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We establish a connection between certain classes of pseudodifferential operators and Hille—
Tamarkin operators. As an application, we find the conditions that guarantee compactness
and summability of the eigenvalues of pseudodifferential operators acting on the modulation
spaces MP:P.

1. INTRODUCTION

A pseudodifferential operator can be defined through the Weyl or the Kohn—Nirenberg
correspondences by bijectively assigning to any distributional symbol o € §’(R?") a linear
operator T,: S(R™) — &’ (R"™), so that the properties of the operator are in an appropriate
way reflected in the properties of the symbol. Pseudodifferential operators have a wide
range of applications in mathematics, physics and engineering.

In this paper, we are interested in pseudodifferential operators whose symbols satisfy
certain integrability conditions in the time—frequency plane and are not necessarily smooth.
The interest of these classes of operators stems partly from electrical engineering applica-
tions, in particular signal processing theory, where operators arising from the Weyl corre-
spondence are used as models for time—frequency or time-varying filters (see, for instance,
[6, 13, 16]). In this context, the symbol is the mask of the filter, since it selectively weights
the different time—frequency components of the signal.

In order to exactly quantify the time—frequency content of the symbol, we use certain
function spaces, called modulation spaces. These spaces were introduced about 1980 by
H. Feichtinger by prescribing the decay properties of the Short-Time Fourier Transform
(STFT) of a given function or distribution. This class contains a large collection of function
spaces, including some classical function spaces such as L? or the Sobolev spaces. It

was shown in recent papers that modulation spaces provide natural symbol classes for
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pseudodifferential operators in both the Weyl and the Kohn—Nirenberg correspondences
(cf. [11, 14, 18]). Furthermore, some recent results from the literature suggest that the
modulation spaces MP are natural substitutes for the spaces L? in the study of the action
of pseudodifferential operators beyond L2 : [17] shows that pseudodifferential operators
with traditional symbol classes are bounded on the modulation spaces MP:9, and in [11])
an improvement of the classical Calderon—Vaillancourt theorem is obtained as a corollary
of a result about boundedness of pseudodifferential operators on the modulation spaces
MPP,

In our approach, the pseudodifferential operator T, is realized as a superposition of
elementary rank—one operators through the time—frequency decomposition of the associ-
ated symbol o. Using this time—frequency decomposition of the operator we obtain a
fundamental connection between certain classes of pseudodifferential operators and Hille—
Tamarkin operators. As an application, we study compactness and spectral properties of
pseudodifferential operators acting on the modulation spaces MPP, including M2 = L2.
Using some results from the theory of absolutely summing operators, we obtain conditions
that ensure compactness and summability of the eigenvalues of pseudodifferential operators

acting on the spaces MPP.

Notation.

Let X, Xy, Y, Yy be Banach spaces. £(X,Y) is the space of all bounded linear operators
from X to Y, and £(X) = £(X, X). The norm of X is || - || x, or simply || - || if the context
is clear. B(X) is the closed unit ball {f € X : ||f|| < 1} in X. The dual space of X is
X'. We write (f,g) for the action of g € X’ on f € X. T* is the adjoint operator of
T. A linear operator 7' : X — Y is compact if, given any bounded sequence (z,) in X,
(T'z,) has a norm convergent subsequence in Y. T is weakly compact if, given any bounded
sequence (z,) in X, (Tx,) has a weakly convergent subsequence in Y. T is completely
continuous if it maps weakly convergent sequences in X to norm convergent sequences in
Y. A linear subspace A(X,Y) of £L(X,Y) is an operator ideal if UTV € A(X,Y) whenever
UeL(Y,Yy), TeAX,Y), and V € L(Xg, X). The classes of compact, weakly compact,
and completely continuous operators are operator ideals.

LP4(R?) is the mixed—normed space of functions f on R?" with norm ||f||zre =
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(Jan (Jgn |f(z,y) [P d2)9/P dy) /2. If p = q, we have the classical space LP(R?") = LPP(R?").
Similarly, ¢P:9(Z>") is the space of sequences a = (agm)k.mezr With norm |la|lp.e =
(32,4 lagm|P)9/P)1/9. 1f p = q, we have the classical sequence space (P(Z2") = (P-P(Z?").
S(R™) is the Schwartz space of all infinitely differentiable functions on R™ decaying rapidly
at infinity, and S’(R"™) is its topological dual, the space of tempered distributions. H*(R")
is the Sobolev space of functions defined by the norm || f||%. = [, £ ()12 (1 + |[y[2)® dy.
The usual dot product of z, y € R™ is denoted by juxtaposition, i.e., zy = z1y1 -+ +Z,Yn-
The symplectic form on a = (a1, a2), 8 = (81,82) € R" x R" is [a, B] = a182 — asf;.
The composition of f and g is (f o g)(t) = f(g(t)). The inner product of f, g € L?(R") is
(f,9) = [ga () g(t) dt; the same notation is used for the extension of the inner product
to S(R™) x &'(R™). The Fourier transform is Ff(y) = f(y) = Jrn f(t) e 2™ dt; the
inverse Fourier transform is f(v) = f(—v). The Fourier transform maps S(R™) onto itself,

and extends to S'(R"™) by duality.

2. BACKGROUND: TIME-FREQUENCY ANALYSIS

We briefly review the Schrodinger representation of the Heisenberg group as a tool for
constructing and analyzing pseudodifferential operators. We adopt most of the notation

and conventions of Folland’s book [7].

2.1. The Schrodinger representation. The Schrodinger representation of the Heisen-
berg group H” = R™ x R"™ x R is the map p from H" to the group of unitary operators on
L2(R") defined by p(a, b, t)f(x) = 2™ ™t 2™ f(x 4 g). In many considerations the
t-variable is unimportant, so for (a,b) € R?" we define p(a,b) f(z) = €™ 2™ f(z + a).

We recall the following useful facts.

PROPOSITION 2.1. Let f € L?(R"™) and let a, b, a’, b’ € R™. Then:

(a) lip(a,b)fllze = [ f1lz>,

(b) (p(a, b)f)A = p(—b, a)f;

(c) (p(a,0))™" = (p(a,b))" = p(—a,—b),
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(d) p(a,b) p(a’,b')f — e'/ri(a,b’_alb)p(a + a/, b + b/)f

The Fourier-Wigner transform of f, g € L>(R") is:

A(f,9)(ab) = (p(a,b)f,g) = / eI 2T f (1 4 a) g(z) da.

n

If f =g, we write A(f,f) = A(f). A slight change in the definition yields the Short-
Time Fourier Transform (STFT) of a distribution f € S&’'(R™) with respect to a window
g€ SR"):

Sef@b) = | f@)gle—a)e e = e pla,~b)],g) = € PA(f,0)(a, ~b).

The Wigner transform of f, g € L?(R™) is the Fourier transform of the Fourier—Wigner

transform of f and g:

n

W(f.9)(6:x) = A(f.9) (E,x) = / e f(o 1 By g(e — Ddp.  (2.1)

If f =g, we write W(f, f) =W (f).

The Fourier—Wigner transform and the Wigner transform extend to a map from S(R"™) x
S(R™) into S(R?*") and from &' (R") x S&'(R") into §'(R?"). The following properties will
be useful (cf. [7, Chap. 1]).

PROPOSITION 2.2. Let f, g € L?*(R") and let a, b, uy, ua, v, v2 € R™. Let N:R?*" x

R?" — R*" be the linear transformation
N(va) = N(Ul,uz,vl,vz) = (W—‘QW,—“—‘QW,M — VU1, U2 —Uz), (2-2)

where u = (uy,us), v = (v1,v2) € R" x R™. Then:
(a) A(f,9), W(f,g) € L*(R*"), with | A(f,9)llzz = [[W(f, 9)llz> = I fllz2 [lg]|z=-
() A, o, W (f, 9L < I fllL2 g2
() W(p(u)f,p(v)g)(a,b) = p(N(u,v)) W(f,g).

(d) S,f(a,b) = €™ S, f(b, —a).
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2.2 Modulation Spaces. The modulation spaces measure the joint time-frequency dis-
tribution of f € S'(RY). For background and detailed information on their properties we
refer to [2, 3, 4, 8|.

Let w be a submultiplicative positive weight function on R?", i.e., 1 < w(a) < oo, and
w(a + B) < w(a)w(B) for all a, B8 € R?®, and assume that w has at most polynomial
growth, i.e., w(a) < C|a| for some C, N > 0 and for all @ € R?". Let 1 < p, ¢ < oo.
Given a window function g € S(R"), denote by MP9(R"™) the space of all distributions
f € §'(R"™) for which the norm

alp 1/aq
lsszimey = WSl lasany = ([ ([ 18, 1@l uteras)  ay)

is finite, with obvious modifications if p or ¢ = co. If w = 1 then we write MP9(R"™). The
result presented in this paper will only make use of modulation spaces with w = 1, but
here we preferred to present the more general definition, to better motivate the importance
of modulation spaces in time—frequency analysis.

MP9(R™) is a Banach space whose definition is independent of the choice of window g,
i.e., different choices of windows g yield equivalent norms. The assumptions on the weight
w guarantee that the modulation spaces are defined in the realm of tempered distributions,
and that S is dense in all modulation spaces MP:? for all 1 < p,q < oo [10, Section 11.1].
For 1 < p, ¢ < oo, the dual space of MP(R") is (M?(R™)) = M7 (R"), where
p',q" satisfy % + 1% = % + % = 1. MPP(R") is invariant under the Fourier transform.
Moreover, the modulation spaces are invariant under the metaplectic representation (cf. [4,
Theorem 29]). In particular, multiplication by e~™%*¥ leaves the space MP4(R") invariant
for each 1 < p,q < oo, ie., |[fllmra = [le™™ Y f||prpa. We will use this property in
Sections 3 to transfer results between Weyl and Kohn—Nirenberg correspondences.

Among the modulation spaces the following well-known function spaces occur.
(a) M*?(R") = L*(R").

(b) (Weighted L?-spaces) If w(z,y) = (1 + |z|)*, then M22(R"™) = L2 (R").
(c) (Sobolev spaces) If w(z,y) = (1 + |y|)*, then M22(R") = H*(R"™).

(d) Tf w(z,y) = (1 + |z| + [y)*, then M22(R™) = L2(R™) N H*(R").
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(e) (Feichtinger’s algebra) M1:1(R") = Sp(R").
We recall that the space Sy is contained in L2, and that it is an algebra under both

convolution and pointwise multiplication. The space Sy plays an important role in abstract

harmonic analysis (cf. [5]).

2.3 Time—Frequency Expansion of Pseudodifferential Operators.
The Weyl correspondence is the 1-1 correspondence between a distributional symbol
o € 8'(R?") and the pseudodifferential operator L, = o(D, X): S(R") — S'(R") defined
implicitly by:
(Lof,g) = (6,A(g,f)) = (o, W(g, ),

where f,g € S(R"). L, is the Weyl transform of o. The Kohn—Nirenberg correspondence
assigns to a symbol 7 the operator K, = o(D, X) gy defined implicitly by:

(K-f,9) = (7,77 A(g, f))- (2.3)

K, is the Kohn—Nirenberg transform of 7. Equation (2.3) shows that the operators L,
in the Weyl correspondence and K; in the Kohn-Nirenberg are equal if and only if their
symbols are related by &(¢,x) = 7(€,x)e™%%. Therefore, statements invariant under
multiplication by e~™%? will be valid for one correspondence if and only if they are valid
for the other.

We expand the Weyl operator L, by realizing the symbol o of the operator as a super-
position of time—frequency shifts. The fundamental result needed for the time—frequency

expansion is the following inversion formula (cf. [2]).

THEOREM 2.3. If ® € S(R*) with ||®||z2 = 1, and 0 € MP4(R?") with 1 < p,q < oo,
then:

7= [[ . @r@.5)) e p) dads (2.4)

where the integral converges in the norm of MP4(R**). If p = oo or ¢ = oo or if o €

S’(R2"), then (2.4) holds with weak convergence of the integral.

The following consequence of Theorem 2.3 is proved in [11, Lemma 3.2].
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THEOREM 2.4. Let ¢ € S(R™) with ||¢||z2 = 1, and let ® = W (¢). Let o € MP9(R>"),
with 1 < p,q < oo. Let N be the linear transformation defined in Proposition 2.2, and let
€= (&,8),n=(n,n2) € R" x R". Then, for f € S(R"™) we have:

Lof = [ Saot¥(Em) e S £ pln)o) p(6)o de (25

This integral converges as in Theorem 2.3.

From now on we will let ¢ denote an arbitrary but fixed function in S(R™) such that
o(t) = ¢(—t) and |||z = 1. For example, we could take ¢(x) = 2"/4 e~ We set
® =W (¢p). We will let N denote the linear transformation defined in Proposition 2.2, and
N the linear transformation N(&,n) = N (1, £).

3. PSEUDODIFFERENTIAL OPERATORS ON MODULATION SPACES

We will prove the following result in this section.

THEOREM 3.1. Let 1 < p < oo and % + 1% =1.

(a) If 0 € M*!, then L, is a weakly compact and completely continuous operator

mapping M*(R™) into itself and the eigenvalues of L, are 2-summable with

(S aP)™ < Clolan,

where C' > 0 is independent of o.

(b) If 1 < p <2 and o € MP, then L, is a compact operator mapping MP(R") into

itself and the eigenvalues of L, are 2-summable, with

()" < o,

where C' > 0 is independent of o.

(c) If2<p<ooando € Mp’, then L, is a compact operator mapping MP(R"™) into

itself and the eigenvalues of L, are r-summable, where r = max{2, p}, with

(S al)" < Clolla

where C' > 0 is independent of o.
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REMARK 3.2. (i) Since ||o||p2 = ||o||12, in the special case p = 2, Theorem 3.1 reduces to
the statement that L, is a Hilbert-Schmidt operator if o € L2. This recovers a classical
result of Pool [15].

(i) Recall that, by [9], if o € M, then L, is a trace—class operator (hence, it is compact

on L? with summable singular values).

(iii) The results of Theorem 3.1 can be transferred to the Kohn—Nirenberg correspon-
dence without any changes. In fact, by equation (2.3) (and the comment thereafter),

K, = L1, where (Tw)" = e™*¢%, and by the observation in Section 2.2, ||(Tw)"||arr.a =

el ipres

Before proving Theorem 3.1, we recall some background on p-summing operators.

3.1 Absolutely Summing Operators.
Let X, Y be Banach spaces, T € £(X,Y), and 1 < p < oco. Then T is absolutely
p-summing or simply p-summaing if there is a constant ¢ > 0 such that for all sequences

(fi)™, in X we have:
m 1/p m 1/p
(ZHTfiH’;) < c sup ( |<g,fi>|p) .
i=1 geEB(X') \ ;4

The least ¢ for which the inequality holds is denoted by m,(T"). The set of p-summing
operators from X to Y is denoted by II,(X,Y). The collection II,(X,Y’) is a Banach
space with norm ,(7"), it is an operator ideal, and it coincides with the class of Hilbert—
Schmidt operators if X and Y are Hilbert spaces (cf. [1, Ch. 2]). The following standard
result will be useful (cf. [12, Section 2.b]).

PROPOSITION 3.3. Let X,Y be Banach spaces. IfT € I1,(X,Y), then T is weakly compact

and completely continuous and the eigenvalues of T are r-summable, where r = max{2, p},

with
. 1/r
(Do al) " < m(@).
Furthermore, if X is reflexive, then T is compact.

It follows from Proposition 3.3 that the composition of a p-summing with a ¢g-summing

operator is compact, no matter how we choose 1 < p,q < oo.
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The following example of p-summing operators will be useful. Let (£2, ) be a measure

space. Assume k: 2 x 2 — R is p X u measurable and that

Al |k<w,w'>|qdu<w'>)p/q du(w)>1/p< .

The operators of the form Ty f(w) = [, k( w') du(w’) are called Hille- Tamarkin

operators. The following is a class1cal result. We 1nclude a proof as certain steps in it will

be useful later.

PROPOSITION 3.4. Let1 < p < coand ;+; = L. If||k[|,,» < oo, then the Hille-Tamarkin

operator T}, maps LP(p) into itself and is a p—summing operator with m,(Ty) < ||kl|p.p'-

Proof. Let (f;)!, be a sequence in LP(u). By direct calculation we have:

inmufzp - ; [ ko) ety auen|

[ (fmrae)”

[

dp(w)

(w, ) NG
/ ) k@, vy aagryyw )| dr)

p

k(w,w)
(fo 1k (w, v)|P" dp(v)) /'

IN

dp(w') (3.1)

k(w,w’)

oo du e € L? (1), and since ||go || = 1 for each w, from (3.1)
Q ’

Since g, (W) =

we obtain:

(@) 9o (') dp(w’)

/Q fi(') g(o) dp(e)
3.2 Proof of Theorem 3.1.

First, we briefly sketch the idea of the proof. Using Theorem 2.4, we show that the Weyl

DoITfillse < (KNG, (3-2)
=1

1Kl sup Z

geB(L?") ;=1

p

IN

O

transform L, acting on MP?(R"™) induces an integral kernel operator T} acting on a closed
subspace of LP(R?"). Under the assumptions of Theorem 3.1, T}, will be a p-summing
Hille-Tamarkin operator. Using the properties of modulation spaces, we then show that
L, is also a p-summing operator.

We start with the following technical lemma.
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LEMMA 3.5. Let 0 € MP4(R?*"), with 1 < p,q < co. For & = (£1,&2) € R*™, define o¢ =

p(%, —%1, —&1, —&2)0. Then the integral s¢ = [[gs. 0¢(2,y) p(—z, —y)$(t) dx dy converges

weakly, and

Seo(N(E,n)) = e MM Syse (i1, —1p2).

Proof. Using Proposition 2.1, Parseval’s identity, and Proposition 2.2, we obtain:

i Eotme  S1itm . _
e i35, 5 ) (€1—m.&2 772)<0.,p(_§2-5772 , 51-5771 &1 — M, & — n2)¢>

Sq)O'(N(gv 77)) =
= D (o, p(~ 8, e, 7))

= e—'lri[{,n] <6-§7 p(_nla 12, %7 _"7_21)A(¢)>

= ewiten [ ([ el —giot de dy ) ol o) .

Since ¢ € S(R") and ¢ € S'(R*), then s¢ =[R2, 0¢(z,y) p(—z, —y)o(t) dr dy is in
S’(R2"). Hence, from equation (3.3) we obtain:

Sea(N(&,n)) = e ™M (se, p(—m1, —m2)¢) = e ™M ™M G g (ny —p). O

Now, we can prove the following result.

THEOREM 3.6. Let 1 < p < oo, and assume Sgo o N € Lp"p(R4"). Then L, is a p—

summing operator from MP(R"™) into itself.

Proof. By Theorem 2.4, the Weyl operator L, can be expressed as:

Lof = [ SaoV(em) e s oo o(e)o de

Let f € MP(R"™) and introduce the following definitions:

F(n) = <f7p(77)¢)> = e_Winlnz S¢f(—771,772)7
ko (&) = e Sga(N(E,n)),

T,EE) = | | kol€n) F(n)dn
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In this notation we have:

Lof = [ TP ple)ods (3.4

Since F' € L?(R?") and since

, p/p' 1/p _
p.p' :(/ </ |Sq>O'(N(§,’I7))|p dn) df) = ||S<I>0' ON“Lp’,p < 00,
R2n R2n

Proposition 3.3 implies that T, is a Hille-Tamarkin operator on L?(R?"), and that it is

ko

p-summing with 7, (7,) =

'». More precisely, the inequality (3.2)
from the proof of Prop031t1on 3.4 implies that

M TEIL, < kP, dn : (3.5)
i=1
where F;(n) = (fi, p(n)$) and Ge¢(n) = kg (&) Note that G¢(n) € B(L?") for

([ lko () [P" dr)t/P"
each &.

Now, fix ¢ € R?" and define ¢¢ = ([gon ko (&, n)[?" dn) /7', so:

Ge(n) = cee™ oM Saa(N(E,m)).

By Lemma 3.5, if we set g¢ = [[g.. 0¢(2,y) p(—2, —y)¢(t) dz dy, then

Ge(n) = ce €™ Syge(n, —n2) = ce (ge, p(n)d). (3.6)

In particular,

lce gellareror = llce Spgellpprwr = [|Gellper = 1. (3.7)

We are now ready to relate the properties of T, to the properties of L,. By [2, Corol-
lary 4.5], applied to (3.4), there is a constant C' independent of f such that:

Lo fl3ew < ClToF||7s- (3.8)
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Therefore, using equations (3.5)—(3.8):

n n
Lo filhgrr < C ) IToFillLy
2

p
< Cllkollyy (n) dn

p

= C ko2, p(n)@) (cege, p(n)®) dn

n

< ClkolZ, s S /R i (0)8) {9, p(0)8) di

geB(MP" Py =y

n

p

p

fi(t) g(t)dt

R2n

= C|lko|l7,  sup by (2.3). O

geB(MP" Py ;=

Using the properties of p—summing operators, from Theorem 3.6 we obtain the following

result.

PROPOSITION 3.7. Let 1 < p < 00, % + 1% =1, and assume Sgpoo N € Lp"p(R‘l”). Then:

(a) Ifp =1, then L, is a weakly compact and completely continuous operator mapping

MUYY(R"™) into itself, and the eigenvalues of L, are 2-summable with

(ZIM“’)U2 < C|Sp0 0 Nl|p1,

where C' > 0 is independent of o.

(b) If 1 < p < oo, then L, is a compact operator mapping MP?(R") into itself, and

the eigenvalues of L, are r-summable, where r = max{2, p}, with

1/r ~
(X al) " = CliSeo o Nl
where C' > 0 is independent of o.

Proof. By Theorem 3.6, L, is a p-summing operator mapping MP?(R") into itself. There-
fore, by Proposition 3.3, L, is weakly compact, completely continuous, and the eigenvalues
are r-summable, with r = max{2, p}. Furthermore, if 1 < p < 0o, then MP(R") is reflexive

(cf. Section 2.2), and so, by Proposition 3.3, L, is also compact. O
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Finally, the proof of Theorem 3.1 follows from Proposition 3.7.

Proof of Theorem 3.1. By [8], ||S30 o N||zra & ||((S¢JON)(k,m))k ol
since (P14t C (P292 whenever p; < pa, 1 < g2 (cf. [10, Sec. 12.2]), this implies that

|ep.a and, therefore,

1Sp0 0 N||p2.2 < ||Se0 0 N||Lr1.a1 whenever p1 < pa, q1 < g2,. In particular, if 1 < p < 2,

since N is a linear transformation, we obtain:
||S¢aoN||Lp:,p < ||S¢aoN||Lp,p < c|lo]|pe, (3.9)
and, if 2 < p < oo, then we have:
1S80 0 Nllprn < 1820 0 Nl|porsr < ¢ llol]pgar, (3.10)

where ¢, ¢’ are constants independent of o.
Part (a) now follows directly from equation (3.9) with p = 1 and Proposition 3.7(a).
Part (b) follows from equation (3.9) with 1 < p < 2 and Proposition 3.7(b).
Finally, part (c) follows from equation (3.10) and Proposition 3.7(b). O
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