as the size of the ROI ra-
dius. The numerical tests were run on an Intel Core I7-5930K CPU with NVIDIA
Geforce RTX 2080 GPU, with 8 GB RAM GPU memory. The algorithms were im-
plemented in Quasar [27], which provides a heterogeneous GPU/CPU programming
environment on top of CUDA and OpenMP.

5.1. ROI reconstruction results. The X-O CT system (Gamma Medica-Ideas,
Northridge, California, USA) was used to obtain in vivo preclinical data. The tube
current is determined automatically during calibration to ensure that the dynamic
range of the detector is optimally used. For a 50 µm spot size at 70 kVp, this
amounts to 145 µA tube current. Fan-beam data were generated by retaining
only the central detector row. Two contrast-enhanced mice were scanned in-vivo,
resulting in two data sets (see Fig. 5):

1. Preclinical - lungs: A first mouse was injected with a lipid-bound iodine-based
contrast agent (Fenestra VC, ART, Canada), to increase the vascular contrast.
2048 projection views were obtained over 2π.

2. Preclinical - abdomen: A second mouse was administered 0.5 mL gastrografin
intrarectally, to increase the soft tissue contrast in the abdomen. 1280 pro-
jection views were obtained over 2π.

For abdomen, we have used 640 projection views (out of 1280) and we have sub-
sampled the projection data by a factor 2 to the dimensions 640× 560. For lungs,
we have used 512 projection views (out of 1024) and we have sub-sampled the
projection data by a factor 2 to the dimensions 640×560. The resulting acquisition
geometry parameters for both data sets are given in Table 1.

For benchmark comparison, we have considered the following four existing re-
construction methods:

1. Least-squares conjugate gradient (LSCG), restricted to the projection ROI
P(S) (see (4)).
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(a) (b)

Figure 5. Full LSCG reconstruction of the fan-beam data sets:
(a) Preclinical - lungs, (b) Preclinical - abdomen. Images are
cropped for visualization purposes.

Table 1. CT fan-beam acquisition geometries (X-O CT system
from Gamma Medica-Ideas) used in the experiments for this paper.

Data set

Geometry parameter Preclinical - lungs Preclinical - abdomen

Distance source-detector 146.09 mm 145.60 mm

Distance source-object 41.70 mm 57.92 mm

Detector offset -15.00 mm 12.14 mm

Detector elements 592 592

Projection angles 512 640

Pixel pitch 0.20 mm 0.20 mm

2. Maximum likelihood expectation maximization (MLEM) [14, 6], restricted to
the projection ROI P(S).

3. Differentiated back-projection (DBP) from [3], where the Hilbert inversion is
performed in the image domain using the 2D Riesz transform, as described in
[28].

4. Compressed sensing based ROI reconstruction with Total Variation regular-
ization (CS-TV) [29]

To enable a quantitative analysis, we have compared the ROI reconstruction against
the full reconstruction obtained using the LSCG method by calculating the pseu-
doinverse. Since the ROI reconstruction method is a data extrapolation problem in
the projection domain, it is reasonable to expect that the least squares linear recon-
struction of the fully sampled projection domain is a good reference for comparison.
As a figure of merit, we have used the peak-signal-to-noise ratio (PSNR) evaluated
inside the ROI S, which is consistent with the motivation of ROI CT to recover the
image only inside the ROI. As we will show below, our method achieves a nearly
exact reconstruction inside the ROI. Outside the ROI, the reconstructed image is
unsuitable for diagnostic purposes and only speculative in nature since, for every
point outside the ROI, in general only a small fraction of the rays passing through
the point are available in general.
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In Fig. 6, we show the comparison for the fan-beam ROI reconstruction of the
lung and abdomen images in Fig. 5 using different methods. Because for the MLEM
and DBP methods the average energy level cannot be determined correctly from the
truncated projections [6], these methods do not yield correct quantitative results.
For this reason, the PSNR calculation for MLEM and DBP was adjusted by discard-
ing the difference in the mean, in order to obtain meaningful PSNR results. This was

achieved by computing PSNR(yA,yB) = 10 log10

(
I2
max/ ‖yA − yB − (ȳA − ȳB)‖2

)
,

where ȳ is the average of the components of the vector y. Overall the plots in Fig. 6
show that, for ROI radii larger than 32 pixels, our ROI reconstruction method
performs significantly better than the other methods. For small ROI radii, the im-
provement becomes more than 20 dB, this improvement can be attributed to the
fact that the missing projection data is iteratively being estimated and regularized
in our approach.

In Fig. 7, we show the comparison for the fan-beam ROI reconstruction of the lung
and abdomen images in Fig. 5 using different methods. In particular, we evaluate
two different data fidelity parameter choices for SIRA. A visual comparison to Fig. 5
yields that SIRA reconstructs the interior of the ROI more accurately, which also
amounts in a significantly higher PSNR than for LSCG and DBP. It can be seen
that with higher α, the noise inside the ROI can be better suppressed, but this
comes at the cost of additional blurring inside the ROI. A promising solution to
reduce the blurring induced inside the ROI is to use curvelets [20] or shearlets [30]
instead of ridgelets, however this falls outside the scope of the paper.

Next, we compare the reconstruction performance of SIRA and LSCG for an
increasing ROI radius. The results are depicted in Fig. 8. It can be seen that
even for a very small ROI radius of 1.2 mm, the reconstruction quality for SIRA
is very good, while LSCG causes a cupping artifact at the boundary of the ROI.
In terms of PSNR, SIRA offers significant performance gains compared to LSCG.
Since LSCG optimizes over all data consistent solutions (y = Wf), this result
suggests that relaxing the consistency requirement in the right setting, can enhance
the reconstruction performance in the image domain. Due to the robust width
assumption (see Sec. 3), our method offers performance guarantees for the image
domain reconstruction performance.

6. Conclusion. We have introduced a novel framework for ROI CT reconstruction
from noisy projection data. To deal with the presence of noise, our method relaxes
the data fidelity and consistency conditions. Based on a robust width assumption
that guarantees stable solution of the ROI CT reconstruction problem under ap-
propriate sparsity norms on the data, we have established performance bounds in
both the image and projection domains. Using this framework, we introduced a
ROI CT reconstruction algorithm called sparsity-induced iterative reconstruction
algorithm (SIRA), that reaches an approximately sparse solution in a finite num-
ber of steps while satisfying predetermined fidelity and consistency tolerances. Our
experimental results using fan-beam acquisition geometry suggest that the ROI
reconstruction performance depends on the ROI radius. Visual and quantitative
reconstruction results confirm that accurate reconstruction is achieved even for rel-
atively small ROI radii and demonstrate that our algorithm is very competitive
against state-of-the-art methods.



ROBUST AND STABLE REGION-OF-INTEREST TOMOGRAPHIC RECONSTRUCTION 17

ROI Radius R

P
S

N
R

 [
d
B

]

0 20 40 60 80 100 120 140
4

8

12

16

20

24

28

32

36

40

SIRA-FIDEL
SIRA
CS-TV
DBP
MLEM
LSCG

(a) Preclinical - lungs

ROI Radius R

P
S

N
R

 [
d
B

]

0 20 40 60 80 100 120 140
8

12

16

20

24

28

32

36

40

44

SIRA-FIDEL
SIRA
CS-TV
DBP
MLEM
LSCG

(b) Preclinical - abdomen

Figure 6. PSNR results for 2D fan-beam ROI reconstruction with
increasing radius.
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natterer:imagerec [22] F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction. SIAM:

Society for Industrial and Applied Mathematics, 2001.

Klann2015 [23] E. Klann, E. Quinto, and R. Ramlau, “Wavelet Methods for a Weighted Sparsity Penalty for
Region of Interest Tomography,” Inverse Problems, no. 31, 2015.

Candes99:ridgelet [24] E. Candès and D. Donoho, “Ridgelets: a key to higher-dimensional intermittency?” Phil.

Trans. R. Soc. Lond. A., vol. 357, pp. 2495–2509, 1999.
Osher2005 [25] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An Interative Regularization Method

for Total Variation-Based Image Restoration,” SIAM Multiscale Modeling and Simulation,

vol. 4, no. 2, pp. 460–489, 2005.
Yin2008 [26] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman Iterative Algorithms for l1-

Minimization with Applications to Compressed Sensing,” SIAM Journal on Imaging Sciences,
vol. 1, no. 1, pp. 143–168, 2008.

goossens2018dataflow [27] B. Goossens, “Dataflow management, dynamic load balancing, and concurrent processing

for real-time embedded vision applications using quasar,” International Journal of Circuit
Theory and Applications, vol. 46, no. 9, pp. 1733–1755, 2018.

Felsberg2008 [28] M. Felsberg, “A Novel Two-Step Method for CT Reconstruction,” in Bildverarbeitung für die

Medizin. Springer, 2008, pp. 303–307.
kudo2013image [29] H. Kudo, T. Suzuki, and E. A. Rashed, “Image reconstruction for sparse-view ct and in-

terior ctintroduction to compressed sensing and differentiated backprojection,” Quantitative

imaging in medicine and surgery, vol. 3, no. 3, p. 147, 2013.
Easley08 [30] G. Easley, D. Labate, and W. Lim, “Sparse Directional Image Representations using the

Discrete Shearlet Transform,” Applied and Computational Harmonic Analysis, vol. 25, pp.

25–46, 2008.

Appendix.

6.1. Proof of Theorem 3.3. Our proof of Theorem 3.3 is adapted from [11].

Proof. Pick a ∈ A and write x̃? − x\ = z1 + z2 so that

‖a+ z1‖] = ‖a‖] + ‖z1‖] and ‖z2‖] ≤ L‖x̃
? − x\‖2

Now

‖a‖] +
∥∥x\ − a∥∥

]
≥

∥∥x\∥∥
]
≥ ‖x?‖] ≥ ‖x̃

?‖] − δ

=
∥∥x\ +

(
x̃? − x\

)∥∥
]
− δ

=
∥∥x\ + z1 + z2

∥∥
]
− δ

=
∥∥a+

(
x\ − a

)
+ z1 + z2

∥∥
]
− δ

≥ ‖a+ z1‖] −
∥∥(x\ − a)+ z2

∥∥
]
− δ

≥ ‖a+ z1‖] −
∥∥x\ − a∥∥

]
− ‖z2‖] − δ

= ‖a‖] + ‖z1‖] −
∥∥x\ − a∥∥

]
− ‖z2‖] − δ

Hence:

‖z1‖] ≤ 2
∥∥x\ − a∥∥

]
+ ‖z2‖] + δ

Now ∥∥x̃? − x\∥∥
]
≤ ‖z1‖] + ‖z2‖] ≤ 2

∥∥x\ − a∥∥
]

+ 2 ‖z2‖] + δ (26) ?eq:6?
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Assume ‖x̃? − x\‖2 > C1ε since otherwise we are done. In this case

‖Φx̃? − Φx\‖2 ≤ ‖Φx̃? −
(
Φx\ + e

)
‖2 + ‖e‖2 ≤ 2ε <

2

C1
‖x̃? − x\‖2 = η‖x̃? − x\‖2

By RWP,

‖x̃? − x\‖2 ≤ ρ
∥∥x̃? − x\∥∥

]

Recall that

‖z2‖] ≤ L‖x̃
? − x\‖2 ≤ ρL

∥∥x̃? − x\∥∥
]

Into (26): ∥∥x̃? − x\∥∥
]
≤ 2

∥∥x\ − a∥∥
]

+ 2ρL
∥∥x̃? − x\∥∥

]
+ δ

⇒
∥∥x̃? − x\∥∥

]
≤ 2

1− 2ρL

∥∥x\ − a∥∥
]

+
1

1− 2ρL
δ

⇒ ‖x̃? − x\‖2 ≤ ρ
∥∥x̃? − x\∥∥

]
≤ 2ρ

1− 2ρL

∥∥x\ − a∥∥
]

+
1ρ

1− 2ρL
δ + C1ε

= ργ
∥∥x\ − a∥∥

]
+

1

2
ργδ + C1ε

provided ρ ≤
(

2γ
γ−2L

)−1

for some γ > 2.

6.2. Proof of Theorem 3.5.

Proof. Let e = (0, ν) ∈ H̃, x = (y, f) ∈ H, x\ =
(
y\, f \

)
∈ E . Equation (11) yields

that

Φ′ = PH̃′ΦPH′ =

(
My −MyWMf

M 0

)
,

where we used that MMy = M . Taking into account that WMf = MyW, we find
that

Φ′ =

(
My −MyW
M 0

)
so that also

Φ′x−
(
Φ′x\ + e

)
=

(
My (y −Wf)−My

(
y\ −Wf \

)
M(y − y\)− ν

)
=

(
My (y −Wf)
My − ỹ0 − ν

)
,

using
(
y\, f \

)
∈ E ⊂ H, i.e. y\ = Wf \ and My\ = ỹ0. Calculating the squared

norm, we have:

‖Φ′x−
(
Φ′x\ + e

)
‖22 = ‖My (y −Wf) ‖22 + ‖My − ỹ0 − ν‖22 ≤ α2 + β2.

Then, due to the fact that
(
H′,A, ‖·‖]

)
is a CS space, and because of the (ρ, η)-

RWP of Φ′ over the ball B], we can apply again Theorem 3.3, with ε =
√
α2 + β2,

for any x\ ∈ E ∩ H′. In particular, for any x\ /∈ H \ E for and for (y?, f?) ∈ H′
minimizing (13), we have that

‖PH′
(
x? − x\

)
‖H = ‖My

(
ỹ? − y\

)
‖22 + ‖Mf

(
f̃? − f \

)
‖22 ≤ C1

√
α2 + β2 + C2ργ.

The conclusion then follows noting that ‖My‖2 = ‖MMyy‖2 ≤ ‖Myy‖2 such that

‖M
(
ỹ? − y\

)
‖2 ≤ ‖My

(
ỹ? − y\

)
‖2.
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6.3. Proof of Theorem 4.1.

Proof. Bregman divergences are positive such that:

H
(
y(i), f (i); y0

)
≤ Q(i)

(
y(i), f (i)

)
where

Q(i)
(
y(i), f (i)

)
= H

(
y(i), f (i); y0

)
+D

p̃i−1,q̃i−1

Ψp

(
y\, f \; y(i−1), f (i−1)

)
.

Due to the minimization in every iteration, we have that

Q(i)
(
y(i), f (i)

)
≤ Q(i)

(
y(i−1), f (i−1)

)
.

Knowing that Q(i)
(
y(i−1), f (i−1)

)
= H

(
y(i−1), f (i−1); y0

)
we find that:

H
(
y(i), f (i); y0

)
≤ H

(
y(i−1), f (i−1); y0

)
.

This proves (24).
To prove (23), let (y, f) be such that ‖(y, f)‖] < ∞. We have the following

known identity (cf. [25]):

Dp̃i,q̃i
Ψp

(
y, f ; y(i), f (i)

)
−Dp̃i−1,q̃i−1

Ψp

(
y, f ; y(i−1), f (i−1)

)
+D

p̃i−1,q̃i−1

Ψp

(
y(i), f (i); y(i−1), f (i−1)

)
=
〈
y(i) − y, p̃i − p̃i−1

〉
+
〈
f (i) − f, q̃i − q̃i−1

〉
=
〈
y(i) − y,−∇yH

(
y(i), f (i); y0

)〉
+
〈
f (i) − f,−∇fH

(
y(i), f (i); y0

)〉
.

By the convexity of H and the comparison with its linearization, we then conclude
that for every (y, f)

Dp̃i,q̃i
Ψp

(
y, f ; y(i), f (i)

)
−Dp̃i−1,q̃i−1

Ψp

(
y, f ; y(i−1), f (i−1)

)
+D

p̃i−1,q̃i−1

Ψp

(
y(i), f (i); y(i−1), f (i−1)

)
≤ H (y, f ; y0)−H

(
y(i), f (i); y0

)
Consequently, for a given (y\, f \) satisfying H

(
y\, f \; y0

)
≤ δ̃, we have

Dp̃i,q̃i
Ψp

(
y\, f \; y(i), f (i)

)
+D

p̃i−1,q̃i−1

Ψp

(
y(i), f (i); y(i−1), f (i−1)

)
+H

(
y(i), f (i); y0

)
≤ H

(
y\, f \; y0

)
+D

p̃i−1,q̃i−1

Ψp

(
y\, f \; y(i−1), f (i−1)

)
≤ δ̃ +D

p̃i−1,q̃i−1

Ψp

(
y\, f \; y(i−1), f (i−1)

)
(27) {?}

Then, as long as H
(
y(i), f (i); y0

)
> δ̃ we conclude that

Dp̃i,q̃i
Ψp

(
y\, f \; y(i), f (i)

)
≤ Dp̃i−1,q̃i−1

Ψp

(
y\, f \; y(i−1), f (i−1)

)
.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. From (27) of Proposition 1 follows that for (y\, f \) holds
that:

Dp̃i,q̃i
Ψp

(
y\, f \; y(i), f (i)

)
+H

(
y(i), f (i); y0

)
≤ δ̃ +D

p̃i−1,q̃i−1

Ψp

(
y\, f \; y(i−1), f (i−1)

)
−

D
p̃i−1,q̃i−1

Ψp

(
y(i), f (i); y(i−1), f (i−1)

)
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It follows that

k∑
i=1

(
Dp̃i,q̃i

Ψp

(
y\, f \; y(i), f (i)

)
+H

(
y(i), f (i); y0

))
≤ kδ̃ +

k∑
i=1

D
p̃i−1,q̃i−1

Ψp

(
y\, f \; y(i−1), f (i−1)

)
−

k∑
i=1

D
p̃i−1,q̃i−1

Ψp

(
y(i), f (i); y(i−1), f (i−1)

)
≤ kδ̃ +

k∑
i=1

D
p̃i−1,q̃i−1

Ψp

(
y\, f \; y(i−1), f (i−1)

)
.

Dropping some terms it leads to:

Dp̃k,q̃k
Ψp

(
y\, f \; y(k), f (k)

)
+

k∑
i=1

H
(
y(i), f (i); y0

)
≤ kδ̃ +Dp̃0,q̃0

Ψp

(
y\, f \; y(0), f (0)

)
.

By Proposition 1, taking into account that kH
(
y(k), f (k); y0

)
≤
∑k
i=1H

(
y(i), f (i); y0

)
,

we have that

kH
(
y(k), f (k); y0

)
≤ kδ̃ +Dp̃0,q̃0

Ψp

(
y\, f \; y(0), f (0)

)
. Since k > 0, then

H
(
y(k), f (k); y0

)
≤ δ̃ +

Dp̃0,q̃0
Ψp

(
y\, f \; y(0), f (0)

)
k

.

6.4. Proof of Proposition 2.

Proof. Due to ε(i+1) = y(i) −Wf (i) we get:

min
f

∥∥∥(y(i), f
)∥∥∥

]
+
β

2
‖My(i) − y(i+1)

0 ‖2 +
α

2
‖y(i) −Wf − ε(i+1)‖2

= min
f

∥∥∥(y(i), f
)∥∥∥

]
+
α

2
‖y(i) −Wf − ε(i+1)‖2

= min
f

∥∥∥(y(i), f
)∥∥∥

]
+
α

2
‖y(i) −Wf‖2 − α

〈
y(i) −Wf, y(i) −Wf (i)

〉
= min

f

∥∥∥(y(i), f
)∥∥∥

]
+
α

2
‖y(i) −Wf‖2 + α

〈
f,W ∗

(
y(i) −Wf (i)

)〉
= min

f

∥∥∥(y(i), f
)∥∥∥

]
+
α

2
‖y(i) −Wf‖2 −

〈
f − f (i), q̃(i)

〉
= min

f

{
Dp̃(i),q̃(i)

Ψp

(
y(i), f ; y(i), f (i)

)
+
β

2

∥∥∥My(i) − y0

∥∥∥2

+
α

2
‖y(i) −Wf‖2

}
(28) {?}

The equality −αW ∗
(
y(i) −Wf (i)

)
= q̃(i) is given in [26]. The LHS is actually

∇yH(y(i), f (i)).
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Similarly, due to the update equation y
(i+1)
0 = y

(i)
0 +

(
My(i+1) − y0

)
:

min
y

∥∥∥(y, f (i)
)∥∥∥

]
+
β

2
‖My − y(i+1)

0 ‖2 +
α

2
‖y −Wf (i) − ε(i+1)‖2

= min
y

∥∥∥(y, f (i)
)∥∥∥

]
+
β

2
‖My − y(i)

0 −
(
My(i) − y0

)
‖2 +

α

2
‖y −Wf (i) −

(
y(i) −Wf (i)

)
‖2

= min
y

{∥∥∥(y, f (i)
)∥∥∥

]
+
β

2
‖My − y0‖2 +

α

2
‖y −Wf (i)‖2

−α
〈
y, y(i) −Wf (i)

〉
− β

〈
My,My(i) − y0

〉}
= min

y

{∥∥∥(y, f (i)
)∥∥∥

]
+
β

2
‖My − y0‖2 +

α

2
‖y −Wf (i)‖2

−α
〈
y, y(i) −Wf (i)

〉
− β

〈
y,M∗

(
My(i) − y0

)〉}
= min

y

{∥∥∥(y, f (i)
)∥∥∥

]
+
β

2
‖My − y0‖2 +

α

2
‖y −Wf (i)‖2 −

〈
y − y(i), p̃(i)

〉}
= min

y

{
Dp̃(i),q̃(i)

Ψp

(
y, f (i); y(i), f (i)

)
+
β

2
‖My − y0‖2 +

α

2
‖y −Wf (i)‖2

}
(29) {?}

where βM∗
(
My(i) − y0

)
+ α

(
y(i) −Wf (i)

)
= p̃(i) = ∇yH(y(i), f (i)). Combining

(29) and (28), we find that we perform an alternating minimization step for:

min
(y,f)

{
Dp̃(i),q̃(i)

Ψp

(
y, f ; y(i), f (i)

)
+H (y, f ; y0)

}

6.5. Proof of Proposition 3.

Proof. 1) Choose y(0) = My0 and f (0) = W̃+y(0), then we require that

H
(
y(0), f (0); y0

)
=
α

2
‖
(
I −WW̃+

)
y0‖22 > δ̃. (30) {?}

For α > 0 and for δ̃ = αβ/ (2τ), this condition becomes

β < τ‖
(
I −WW̃+

)
y0‖2 (31) ?eq:beta-upperbound?

which guarantees that H
(
y(0), f (0); y0

)
> δ̃.

2) Define

H ′ (y; y0) = min
f
H (y, f ; y0) = β‖My − y0‖22 + α‖

(
I −WW+

)
y‖22 (32) ?eq:Hprime?

Then the goal is to show that there exists a function y such that H ′ (y; y0) < δ̃.
Setting y = y0 yields that if

β > τ‖
(
I −WW+

)
y0‖22. (33) ?eq:beta-lowerbound1?

then H ′ (y0; y0) < δ̃ for any α ≥ 0. Alternatively, setting y = Wf results in

H ′ (Wf ; y0) = β‖W̃f − y0‖22, with the minimum in f in f = W̃+y0. Requiring

H ′ (Wf ; y0) < δ̃ gives the condition (for any β ≥ 0)

α > τ‖
(
I − W̃W̃+

)
y0‖22.

The above conditions y = y0 and y = Wf each minimize one of the norms in (32)
individually. Yet there exist solutions y with smaller values for H ′ (y; y0). Define
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u = ‖
(
I − W̃W̃+

)
y0‖22, v = ‖ (I −WW+) y0‖22, and consider y = y0 + ε with

‖ε‖22 ≤ u. Additionally, let
〈
ε,
(
I − W̃W̃+

)
y0

〉
≤ w for some negative w. We find

that

H ′ (y0 + ε; y0) = β‖ε‖22 + α‖
(
I −WW+

)
(y0 + ε) ‖22

= β‖ε‖22 + αv + α‖
(
I −WW+

)
ε‖22 + 2α

〈
ε,
(
I −WW+

)
y0

〉
≤ βu+ αv + αu+ 2αw.

The upper bound is minimized with the following choice for w:

w = min
ε∈{ε : ‖ε‖22≤u}

{〈
ε,
(
I −WW+

)
y0

〉}
= −
√
uv.

Consequently, if the inequality(
u+ v − 2

√
uv − β

τ

)
α < −βu (34) ?eq:hyperbola1?

holds then H ′ (y0 + ε; y0) < δ̃. Note that we must have that τ (u+ v − 2
√
uv) < β

(otherwise (34) has no solutions with α > 0). Because u+v−2
√
uv = (

√
u−
√
v)

2
,

the inequality (34) becomes

α >
β

β − τ (
√
u−
√
v)

2 τu, (35) ?eq:hyperbola2?

which is, due to the condition α > τu, always satisfied if β > τ (
√
u−
√
v)

2
.
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