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TIME-FREQUENCY ANALYSIS OF
PSEUDODIFFERENTIAL OPERATORS

DEMETRIO LABATE

ABsTRACT. In this paper we apply a time—frequency approach to the study of pseudodiffer-
ential operators. Both the Weyl and the Kohn—Nirenberg correspondences are considered.
In order to quantify the time—frequency content of a function or distribution, we use certain
function spaces called modulation spaces. We deduce a time—frequency characterization of the
twisted product off7 of two symbols o and 7, and we show that modulation spaces provide the
natural setting to exactly control the time—frequency content of off7 from the time—frequency
content of o and 7. As a consequence, we discuss some boundedness and spectral properties
of the corresponding operator with symbol ofr.

1. INTRODUCTION

A pseudodifferential operator can be defined through the Weyl or the Kohn—Nirenberg
correspondence by bijectively assigning to any distributional symbol o € S'(R?") a linear
operator T,: S(R™) — &' (R™), so that the properties of the operator are in an appropriate
way reflected in the properties of the symbol.

One way to construct a pseudodifferential operator is as a superposition of time—
frequency shifts. Even though this is a classical idea, going back to H. Weyl [17], this
interpretation has reblossomed in recent years in the context of the study of the harmonic
analysis in the Heisenberg group ([11], [6]). As a consequence, a number of methods
from the time—frequency analysis have been employed to the study of pseudodifferential
operators (for instance: [16], [10], [14], [9], [18]).

In this paper, we are interested in pseudodifferential operators whose symbols satisfy
certain integrability conditions in the time—frequency plane and are not necessarily smooth.
The interest of these classes of operators stems partly from electrical engineering appli-
cations, in particular signal processing and time-varying filtering theory, where operators
arising from the Weyl correspondence are used as models for time-frequency or time-
varying filters (cf., for instance, [5], [12], [L5]). In this context, the symbol is interpreted as
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the mask of the filter, since it weights selectively the different time—frequency components
of the signal.

In our approach, the pseudodifferential operator T, is realized as a superposition of
elementary rank—one operators through the time—frequency decomposition of the associ-
ated symbol o. In order to exactly quantify the time—frequency content of the symbol,
certain function spaces, called modulation spaces, are natural. These spaces are defined
by prescribing the decay properties of the Short-Time Fourier Transform (STFT) of a
given function or distribution, and they contain a large class of objects, including some
classical function spaces (e.g, L2, Sobolev spaces). The precise definition of modulation
spaces, together with the basic time-frequency tools employed in this paper, are reviewed
in Section 2.

In Section 3 we apply this time—frequency approach to study the composition of pseu-
dodifferential operators. Let T, and T, be pseudodifferential operators having symbols
o and 7 respectively. Then Ty, = T,T; is a pseudodifferential operator with symbol
ofiT, where ofiT is called the twisted product of o and 7. The direct computation of the
twisted product (cf. [6, Section 2.3]) leads to a complicated integral formula, which is
usually asymptotically expanded into a power series and approximated. However, such an
expansion requires o and 7 to be arbitrarily smooth. Our time—frequency approach yields
a characterization of the twisted product which does not require smoothness assumptions
on the symbols. The STFT of offT behaves essentially as a matrix multiplication of the
STFTs of o and 7, from which the modulation space norm of off7 can be controlled by the
modulation space norms of o and 7. In particular, the twisted product turns out to be
closed on the modulation spaces MPP with w(x,y) = (1 + |z| + |y|)®, for 1 < p < 2.

Notation.

Let X, Xy, Y, Yy be Banach spaces. £(X,Y) is the space of all bounded linear operators
from X to Y, and £(X) = L£(X, X). The norm of X is || - || x, or simply || - || if the context
is clear. The dual space of X is X'. We write (f, g) for the action of g € X' on f € X. We
write T* for the adjoint operator of T'. A linear subspace A(X,Y) of L(X,Y) is an operator
ideal if UTV € A(X,Y) whenever U € L(Y,Yy), T € A(X,Y), and V € L(Xy, X). The
Schatten class Z,, C L(H) consists of the compact operators on a Hilbert space H whose
singular values lie in ¢P. 7, is an operator ideal and coincides with the class of Hilbert—
Schmidt operators when p = 2 and with the trace—class operators when p = 1.

LP9(R*) is the weighted mixed—normed space of functions f on R?" with norm
1lleze = (o s |F ) P, )P de) /2 dy) /. 16 w = 1 we write LP4(R2). I
p = ¢, we have the classical space LP(R?*") = LPP(R?). (P9(Z>") is the space of se-
quences a = (@gm)k,mez» With norm ||al|pa = (32, (3 lakm [P w(k, m)P)¥/P)V/a If w =1
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we write /7:4(Z*"). If p = ¢, we have the classical sequence space (P(Z3") = (PP (Z?").
C(R"™) is the space of continuous functions on R™, and Cy(R"™) is the space of continu-
ous functions on R™ vanishing at infinity. S(R™) is the Schwartz space of all infinitely
differentiable functions on R™ decaying rapidly at infinity, and S’(R"™) is its topologi-
cal dual, the space of tempered distributions. H®(R™) is the Sobolev space of functions
defined by the norm ||f[|3. = [« 17(7)12 (1 + |y|?)® dy. The usual dot product of z,
y € R" is denoted by juxtaposition, i.e., xy = £1y1 + - - - + £ ¥Yn. The symplectic form on
a = (a1,az), B=(01,02) € R" x R" is [a, B] = 182 — aa 1. The composition of f and
gis (fog)(t) = f(g(t)). The inner product of f, g € L*(R™) is (f,g) = [gn f(t) g(t)dL;
the same notation is used for the extension of the inner product to S(R") x &' (R”) The
Fourier transform is Ff(y) = f(y) = [ f(t) e~>™*dt; the inverse Fourier transform is
F(7) = f(=v). The Fourier transform rnaps S(R”) onto itself, and extends to §’'(R™) by
duality. The convolution of f and g is (f * g)(z) = [g. f(z —t)g(t) dt.

2. BACKGROUND: TIME-FREQUENCY ANALYSIS

We briefly review the Schrodinger representation of the Heisenberg group as a tool for
constructing and analyzing pseudodifferential operators. We adopt most of the notation
and conventions of Folland’s book [6].

2.1. The Schrodinger representation. The Schrodinger representation of the Heisen-
berg group H” = R" x R™ x R is the map p from H" to the group of unitary operators on
L2(R") defined by p(a,b,t)f(x) = 2™ emiabe2mibe f(x 4 g). In many considerations the
t-variable is unimportant, so for (a,b) € R* we define p(a,b) f(z) = e™b 2™ f(z + q).
We refer to p(a,b)f as a time-frequency shift of f. We recall the following useful facts.

PROPOSITION 2.1. Let f € L?3(R"™) and let a, b, a’, b’ € R"™. Then:
(a) [lp(a,b)fllrz = [If]lL2,
(b) (p(a,b)f)" = p(=b,a)f,

(¢) (pla,b))~" = (p(a,b))* = p(—a, D),

(d) p(a,b) p(a’,b')f = e™ ' =0V) p(a +a/, b+ V) f.

The (cross-)ambiguity function, or Fourier-Wigner transform, of f, g € L*(R") is

Alf.9)(a.h) = (plab)fg) = [ e f(o k) gla) do.
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If f =g, we write A(f,f) = A(f). The ambiguity function extends to a map from
S(R")xS(R") into S(R?") and from &' (R") xS’ (R™) into &' (R?"). A slight change in the
definition yields the Short-Time Fourier Transform (STFT) of a distribution f € S'(R"™)
with respect to a window g € S(R"™):

Sf(ab) = [ f@)gl—a)e it dn = oo, -h)f.g) = T PA(.g)(a. D).

The Wigner transform of f, g € L?>(R"™) is the Fourier transform of the ambiguity function
of f and g¢:

W(f,9)(&2) = A(f,9)" (& 2) = / 2 f(z+ §) gz — §) dp. (2.1)

n

We set W(f) = W(f, f). Similarly to the ambiguity function, also the Wigner transform
extends to a map from S(R™)xS(R™) into S(R?"*) and from S'(R") xS’ (R™) into S’ (R*").
The following facts will be useful (cf. [6, Sec. 1.4 and 1.8]).

PROPOSITION 2.2. Let f, g € L>(R") and let a, b, uy, us, v1, vo € R™. Then:
(a) A(f,g) € L*(R*"), with [|A(f, 9)llzz = Ifllz> llgllz2-

(b) A(f,9) € Co(R*"), and [|A(f,g)ll>= < [|fllr2 |9l L2-
(c) A(f,9)(a,b) = A(g, f)(—a,—b).
(d) A(P(Ul, Uz)f, p(,U17 Uz)g) (a7 b) _ eﬂ'i(ulvz—uzvl) eri((uz+v2)a—(u1+vl)b)

X A(f,9)(a+uy —v1,b+ ug — v2).

(e) W(p(u1,u2)f, p(vi,v2)g)(a,b)
x W(f,g)(a— #2572, b+ 3

).
(f) (Moyal’s Identity) (W (f1,91), W(f2,92)) = (f1, f2) (92, 91)-
(g) If f € LX(R™), then [ A(f)(a,b)da= f(—2)f(%), [ A(f)(a,b)db= f(
(h) S,f(a,b) = €™ S, f(b, —a).

eri(uzvl—ulvg) eﬂ'i((ul —v1)a+(us —v2)b)

NI
N—r
-
~~

|

NS
N—r

The Weyl correspondence is the 1-1 correspondence between a distributional symbol
o € 8'(R*) and the pseudodifferential operator L, = o(D, X): S(R™) — §'(R") defined
implicitly by:
(Lof,g9) = (6,A(g,f)) = (0. W(g, 1)),
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where f,g € S(R™). L, is the Weyl transform of o. The Kohn—Nirenberg correspondence
assigns to a symbol 7 the operator K, = o(D, X) gy defined implicitly by:

(K-f,g) = (#,e™" A(g, f)). (2.2)

K, is the Kohn—Nirenberg transform of 7. Equation (2.2) shows that the operators L,
in the Weyl correspondence and K, in the Kohn—Nirenberg correspondence are equal if
and only if their symbols are related by 6(¢,1) = 7(£,2) e ™%, Therefore, statements

—mi€x

invariant under multiplication by e will be valid for one correspondence if and only

if they are valid for the other.

2.2 Modulation Spaces. The modulation spaces measure the joint time-frequency dis-
tribution of f € S'(R%). For background and detailed information on their properties we
refer to [1], [2], [3], [8].

Let w be a subadditive positive weight function on R?", ie., 1 < w(a) < oo, and
w(a + B) < w(a)w(B) for all a, B € R*. We assume that w has at most polynomial
growth, i.e., for all & € R?" we have w(a) < Cla|Y for some C, N > 0. Let 1 < p, q < .
Given a window function g € S(R"™), denote by MP9(R™) the space of all distributions
f € 8'(R™) for which the norm

alp 1/aq
sz = WS logoay = ([ ([ 18, @l ute.ras)  ay)

is finite, with obvious modifications if p or ¢ = co. If w = 1 then we write MP9(R"™).
The space MP?(R™) is a Banach space whose definition is independent of the choice of
window g, i.e., different choices of windows g yield equivalent norms. The assumptions on
the weight w guarantees that the modulation spaces are defined in the realm of tempered
distributions, and that S is dense in all modulation spaces ME? for all 1 < p,q < oo (cf.
[1], [8, Section 11.1]). For 1 < p, ¢ < oo, the dual space of MP4(R™) is (MP1(R")) =
Mp"q’(R”), where p’, ¢’ satisfy % + 1% = % + % =1.

We recall the following invariance properties of the modulation spaces. If w(+z, ty) =
w(y, x), it follows from Proposition 2.2(h) that MPP(R™) is invariant under the Fourier
transform. Moreover, the modulation spaces are invariant under the metaplectic repre-
sentation (cf. [3, Theorem 29]). In particular, multiplication by e~™*Y leaves the space
MP4(R™) invariant for each 1 < p,q < oo, ie., ||f||pra = |le™™ Y f||pra. We will use
this property in Section 3 to transfer statements between Weyl and Kohn-Nirenberg cor-
respondences.

Among the modulation spaces the following well-known function spaces occur.

(a) M**(R") = L*(R").
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(b) (Weighted L?-spaces) If w(z,y) = (1 + |z|)*, then M22(R™) = L2 (R"™).
(c) (Sobolev spaces) If w(z,y) = (1 + |y|)®, then M22(R") = H*(R").
(d) f w(z,y) = (1+ |z| + |y|)%, then M22(R") = L%(R") N H*(R").
(e) (Feichtinger’s algebra) M1L1(R™) = Sy(R™).
We recall that the space Sy is contained in L2, and that it is an algebra under both

convolution and pointwise multiplication. The space Sy plays an important role in abstract
harmonic analysis (cf. [4]).

2.3 Time—Frequency Expansion of the Weyl Operator.

By realizing the symbol of the Weyl operator L, as a superposition of time-frequency
shifts, it is possible to express L, in terms of elementary rank—one operators. The fun-
damental result needed for the time-frequency analysis is the following inversion formula,
which is proved in an abstract context in [1]:

THEOREM 2.3. If ® € S(R?™) with ||®||z2 = 1, and 0 € MP4(R>") with 1 < p,q < oo,
then:

7= [[ @ oa.0)8) e p) dads (2.3)

where the integral converges in the norm of MP4(R?"). If p = co or ¢ = o0 or if o €
S’(R2"), then (2.3) holds with weak convergence of the integral.

The following consequence of Theorem 2.3 is proved in [9, Lemma 3.2].

THEOREM 2.4. Let ¢ € S(R™) with ||¢||r2> = 1, and let ® = W (¢, ¢). Let o0 € MPI(R?"),
with 1 < p,q < co. Denote by N:R?" x R?" — R*" the linear transformation

N(&,n) = N(&1,82,m1,1m2) = (&%,—&%,él—m,&—nz), (2.4)
where £ = (£1,&2), n = (n1,1m2) € R™ x R™. Then, for f € S(R™) we have:

Lof = [ SaoEm) S ot p(e)o de . (2.5

This integral converges as in Theorem 2.3.

From now on we will let ¢ denote an arbitrary but fixed function in S(R™) such that
d(t) = ¢p(—t) and ||¢||r2 = 1. For example, we could take ¢(z) = 24~ . We set
® = W(¢). We will let N denote the linear transformation defined in (2.4), and N the
linear transformation N(&,n) = N(n,£).
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3. COMPOSITION OF PSEUDODIFFERENTIAL OPERATORS

Suppose that L,, L, are Weyl operators that map S(R"™) into itself. Then L,y = L,L,
maps S(R™) into itself, and its symbol ofir € S'(R?") is called the twisted product of o
and T.

3.1 Formula for the twisted product. Using the time—frequency approach of Sec-
tion 2.3, we deduce a useful characterization of the twisted product. We begin by assuming
that o, 7 € S(R?*). In this case the twisted product ofir can be expressed [6, Sec.2.3] as:

(O'le — 22n // 47ri[w—v,w—u] du dv.
R4n

Using Theorem 2.3 to expand ¢ and 7, we obtain:

i) = 20 [[[[ (0p6.08) (7. 01.08) (05, OBl (. 0)8)) ) dd dy S

" (3.1)
Recall that, if F € S(R?"), then S¢F(a,b) = e~™ (F, p(—a, b)®). By Proposition 2.2(e),
p(M(z,y))® = W(p(x)p, p(y)d), where M: R?" x R?™ — R*" is the linear transformation
for which (—a,b) = M(z,y) iff (a,b) = N(z,y). It follows that the change of variables
(a,b) = N(z,y) yields:

SeF(N(z,y)) = e ™ (F, p(~a,0)®) = e ™ &V (FW(p(a), p(y)$))  (3.2)

Therefore, the change of variables (—v,() = N(§,7), (—v,9) = N(p, v) in (3.1) yields:

(otr)(w) = 2 / / / /R  Sa0(N(€,1)) Sar(N(p,)) "

(p()¢, p(M)PIW (p(1)$, p(¥)$))(w) dE dndpudy (3.3)

where P = [u,v] + [£,n]. By direct calculations, we have:

W(p(&) g, p(m)P)EW (p(11) 9, p(¥)p) = (p(p) b, p(n)d) W(p(§)d, p(v)¢). (3.4)

Consequently, using (3.2) and (3.4) into (3.3), we obtain:

Sa(tr) (N (e 9)) = 2 el [ / / | 530N (E 1) Sa7(N (1) (p(1)o (1))

x €™ (W (p(&) ¢, p(v)$), W (p()p, p(B)¢)) dE dn dps dv.
(3.5)
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Finally, from (3.5), Moyal’s identity (Proposition 2.2(f)) implies:
Sa(tr) V(@ 8) = 2 e [[ [ sur(e.m) Sar(N () (000 o))

x ™V (p(€)¢, p()$) (p(B), p(v)d) dE dn dyu dv. (3.6)

Set

Sylon) = [ ISsr(N(Em)I1A@) o= )]
5L (1, B) = /R 1SaT(N ()] JA) (8 — )] v

These functions are smoothed versions of the STFTs of ¢ and 7. The following result
shows that the STFT of ofi7 is controlled by the (continuous) matrix multiplication of S/,
and S..

PROPOSITION 3.1. Let o, 7 € S(R?™). Then:

[Sa (c47) (N (o, B))] < 2°" (g (ev, ) % |A(9)], S7.(:, B))-
Proof. By Proposition 2.1, (p(a)¢, p(b)$)) = ™ A(¢p)(a — b), so (3.6) implies:

[Sa(otr) (N (o0 )| < 27" ////mewzvg, ) (N )| () (s )
8)(e~ OI1A@) )] de dydyu v
= /R 8% 0, m) |A) (1 — 0)| S 6)

= 27" (Sg(a, ) x [A(9)], S7(+,B)). O

3.2 Main theorem.

Proposition 3.1 shows that the time—frequency content of ofiT is controlled by the time—
frequency content of ¢ and 7. The modulation spaces provide the natural setting to
exactly characterize this relationship. Our main results in this direction are collected in
the following theorem and corollary, and will be proved in Section 3.3.
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THEOREM 3.2. Let w(a, 3) = (1 + |af? + |812)*/%, wi(a, B) = (1 + |«|?)*/2, w2(a, B) =
(1+18I?)%/2, with s > 0.

(a) If o, 7 € MPP(R2"), with 1 < p < 2, then it € MPP(R2"), with

lodrllaeg, < Clloliag 7l
where C = 235 23" APz AP z1,- In particular, if s = 0, then C' = 257,

(b) If o € MEP(R*™) and 7 € ME P (R®™), with p > 2 and  + % =1, then ofr €
MP?(R2™), with

lodllag < Cllollag 17l s

where C' = 2325 230 Az [[A(P) L1, In particular, if s = 0, then C' = pALY

COROLLARY 3.3.
(a) Ifo, 7 € So(R?), then ofit € Sy(R>"), and | Lotr||z, < 247 |7 || 5011711 56 -

(b) If o, 7 € L2(R*™) N H*(R>™), where w(o, ) = (1 + |a|? + |B2)*/? with s
0, then ofr € L2(R?") N H*(R2). If, in addition, s > n, then ||Lyg||z,
C |lo||zznms |7l L2nms, where C'is a constant which does not depend on o or T.

(c) Ifo, 7 € L*(R?™), then ot € L*(R*™), and ||Loy. ||z, < 2°"||o||z2 7| 2
REMARK 3.4. (i) Theorem 3.2 shows that the modulation spaces M?P are algebras under
twisted product when 1 < p < 2. As special cases, Corollary 3.3 shows that the spaces
So, L? and L2 N H* are also algebras under twisted product. In addition, in these cases
we have the following property. Recall that if o € Sy or o € L2 N H?, then L, lies in a
closed subspace of Z; (cf. [8, Theorem 3|, [10, Proposition 5.4]). As a consequence, the
composition of operators L, and L, with symbols in Sy or Lg N H? is closed not only on
7, (as follows from the ideal property of trace—class operators, already), but also on the
closed subspaces of Z; defined when the symbols lie in these modulation spaces.

(ii) Using the observations of Section 2.2, it is easy to transfer the results of Corol-
lary 3.3 to the Kohn—Nirenberg correspondence. Indeed, by equation (2.2), K, = Ly,
where (Tw)" = e™™*¢0. Since |[(Tw)"||pra = [|©||ape (cf. Section 2.2), it follows that

Corollary 3.3 holds for the Kohn—Nirenberg correspondence as well without any changes.

(iii) Part (c) of Corollary 3.3 is known (cf. [6, Proposition 1.33]) but it is reported for
completeness. Observe that the operator Lyy, is not only in Z,, but also in Z;, being the
composition of two Hilbert—Schmidt operators.
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3.3 Proof of Theorem 3.2.

In order to prove Theorem 3.2, we require some technical lemmas. The first set of
lemmas shows that the LE:%norm of Sg(cfiT) can be controlled by the LE:?—norms of Sgo
and Se7 (Lemmas 3.5-3.7). The next lemma examines the effect of the linear transfor-
mation N and, in particular, the relationship between the LP:9-norm of S F o N and the
modulation space norm of F' (Lemma 3.8).

LEMMA 3.5. Let 1 < p,q,r < oo, with £ + -1 =1, be given. Assume o, 7 € S(R*"). Let
w, wl and w2 be nonnegative functions satisfying w(«, ) < wl(a) w2(3). Then:

IS8 (o7) o Nllggia < 22 IS v o 1571 zg-

where S’ (1, o) = S (a, ).

Proof. For simplicity of notation, define: a(a) = |A(¢)(a)], s5(&) = [Sac(N(&,n))l,
tu(v) = [SeT(N(p, )], 55(n) = (s x a)(@) = Sg(a,n), tp(p) = (tu * a)(B) = S7(, ).
Since ¢ is even, Proposition 2.2(g) implies that ||a|| 1 = [gon A(@) (@) da = [, #(5)? dp =
2". By Proposition 3.1, Holder’s inequality, and Young’s inequality, we have:

[Sa (o) (N (a, B))| < 2°" (s, * a, 1) (3.7)
< 2% ||sg * all g (£l
< 2 [lallor Isall Ntpllor = 22" sl [1£50 -

Consequently,
qa/p 1/q
Ie(otr)o Nz = ([ ([ 1saloinviamiuta sy aa) as)
R2n R2n

/ 1/
2 ([ ([l e e pyraa)  as)
p/r’ 1/p
oo ([ ([ st i) i) a)
a/r 1/q
([ (] 1sswr @y ) as)

= 2|15l p 157 12 pg- O

IN

IN
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LEMMA 3.6. Let 1 <p' <r < ¢ < oo, with % + 1% =1 and % + T—l, =1, be given. Assume
o, 7 € S(R®>"). Let w, wl and w2 be nonnegative functions, with w(c, 3) < wl(a) w2(f).
Then:

ISe(atr) o Nlippa < CullSeo o Nl [1Sa7 0 Ny,

p,T
Lwl

where Cyy = 2°" | A(9) ||z [|A()|L1,-
Proof. We adopt the notation defined in the proof of Lemma 3.5. Since 1 < £ < oo,

r
Minkowski’s inequality for integrals implies:

. , , p/r’ 1/p
13y = ( / ( [ 18t enl” i) dn) da)
wl R2n R2n

r'/p 1/r’
<( [ ([ 1ssampwi@prda) “an) = 1l
R2n \JRzn o (3.8)

It follows from Young’s inequality that ||(s,*a)|zr < llallzs |[[syllrr for any 1 <p < co.
Consequently:

1Sl o < NAD)IL1, 1Seo 0 N o0 (3.9)
wl wl wl
Similarly for the function S7, since 1 < £ < oo, Minkowski’s inequality for integrals

implies:

r/q 1/r ~
0z < ([ ([ 1SHwmrz@mas) an) = I8y 310

where S’; (B, ) = SL(p, B). Using Young’s inequality as before, we obtain:
1S5 11Lay < [[A(@)lIzr, [1SeT 0 Nl|zay. (3.11)
Finally, the proof follows by substituting (3.8)—(3.11) into Lemma 3.5. O

The following result is similar in nature but is not contained in Lemma 3.6.

LEMMA 3.7. Assume o, 7 € S(R*). Let w, wl and w2 be nonnegative functions, with
w(e, f) < wl(a)w2(f). Then:

[So(otr) o Nls1 < 27 |Saor0 Vo1 [ISa7 0 Nl
Proof. We adopt the notation defined in the proof of Lemma 3.5. From (3.7), observing
that ||a||L~ < 1 (Proposition 2.2(b)), the Young’s inequality implies that:

[Sa(otr)(N (e B)] < 227 |Ist, * allp= [[thllr < 2% allp= stz 6o
< 22"l (1l (3.12)
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By Proposition 2.2 we have [g.,, a(a)da = 2", and so:

[ st da= [[ [ sy(@ate - ayaganda =2 [[ sy dean=2" S0 Nzre.

Similarly, we can show that [p., [|t5|z1 dB = 2" [|Sa7 o N||p11. Consequently, from equa-
tion (3.12) we obtain:

IS (7t0) o Nz eny =[] ISa(etm) (N (0 ) (e, 6) dadg

<o [l wi(@)do [l w28 s

= 2" ||Sg0 o N||L}J;11(R4n)||s‘1>7' © NHL}U’;(RM)- O

Now, we examine the effect of the linear transformations N and N on the LP9-norm
of a function of the form F o N or F o N. Indeed, in general, ||f||M;]uq = ||Sa fllLre #

1Ssf o N||gza (and similarly when N is replaced by N). The following lemma shows

that in some special cases the LP?-norm of Sgf o N is controlled by some modulation
space norm of f. Parts (¢) and (d) of the following lemma are not needed in the proof of
Theorem 3.2, but are included for completeness.

LEMMA 3.8. Let 1 < p < oo and s > 0 be given. Let w(c, 8) = (1+ |a|? +|8|?)*/2. Then:
() 2 Sa0r0 Nl gz < llollagr < 272 [1Sa0 0 Nl

(b) (S50 0 Nllzos = llolarmr,
(©) [Sa0 0 Nllgroe < 22 [[&lagonr,
(@) (S50 0 Nllgioe < floareen.

Proof. (a) The change of variables («, ) = N (&, n) yields:
1/p
S50 0 Nl = ( [ 1sso e m)lr (4 + 1€+ Py dsdn)
) 1/p
— ([ 1sao(a. o) 1+ 2iaf + )7 daas)
R4n

1/p
< 92 ( / / Saa (e )P (L + [af + |52)72 da dﬂ)
R4n
= 2/ ||o]|yyne.

The other inequality is obtained in a similar way.
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(b) This case is part (a) when s = 0.
(c) Denote & = (£1,&2), n = (n1,1m2) € R™ x R™. By direct calculation:

ISs00 Nllpre = sup [ [Sbo(N(&,n))]de
n R2n

< sup // sup [Sar (572, ~451),0)] déa s
R2n

1,72

_ / sup |Sac (£, 0)| dé
R2n 0

_ g / sup |Spor (€, 0)| de
R2n 6

= 22"/ sup |S56(0,&)| dé = 22" |6 || agoer -
R2n 6
(d) Similar to part (c). O
REMARK 3.9. Lemma 3.8 holds when N is replaced by N without any changes. The proof
is exactly the same.

Now we are ready to prove Theorem 3.2 and Corollary 3.3.

Proof of Theorem 3.2. We begin by assuming o, 7 € S(R?"). Since the space S(R?*") is
dense in MP:4(R?"), for any 1 < p, ¢ < oo (as discussed in Section 2.2), the extension to
the case o, 7 € MPP follows by a standard continuity argument.

(a) It is sufficient to prove the cases p = 1 and p = 2. The theorem then follows by
interpolation. In fact, by [1], [2]:

(MR, MRy = MEY(R™)

with £ = (1-0)+§, 6 €[0,1].
It is clear that w(«, f) < wl(a)w2(B) and that

wl(a),w2(8) < w(a,p) (3.13)

for all v, 3 € R2™. The case p = 1 then follows from the following estimates:

1Se (otr)||y, < 2% ||Sp(otT) 0 Ny, by Lemma 3.8
< 93t4n |Spo o N“Liu |SeT o N||L1w2 by Lemma 3.7
< 28147 ||Sgo 0 Ny [|Se7 o N1, by equation (3.13)
< 237 |[Sa0 |y [1Sa7 by Lemma 3.8

3
22 ol 17 aay,-
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For the case p = 2 we have:

1Ss (o)l < 2%/2 S5 (ctiT) 0 N2z by Lemma 3.8
< 2520y ||Sp0 0 N“Lijf |SeT o N||qu§ by Lemma 3.6
< 2°/2Q, ||Sp0 0 Nl[z2z2 [|SeT o N“L?ﬁ by equation (3.13)
< 255 Oy ol g2 |17l g2, by Lemma 3.8

where C,, = 23" [A(@)[zs [|A(P) |1, Recall that [[A(#)[|Lr = 2" (by Proposition 2.2(b)).
Furthermore, we have that [|A(#)[|L: , [[A(#)[[L: > [[A(#)[[zr = 2". Therefore C,, > 25m
and C,, = 2°" if s = 0.

(b) From Lemma 3.6 and equation (3.13) we have:

1Se(at7) o Nl| ot < Cu |20 0 Nl|pgr [|Sa7 0 N| (3.14)

1!
b,p p,p -
Ly Ly

By [6], [|Se0 o Nl|pert = || ((Sso 0 N)(k,m)), . |lmpet and, therefore, since £+ C 8,72 if
pl < p2 (cf. [8, Chapter 12]), this implies that:

||Sq>(0']j7’) O N“Lﬁ;p S ||Sq>(0'|j7’) o N“Lﬁ;p’ . (315)
Using Lemma 3.8 and equations (3.13) and (3.15) into equation (3.14) we obtain:

lotrllagr < 2% |[Sa(otr) o N| g0

N

2°/2(|Sg(atr) o N|

’
p,p
Ly

S 2%5 Cu) ||O'||M5=P ||T||ngl,pl. [l

The proof of Corollary 3.3 follows easily.

Proof of Corollary 3.2.
(a) Recall that Sy = M1, Since (-, p(v)p)p(£)¢ is a rank—one operator, it follows that
(-, p(v)P)p(&)Pllz, < 1. Applying this observation to equation (2.5), we obtain:

Lairllzs < WpIo&dlz [ 1Sulotr)(N(E ) v
< Sa(otr) o No. (3.16)

Using equation (3.16) and Lemmas 3.7 and 3.8(b), we obtain:

I Logrllz, < Sa(otr) o Nllpra < 2" [|Sgo 0 Nl|zra [[Sa7 o Nl|gra = 2% [|o]|s, [I7]ls,.
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b) Recall that M22 = L2 N HS, M>? = L2, and M*? = H*, with wl(a,8) = (1 +
w s wl s w2

||?)*/2, w2(er, B) = (14 |B8|%)%/2. By [10, Proposition 5.4], if s > n, then ofi € LZ N H*
implies Ly, € Z;. Consequently, from Theorem 3.2 we have:

3
|Zoteliz, < cllSa(otr)ll 22 < c28 Cullollye Iz

where c is a constant which does not depend on o or 7, and C,, = 23" || A(¢) Iz (A(®)]L1
(¢) By a classical result of Pool ([13]), ||Ls||z, = ||o||zz. Therefore, by Theorem 3.2
with s = 0, we have:

ILogrllz, = llotirllze = llotrllyze = [ISe(ofr)llzze < 2°" [loflaze [I7]lar22. O

A closer look at the proof of Theorem 3.2 shows that it is possible to generalize the choice
of the weight function w. In fact, if w is any positive subadditive function with at most
polynomial growth and wl, w2 are positive functions satisfying w(a, 3) < wl(a)w2(s),
wl(a), w2(8) < w(a,B) and w(N~Ya,B)) < Cw(a,B) for some C > 0 and for all
a, € R?", then the conclusions of Theorem 3.2 hold and the proof is essentially the
same.
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