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Fractal approach to lightning radiation on a tortuous 
channel 
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Abstract. In this p•per the r•diation from a geometrically fractal (i.e., arbitrarily 
irregular) discharge channel is investigated from the point of view of engineering 
applications of fractal geometry. Numerical results are presented for lightning 
return stroke radiation, which demonstrate that the time waveform of radiated 
field (in the Fraunhofer region) is a fractal, and within the framework of employed 
approximations, it has the same fractal dimension as the channel path. Some 
implications of this finding are discussed along with the limitations of the model. 

1. Introduction and Motivations 

The gross structure of the electromagnetic field 
generated by lightning has received considerable 
•ttention up to now, being the m•jor responsi- 
ble of the lightning-related h•z•rds to systems 
(e.g., see the comprehensive review of Gardner 
[1990a], and the classical book by Uman [1987]). 
Much less •ttempt of modeling h•s insofar re- 
ceived the fine structure of the field r•di•ted by 
lightning discharges, whose time history however 
exhibits • j•gged shape with remarkable spec- 
tral content in several b•nds of practical im- 
portance for communication, control, and gen- 
erally consumer electronics. In addition, the 
VHF •nd UHF portions of the r•d:.ated field 
are presently regarded as the clues to the (in- 
sof•r little understood) initiation region of the 
lightning [see Gardner, 1990a, preface]. Like- 
wise, beside mechanical •nd thermal problems, 
electrostatic discharges (ESD) generate bro•d- 
spectrum electromagnetic fields (up to the giga- 
hertz r•nge) that interfere with proper operation 
of most types of electronic units, especially those 
hosted •bo•rd s•tellites [Paul, 1992, ch•p. 12; 
Bozleitner, 1989, ch•p. 5]. Hence • model c•pa- 
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ble of describing discharge-radiated field would 
be of importance, for example, for use in simu- 
lators of control or communication systems. 

The fine-structure, higher-frequency noise due 
to discharges is most likely due to microscop- 
ical physical mechanisms of chaotic or almost- 
chaotic nature, whose microscopical description 
is very difficult. Therefore a macroscopical, or 
phenomenological, model that bypasses the anal- 
ysis at the microscopical level, would be of im- 
portance for practical simulation purposes. 

At this macroscopical level, fractals should be 
appropriate descriptors, since fractal geometry 
is the natural framework for the description of 
chaos [Barnsley, 1988, chap. 4]. Much like the 
moments of a statistical distribution that have 

a physical meaning and allow a good descrip- 
tion of a stationary noise by any process sharing 
the same statistical characterization, fractals •re 
characterized by some parameters that are inti- 
mately related to the physics of the phenomena. 
Therefore fractals with the s•me parameters as 
those observed in experiments or measured dis- 
charges will give a good description of the fine 
structure of discharge-generated transient fields. 
The main interest in engineering application of 
fractals is the observation that very complicated 
shapes can be described in a simple way by using 
fractals. More precisely, a complex shape can be 
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described by • few p•r•meters of • fr•ctal object 
(e.g., •n iterative generation •lgorithm), so that 
a complex shape can be represented, for a given 
degree of •ccur•cy, with • sm•ll quantity of in- 
formation. 

Fractals in the description of discharge 
paths. Fr•ct•l description techniques h•ve 
been successfully •pplied to the geometrical de- 
scription of the discharges, that is, for the de- 
scription of the discharge p•ths [see Femia et el., 
1993]. Confirming the intuitive expectation that 
the r•gged, irregularly looking discharge p•ths 
will be fractals, this research showed the useful- 
ness of the fr•ct•l description •nd proved the 
fr•ctality hypothesis for the treelike shapes of 
discharge phenomena. The results h•ve been ob- 
tained for interelectrode discharges, but there is 
no re•son •g•inst their •pplic•tion to lightning. 

Fractals in the description of complex 
physical data. Besides the widely known use 
of fractals to computer generate real-looking pic- 
tures [Mandelbrot, 1982], it has recently been 
shown that fract•l techniques c•n be employed 
to represent (that is, •pproxim•te) real complex 
p•tterns [Barnsley, 1988, ch•p. 5]. In •ddition 
to that, the p•r•meters of the fr•ctal •pprox- 
im•tion of measured d•t• contain information 

strictly tied to the physics of the phenomenon, 
as it h•s been shown for g•s combustion [Strahle, 
1991]. 

Aim of this work. On the b•sis of the 

•bove considerations, one c•n suppose that frac- 
tals c•n be used to obtain good phenomenolog- 
ic•l models of the m•croscopic•l quantities of 
interest. 

This ide• works in two directions. On the one 

side, the problem is that of tying together • frac- 
t•l description of the discharge •nd • fr•ctal de- 
scription of the discharge-generated field. Once 
this is done, one can •ttempt to go in • reversed 
direction, using the so-obtained information to 
construct • phenomenologic•l model of the dis- 
charge from observed d•t•. 

In this p•per we •ddress the problem of find- 
ing the field r•di•ted by • fr•ct•l-modeled dis- 
charge, •nd of •nalyzing such • field from the 

fr•ct•l point of view, in order to •ssess the fr•c- 
t•lity of the temporal field •nd seek the rela- 
tionship between the fract•l p•r•meters of the 
model of the discharge •nd those of the field. 

Because of the •v•il•bility of reference d•t•, 
in this p•per we h•ve restricted ourselves to 
lightning. As • representative of different phys- 
ical mechanisms of discharge that m•y result in 
fr•ct•l objects, we h•ve considered the exam- 
ple of • tortuous channel described by • fr•c- 
t•l p•th. The effect of channel tortuosity on 
the return stroke radiation w•s investigated by 
LeVine and Meneghini [1978•], using • double- 
exponential current pulse form. It was then 
re•dy known that channel tortuosity resulted in 
• j•gged transient response that •ppeared very 
similar to typically measured field w•veforms, 
•nd that increasing tortuosity could eventually 
obliterate the standard smooth waveform of the 

radiated field. Based on this d•t•, we •ttempt 
fractal-b•sed description of the effect of channel 
tortuosity. 

The problem can thus be stated as that of find- 
ing the transient field radiated by • pulse travel- 
ing along a fract•l channel •nd subsequently •n- 
alyze the relationship between the fract•lity of 
the. path •nd of the transient field w•veform. Al- 
though fract•l electrodynamics has been inves- 
tigated by several researchers in the past years 
(e.g., see the recent review of Jaggard [1990]), 
the •uthors •re not •w•re of •ny other work ad- 
dressing this problem. 

The work presented in this p•per is slanted 
toward the engineering •pplic•tions of fractals. 
Therefore no claim of m•them•tic•l rigorousness 
or completeness is m•de upon the tools •nd con- 
clusions of this work. 

2. Transient Radiation from a Fractal 
Current Path 

2.1. Radiation from a tortuous channel 

The lightning channel is considered composed 
of N straight segments •nd is assumed loss- 
less. In the relevant literature [see Nucci at el., 
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1990], channel losses are accounted for heuris- 
tic•lly by • frequency-independent •ttenu•tion 
length. This correction does not appear in pre- 
vious works dealing with p•th geometry [Le Vine 
and Meneghini, 1978a; Gardner, 1990b], •nd in 
order to compare our results with the existing 
ones we have not included losses in our analy- 
sis. However, a discussion on this •pproxim•tion 
can be found in section 3.3. Radiation is c•lcu- 

l•ted without taking into account the possible 
lumped admittances at junctions between seg- 
ments ("kinks"), so that the total field is the 
sum of the elemental fields radiated by e•ch 
current segment. The ground is assumed fiat 
•nd perfectly conducting; therefore the deriva- 
tion of the r•di•ted field is carried out in free 

space, the •ddition of the image contribution 
being straightforward. In p•rticular, •t ground 
level the vertical component of the electric field 
will be twice •s much its free-sp•ce counterpart. 
Corrections due to lossy ground can be inserted 
as detailed by Gardner [1990b], but these, as 
well as the effect of ionosphere, do not appear 
to appreciably change the structure of the tran- 
sient field. The above-listed approximations •p- 
pear to yield a field response in good •greement 
with measured results [LeVine and Meneghini, 
1978a[]. Although the results a[re the s•me •s 
given by LeVine and Meneghini [1978a, b], we 
will briefly summarize them •nd the methods 
used, in order to point out the simplicity deriv- 
ing from the use of the Green's function for the 
fields. 

In view of the considerations •bove, the t•sk 
reduces to that of evaluating (N times) the elec- 
tromagnetic fields produced by a[ straight, •rbi- 
tr•rily oriented channel •long which propagates 
• traveling waive current. This problem •dmits 
to • closed-form solution in both frequency •nd 
time domains only if the current pulse propa- 
gates •t • velocity v = c (c being the speed of 
light) [Fang and Wenbing, 1989]. A closed-form 
solution in time domain is important to reduce 
computation times, control the errors inherent 
to discretiz•tion, •nd gr•nt insight into the r•di- 
•tion mechanisms. Therefore, in the practically 

important case v • c, we will use the Fraunhofer 
(far field) approximation, that allows the desired 
closed form solution. 

We consider thus a straight segment with cen- 
ter located at rti and extending for a length Li 
along the direction 5i, carrying a current I(œ, w), 
where œ E [-Li/2, Li/2] is the rectilinear coor- 
dinate along the segment. We want to find the 
radiated electric field Ei(r) at the observer loca- 
tion r and denote ri = r--rti . Accepting a phase 
error bounded by /•r (/• being a specified toler- 
ance), and provided that ri/Li > (Li/qA)(1/•) 
over the frequency band of interest, on use of 
the free-space dyadic Green's function for the 
electric field [Tai, 1971; Felsen and Marcuvitz, 
1973, Section 1.lb], after straightforward ma- 
nipulations one can write the radiated electric 
field Ei(r, w) as 

e-$kri 

Ei(r, co) - -3co• 4•rri X 
x[AiK•i• + Bi(Koi• + 

f Li/2 I(I•, co)e gkait dœ Xj_Li]2 
where the h•t denotes • unit vector, •nd 

23 2 3 1 
- w/c, Ai = kri t-k•r• Bi- 1 kri k:•r i 

K•i - ai - P. &, Koi - •' &, K•i - •. &. 
The current on the channel is •ssumed to be • 

pulse traveling •1ong with velocity v regardless 
of channel kinks: 

i(s, t) = io(t - s/v), 

s being the total arc length along the (piecewise 
linear) channel path. Summing up all contribu- 
tions from the N segments, one gets the total 
radiated field, 

= 
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-Zoo()x 

• i _•(•/•+•/•,) X • Cc•,i•e X 
i=l 4wri 

x(1 + Q(ri, w))(e '•'/•- e-'•'/•) , 
where a indicates either 

= 

ri = (1 - aivlc)Li/v, $i = 
i-1 Li 
n=l 

proposed by Uman [1987] and 
LeVine and Meneghini [1978b]: 

modified by 

with the following parameters: 

O• -- 2 X 104s -1 ]• -- 2 X 105s -1 -1 , , ?- 10•s 

5 - 2 x 104S -1, Ia -- 30kA, Io - 2.5kA. 

2.2. Fractal Channel 

- + )•. (4) 3 w (3w 

The time domain counterpart of (2) is obtained 
directly via Fourier inversion. Letting 

t! 1) -- rile + $ilv- Yi12, t! 2) -- tl 1) + Yi, (5) 

the Eo and E4 components read 

t)- Zo ' 4-•r x 
N 

x E Ca,, { [i0(t- t• 1)) - io(t- t!2))] + 
i=1 

q-[il(t- t! 1)) --il(t- t!2))] q- 
+ [i2(t- t! 1)) --'2(t- ,!2))]) (6) 

with 

C fotiO(t')dt', i2 c• t .... il(tt)dt t, (7) il(t) r r 
while E• is obtained from (6) on substituting 
-2Cr,i for C•,i and deleting the term in io. By 
inspection of (1), one notes that if ri • A over 
the entire band of interest, the terms in (7) may 
be neglected. By geometric considerations, one 
sees that each term in the sums in (6) appears 
as contributions originating from the lower and 
upper ends of each segment. Last, note that, 
Mthough v has been assumed constant, it may be 
let to have different vMues on different segments. 

Pulse shape. The current waveform 
assumed in this simulation is the standard model 

Fractal dimension. The most important 
parameter of a fractM object is its fractal di- 
mension D [Barnsley, 1988, chap. 5; Mandelbrot, 
1982, chap. I], which is a (quantitative) measure 
of the "jaggedness" of a curve, or equivalently, 
of its space-filling property. A fractal curve has 
a fractal dimension D > 1, as contrasted to a 
standard (Euclidean) curve that has D = 1, 
while a two-dimensionM surface (e.g., a black 
square) has D = 2. For "standard" (nonfrac- 
tal) objects the fractM dimension coincides with 
the standard dimension E, called topological. 
Throughout this paper, the fractal dimension 
has been computed using both the box count- 
ing algorithm [Barnsley, 1988, chap. 5; Peitgen 
and $aupe, 1988, chap. 1; Dubuc et al., 1989] 
and the variation method introduced by Dubuc 
et al. [1989], which we have extended to the eval- 
uation of fractM dimension of nonplanar curves, 
as in the case of the three-dimensionally tortu- 
ous channel. The first method is standard and 

allows the determination of fractahty scales (see 
later); the latter has been proven [Dubuc et al., 
1989] to be reliable and robust, especially when 
the curve is self-aftqne (as in the case of the field) 
instead of self-similar (like the channel). In this 
work we have employed an efficiency-improved 
version of the box counting algorithm due to 
Strahle [1991], and differences between the re- 
sults of the Strahle version of the box counting 
and variation algorithms are neghgible. 

For the sake of conciseness, we give here a brief 
description of the basic box counting algorithm 
only, especially in order to set the ground for 
the discussion on the scales of fractality. For 
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a plane curve, the box counting entails prop- 
erly normalizing the axes so that the curve lies 
within a unit square which has been subdivided 
in (small) boxes with side 1/2 • and then count- 
ing the number No(k) of boxes in which there 
lies at least one point of the curve. The box size 
is then recursively halved (1/2•+1,1/2•+2,...), 
and the count is repeated. If one plots the num- 
ber of occupied boxes No(m) versus the recipro- 
cal of the box side, i.e. 2 m, for m = k, k q- 1,... 
on a doubly logarithmic graph, the points are 
found to lie on a straight line, whose slope is the 
sought-for fractM dimension. In practice, the 
points do not lie exactly on a straight line; hence 
the confidence interval in the linear approxima- 
tion (e.g., see Figure 4) yields the uncertainty 
bound of the algorithm for the fractM dimension 
estimation. Both the Strahle version of the box 

counting and the variation algorithm result in a 
graph like the one described above: therefore all 
fr•ctM dimensions •re expressed •s D+ AD, •nd 
AD is the uncertainty on the dimension estima- 
tion. For nonplanar curves (E = 3), as in the 
case of the three-dimensionally tortuous chan- 
nel, one considers a unit cube and cubic boxes 
instead of squares. In all of the reported results, 
when we refer to the box counting dimension, 
we mean the Strahle version of the method. 

Fractal model of the channel and frac- 

tal dimension. The channel is described as 

a function of the altitude z; that is, letting 
r = r• denote the points of the channel, the 
equation of the channel path is parametrically 
described by r•(z) = x(z)•: + y(z)•)+ zS, where 
x(z) and y(z) are two fractals curves. In or- 
der to keep closer to the probable random na- 
ture of the channel formation, x(z) and y(z) 
are two statistically independent fractal random 
processes. For the numericM generation of the 
channel path, we have employed here the ran- 
dom midpoint displacement algorithm [Peitgen 
and Saupe, 1988, chap. 2], that builds up the 
fract•l iteratively, starting from a straight seg- 
ment and randomly displacing the midpoint, 
then proceeding on each of the two h•lves and 
so on. The channel appears thus as piecewice 
linear. Because of the iterative h•lving, the seg- 

ments decrease in length as 1/2 m and because 
of the fractal nature of the process, the total 
length increase as 2 m(D•-l), where the number 
D• represents the fractM dimension of the chan- 
nel [Peitgen, 1988 chap. 1]. 

In the midpoint displacement algorithm the 
variance of the independent discrete random vari- 
ables used in the displacement process is a func- 
tion of the fractM dimension D• of the channel, 
which is the parameter to be specified. The frac- 
tals so constructed appear to simulate the so- 
cMled "fr•ctM r•ndom wMk" [Mandelbrot, 1982, 
chap. VIII]. In this paper we have considered ex- 
plicitly the case of x and y fractM curves having 
the same fractM dimension, which then turns 
out to be the dimension of the entire (three- 
dimensional) channel D•. This has been done 
in order to reduce the number of parameters to 
be considered when comparing the fractal prop- 
erties of channel and field. A cursory mention to 
the case of different x and y fractM dimensions 
is made in section 3.1. 

Although the fractal dimension D• of the chan- 
nel is set during the generation process, it has 
been evaluated using both algorithms in order 
to assess the intrinsic uncertainty of the dimen- 
sion estimation algorithm that will be used in 
the analysis of the fracta.1 properties of the field. 

Being essentially concerned with return stroke, 
in this work, branching of the channel is not con- 
sidered, because of the difficulty in modeling the 
return along secondary branches. In fact, the 
authors do not know of any work addressing this 
problem. 

Spatial scales offractality. It is •pp•rent 
that while a "true" (exact) fractM is infinitely 
self-similar and infinitely detailed (as obtained 
with an infinite number of iterations), the chan- 
nel generated by a finite number m of iterations 
is an approximate fractal, which will exhibit 
fractal properties only within a certain range 
of (spatial, in the case of the channel) scales. 
In particular, its fractM dimension will remain 
larger than its topological dimension only if ob- 
served on a scale consistently larger than the 
(average) length between two subsequent nodes, 
between which the approximate fractM is just 
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a straight segment. This can be seen quanti- 
tatively in Figure 4a, in which the box count- 
ing graph infiects at a threshold value, below 
which the fr•ctal dimension drops to one. Such 
a threshold value can thus be taken as the min- 

imum fractality scale; in fact, in the example in 
Figure 4a, keeping into account the normaliza- 
tion factor used in the box counting (6000 m, 
corresponding to the height of the channel), the 
threshold •ppears to approximately equal the 

_ 

average segment length (L=90 m). 
The fact that we dea• with intrinsically ap- 

proximate fractals, which •re such only in • lim- 
ited range of scales, will clearly have an effect 
on the fractal properties of the radiated field. 

3. Fractal Analysis of the Field 

The field radiated from a fracta• channel has 

been studied and discussed in the time domain 

and the frequency domain. Typical results are 
shown for the transient radiated field in Fig- 
ures 1, 2 and 3 and some of the spectr• are 
shown in Figure 5. Correctness of the results 
has been ensured through checks, for the case of 
• straight channel (not shown) •nd of • tortu- 
ous channel (obviously qualitative; not shown), 
against the simulated and measured data given 
by Le Vine and Meneghini [1978a]. In all cases, a 
channel with vertical (z) extension of. 6 km h•s 
been considered. The pulse velocity v is con- 
stant in Figures I and 2; we have used the value 
v = c/3 which seems to (partially) account for 
the corona effect around the channel [Baum and 
Baker, 1990]. In Figure 3, v is constant •long 
each straight segment but variable with height 
z, with v( z) exponentially decreasing from the 
value v(0) = c •t ground level, where we sup- 
pose the initiation takes place, to the asymp- 
totic value v = c/3 with a scale height of 6000 m. 
This roughly simulates the variable corona •long 
the channel [Uman, 1987, section 1.3; Baum and 
Baker, 1990; Baum 1990]. 

3.1. Time Domain Analysis 

Typical plots of the transient radiated field are 
reported in Figures 1, 2 •nd 3. Note that the 

actual length of the channel considerably varies 
with the degree of tortuosity, here related to the 
fractal dimension D•: as a result, also the flight 
time of the pulse along the channel, and the du- 
ration of the transient field waveform varies ac- 

cordingly (see section 3.3 for a further discus- 
sion on this). In all the reported cases, the plots 
do not show the late part of the time response, 
consisting of a smooth pulse corresponding to 
the radiation from the top end of the channel 
[LeVine and Meneghini, 1978b] •nd •ll fr•ctal- 
based considerations apply to the jagged portion 
which is shown here solely (see also the consid- 
erations of section 3.3). 

Fract•l analysis of the transient radiated field 
is based on its fractal dimension D•,, that is the 
most important fractal parameter (see above, 
section 2.2). 

In all of the reported cases, the field radi- 
ated by a fractal channel appears to have a frac- 
tal dimension D• • 1, which allows to man- 
tain that radiated field is, for a convenient time 
interval, a fractal itself. Moreover, within the 
confidence range of the employed dimension- 
estimating algorithms, the r•diated field •ppe•rs 
to have the same fractal dimension •s the chan- 

nel (D• • D•). 
Although not reported here, all of the exam- 

ined cases showed the s•me result about frac- 

tality and fractal dimension, regardless of loca- 
tion in the horizontal plane (•b), pulse velocity 
(v), fractal dimension of the channel, different 
and statistically independent realizations of the 
(random-based) channel, scale contraction of x 
and y (to reduce the horizontal occupation of the 
channel), •nd distance from the origin. Fields 
have not been computed in the near-field re- 
gion, where the Fraunhofer approximation fails 
(in the present case the specification of an over- 
all phase error of •/10 sets the minimum dis- 
tance at about r - 35 km for the bandwith of 

the input pulse). Note, however, that, closer 
to the source, Fraunhofer approximation fails 
only for the low-frequency component of the field 
spectrum, thus resulting in low accuracy in the 
late part of the transient response [LeVine and 
Meneghini, 1978b], which is essentially smooth. 
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Figure 1. Fractality of channel and transient field. (top) The (x, z) and (y, z) projections 
of the channel, with fractal dimension Dc = 1.20 4- 0.02 and N = 512 segments. Currerrt 
pulse velocity is v = c/3. (bottom) The vertical component (Ez) of the radiated electric 
field at ground level (z = 0, or 0 = 90ø), r = 100km away from the channel foot, along 
•b = 45 ø. The smooth, late-time part of the waveform is not shown on the plot. The 
computed fractal dimension of the field is D! = 1.20 4- 0.03. 
In this and all of the following figures the electric field is positive when directed toward the 
ground. 
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Figure 2. Higher fractal dimension (time domain). (top) The (z, z) and (y, z) projections 
of the channel, with fractal dimension De = 1.50 4-0.02. Current pulse velocity is v = c/3. 
(bottom) vertical component (Ez) of the radiated electric field at ground level; horizontal 
location is the same as in Figure 1. Late times are not shown on the plot. The computed 
fractal dimension of the field is D! - 1.49 4- 0.03. 
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(a) Evaluation of Fractal Dimension: channel 
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(b) Evaluation of Fractal Dimension: field 
, i i i i i 

j _ 

/ slope = 1.00 _ 
_ 

_ 

_ 

.49 

2, i I i i i i 
1 2 3 4 5 6 7 8 

1og(2^m) 

Figure 3. Altitude-dependent pulse velocity. Vertical component (Ez) of the radiated 
electric field at ground level. Same observation location and channel (De - 1.50 4-0.02) as 
in Figure 2, but pulse velocity depends on z (see text). Late times not shown on the plot. 
The computed fractal dimension of the field is Dj - 1.45 4- 0.05. 
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Therefore fractality considerations extend be- 
low the Fraunhofer bound for distance. The re- 

sults reported in this paper refer to a random- 
based fractal channel (see section 2); we have 
also tried a channel whose shape was generated 
through Von Koch's ("snowflake") curve [Man- 
delbrot, 1982, section 2.6], which is a "canonical" 
deterministic fractal. The results (not shown 
here) are the same as with the random-based 
fractals as far as fractality and fractal dimen- 
sion are concerned. Last, the case of a (three- 
dimensional) channel with z and y projections 
having different fractal dimensions has also been 
examined. It appears that the radiated field has 
still the same fractal dimension as the channel. 

The value of the latter appears to lie between 
the values of the dimensions of the two projec- 
tions, although we did not find any simple law 
to link the dimension of the three-dimensional 

path to those of its projections. 
Timescales of fractality. As discussed 

above, the fractal channel is generated with a 
finite number of iterations, and consequently, 
the segment length is not vanishingly small; in- 
stead, the average segment length will have a 
finite value, •. On the other hand, by inspec- 
tion of equations (4), (5), and (6)one ascertains 
that the time lag between two subsequent ar- 
rivals is ri, whose average value • is approxi- 

_ 

mately proportional to L. It is clear that on a 
timescale smaller than f, the field time wave- 
form is smooth, and therefore • sets the fractal 
threshold of the radiated field. This agrees with 

_ 

the spatial scale of fractality, seen to be L. 
In Figure 4b, the measured fractal dimen- 

sion of the radiated field is shown to tend to 

Di - 1 (corresponding to the radiation from 
a straight line channel) for timescales less than 
0.9 ps, which corresponds to the value of • eval- 
uated directly as the arithmetic mean of the ri. 
We also note that for the far field at z - 0, 

_ 

ai • O, and thus (see equation (4)) • • L/v. 

3.2. Spectral Analysis 

The fractal analysis, as discussed above in 
terms of the temporal shape of the waveform 
radiated from a fract•l channel, is confirmed 

from the analysis in the frequency (spectral) do- 
main, although this latter appears less precise 
than its time-based counterpart, (as also noted 
by Dubuc [1989]). The power spectrum of the 
field S(w) - IEz(•V)l •, calculated via (2) and 
(3), is plotted with a doubly logarithmic format 
in Figure 5 for the cases corresponding to Fig- 
ure 1 (Dc = 1.20) and Figure 2 (D• = 1.50). 
The power spectrum appears to be a so-called 
1If f• spectrum; that is, there exists an asymp- 
totic region (for large frequencies f), whose en- 
velope obeys a simple power law and decays as 
l/ft'; in the following, /• will be called spec- 
tral exponent. First of all, we note that this 
result is in agreement with Le Vine and Menegh- 
ini [1978a], where the asymptotic envelope of 
the spectrum is found to decrease as 1If 4 for a 
vertical straight line channel and as 1If • for a 
tortuous channel. 

In fact, the (randomly) tortuous channel model 
employed by LeVine ad Meneghini [1978a] ap- 
pears to be a special case of the fractal ran- 
dom walk path employed here to describe the 
discharge channel, that obtains when D• = 1.5 
(corresponding to normally distributed random 
displacements). In the general case analyzed 
here, the spectral exponent /• appears to be a 
function of the fractal dimension D• of the chan- 
nel (which quantitatively estimates its tortuos- 
ity). The relationship that we have found agrees 
with Gagnepain et al. [1985], where the depen- 
dence of the fractal dimension D of a time se- 

ries is related to the spectral exponent of its 
spectrum through numerical investigation. The 
spectral exponent/• is found there to vary from 
fl = 4 for a Euclidean curve (D = 1) to ft = 1 for 
a space-filling curve (D = 2). This dependence 
can be explained in terms of the increase in high- 
frequency components of the spectrum, gener- 
ated by the increased irregularity of the time 
series for larger values of the fractal dimension 
D, with reduced slope of the spectral envelope. 

We can thus infer that a fractal modeling of 
the channel affords a good description of a broad 
class of tortuous discharge paths. 

Spectral scales of fractality. The fact 
that the channel is a limited-scale fractal is ap- 
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Figure 4. Evaluation of the fractal dimension: box counting (Strahle version). Graphical 
analysis of box counting associated with (a) the same channel and (b) the transient field 
as in Figure 2. In order to evaluate the fractal dimension (see text, section 2.2) data to 
be analyzed are normalized as follows: (a) with respect to the height of the channel (6000 
m) and (b) with respect to the transient duration of the radiated field (300 ps) for the 
horizontal axis and to the peak-to-peak field amplitude (1 V/m) for the vertical axis. The 
quantity 2 m appearing on the horizontal axis is the reciprocal of the box size (= 1/2 m) at 
step m, while the vertical axis is logNb(m), as defined in section 2.2. The change of slope 
of the data corresponds to (a) about 90 m and (b) about 0.9 ps. 
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Figure 5. Spectral estimation of D/. Power spectra of the fields radiated from the fractal 
channels of Figures 1 and 2. The low-frequency part of the spectrum is omitted. The 
slope of the envelope of the spectrum is (a) -29.5 q-0.5 dB/decade and (b) -20.5 + 0.6 
riB/decade. The slope change of the envelope of the spectrum (see text) takes place (a) at 
about fa. = 1.6 MHz and (b) at about fa. = 0.6 MHz. 

parent in the spectral fractal analysis as well. 
The results in Figure 5 show that in the high- 
frequency limit, all the spectra of the radiated 
field (for every value of the fractal dimension D• 
of the channel) become parallel and decrease as 
1/f 4, corresponding to D- 1. In Figure 5, one 
can see that for frequencies beyond a threshold 
value (of about 1.6 MHz for the channel with 
D• - 1.20 and 0.6 MHz for the channel with 
D• - 1.50) the slope of the spectral envelope 
changes, decreasing as 1/f4; again,/• - 4 corre- 
sponds to a D•- 1. 

This behavior is the counterpart of the time 
domain considerations. Namely, if the channel 

_ 

is fractal only for a spatial scale greater than L 
_ -- 

(L • 34 m, for the case of D• - 1.20 and L • 
90 m, for the case of D• - 1.50), resulting in a 
timescale, e (e • 0.34 its and e • 0.9 its respec- 
tively), on the basis of standard signal analysis 
(sampling theorem, see [Papoulis, 1977, chap. 
5], we expect that for frequencies larger than a 
threshold value fT -- 1/2e (fT • 1.5 MHz and 

fT • 0.6 MHz respectively) the channel behaves 
as a straight one (with D• = 1) and the spectral 
exponent accordingly tends to /• = 4. This is 
actually observed in Figure 5. 

3.3. Model Limitations 

In this model, we have not considered propa- 
gation losses along the channel. The loss model 
present in the literature [Nucci et al., 1990] 
amounts to a frequency-independent damping 
constant (as mentioned in section 2.1), and it 
can be seen (by carrying out the integral in (1)) 
that it does not alter the high-frequency part of 
the spectrum. The most relevant effect of loss 
correction is the elimination of the undamped 
pulse arising from the upper end of the channel, 
a feature that does not affect the analysis car- 
ried out here. Instead, channel losses shorten the 
duration of the radiated pulse: this latter effect 
might complement the present considerations. 
In fact, we have observed (see section 2.2) that 
the number m of iterations in the generation of 
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the channel sets the number N - 2 "• of seg- 
ments and the overall length Lto t of the channel, 
that is found to follow the law Lto t • 2 re(De-l) 
(the overall length has to be intended in an av- 
erage sense, since path generation is random- 
based). The total duration of the transient ra- 
diated field is proportional to Lto t (see (4), (5), 
and (6))and thus an exact fractal channel (i.e., 
an infinitely detailed one generated by m -• e,•) 
would generate an unphysically persistent tran- 
sient radiation in absence of losses. It is to be 

noted that a similar damping effect is attained 
here by the variable-velocity correction, since 
the pulse speed v enters the amplitude coeffi- 
cients C•,i in (6). On the other hand, although 
fractal dynamics extends down to microscopi- 
cal scales (not considered here explicitly), the 
assumptions employed here on the channel ra- 
diation, and therefore the considerations about 
tortuosity, cease to be meaningful below a cer- 
tain spatial scale. 

Last, in this work we have not considered the 
problem of noise on field data, which is instead 
typically added by any practical measurement, 
and which might alter the fractal properties of 
the field. Although this is a complex problem, 
for reasons of consistency we wish to address the 
issue here, without any claim of completeness. 
The noise does •ppear to be a special fr•ctal 
[Peitgen and Saupe, 1988, chap. 2], and were its 
fractal dimension close to that of the phenomena 
under investigation, its effect would be difficult 
to separate from it. However, in that c•se the 
fr•ctal dimension would not, of course, be sig- 
nificantly altered, and possible problems might 
arise only in the determination of the sca•es 
of fractality. Usually, the fractal dimension of 
noise, which equals 2 in the case of white noise 
[Peitgen and Saupe, 1988, chap. 2], appears to 
lie in the range 1.5-2.0 and is significantly higher 
than that of most observable channels, which 
rarely extends beyond 1.5 (the latter value is the 
dimension of a Brownian trail). In these cases, 
the problem of separation of noise from other 
fr•ctal properties arises. In most cases, the sep- 
aration can be made on the basis of the scales 

of fractality. More generally, the technique of 

"fractal filtering" [Strahle, 1991], based on local 
fractal dimensions, can be employed to this aim. 

4. Summary and Conclusions 

In this paper we have investigated the fractal- 
ity hypothesis on the field generated by a dis- 
charge. Although we have confined ourselves 
to the case of a lightning discharge, the anal- 
ysis should apply directly to in-air ESD (while 
in dielectrics field computation is complicated 
by air-dielectric inhomogeneity). Specifically, 
we have considered the radiation form a return 

stroke pulse traveling along a fractally tortuous 
channel. Within the framework of the simpli- 
fying assumptions (nondissipative channel, per- 
fectly conducting ground), results demonstrate 
that the radiated field is a fractal and has the 

same fractal dimension •s the channel within the 

confidence margins of the dimension-esimating 
algorithms. This suggests that the fractal di- 
mension of the channel, that is, its tortuosity, 
can be given a measure, and especially, that this 
information on the channel can be inferred from 

the measured field data. These results lend some 

substance to the fract•l modeling of the (fine 
structure) of the discharge radiation and indi- 
cate the importance of a fractal analysis of mea- 
sured field data. First, one can think of mak- 
ing statistics of the fractal dimension of mea- 
sured dat•, to be subsequently used in model- 
ing. In f•ct, besides the importance of estab- 
lishing the link between the fractal description of 
the source (discharge path) and of the field, this 
work serves also as a first step toward the devel- 
opment of a fractal model of discharges based 
on measured field data. In dealing with a-tortu- 
ous channel, we have employed the same mod- 
eling •ssumptions that were present in previ- 
ous works about this subject. At present, the 
authors are engaged in improving these mod- 
els. From the more theoretical point of view, re- 
search is needed to prove (mathematically) the 
numerical evidence about the fractality and the 
dimension of the radiated field. Work in this di- 

rection, with extension to ESD, is presently in 
progress. 
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