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Abstract:
The continuous curvelet and shearlet transforms have re-
cently been shown to be much more effective than the tra-
ditional wavelet transform in dealing with the set of dis-
continuities of functions and distributions. In particular,
the continuous shearlet transform has the ability to provide
a very precise geometrical characterization of general dis-
continuity curves occurring in images. In this paper, we
show that these properties are useful to design improved
algorithms for the analysis and detection of edges.

1. Introduction

One of the most useful properties of the wavelet transform
is its ability to deal very efficiently with the discontinu-
ities of functions and distributions. Consider, for example,
a function f on R2 which is smooth except for a discon-
tinuity at x0 ∈ R2, and let Wψf(a, t) be the continuous
wavelet transform of f . This is defined as the mapping

Wψf(a, t) = a−1

∫

R2
f(x)ψ

(
a−1(x− t)

)
dx,

where a > 0, t ∈ R2 and ψ ∈ L2(R2) is an appropriate
well-localized function. Then Wψf(a, t) decays rapidly
as a → 0 everywhere, unless t is near x0 [5]. Hence,
the wavelet transform is able to signal the location of the
singularity of f through its asymptotic decay at fine scales.
It was recently shown that certain “directional” extensions
of the wavelet transform have the ability to provide a
much finer description of the set of singularities of a func-
tion. Namely, the recently introduced curvelet and shearlet
transforms are able to identify not only the location of sin-
gularities of a function, but also the orientation of discon-
tinuity curves. In particular, using the continuous shearlet
transform, one can precisely characterize the geometrical
information of general discontinuity curves, including dis-
continuity curves which contain irregularities such as cor-
ner and junction points.
In this paper, we show that one can take advantage of the
properties of the shearlet transform to design improved al-
gorithms for the analysis and detection of edges in images.
Indeed, multiscale techniques based on wavelets have a
history of successful applications in the study of edges.
With respect to traditional wavelets, the shearlet frame-
work has the ability to capture directly the information
about edge orientation and this is useful to improve the

robustness of edge detection algorithms in the presence of
noise.
The paper is organized as follows. In Section 2. we re-
call the definition of the shearlet transform and its main
results concerning the analysis of edges. In Section 3.
we present some representative numerical experiments of
edge detection, comparing the shearlet approach against
wavelets and other standard edge detection techniques.

2. The Shearlet Transform

For a > 0 s ∈ R and t ∈ R2, let Mas be the matrices

Mas =
(

a −√as

0
√

a

)

and, corresponding to those, let ψast(x) =
| detMas|− 1

2 ψ(M−1
as (x − t)), where ψ ∈ L2(R2). It is

useful to notice that Mas = Bs Aa, where Aa =
( a 0

0
√

a

)

and Bs =
(

1 −s

0 1

)
. Hence to each matrix Mas are

associated two distinct actions: an anisotropic dilation
produced by the matrix Aa and a shearing produced by
the non-expansive matrix Bs.
For f ∈ L2(R2), the continuous shearlet transform is de-
fined as the mapping

f → SHψf(a, s, t) = 〈f, ψast〉, a > 0, s ∈ R, t ∈ R2.

The generating function ψ is chosen to be a well local-
ized function satisfying appropriate admissibility condi-
tions [7, 4], so that each f ∈ L2(R2) satisfies the general-
ized Calderòn reproducing formula:

f =
∫

R2

∫ ∞

−∞

∫ ∞

0

〈f, ψast〉ψast
da

a3
ds dt.

The significance of the shearlet representation is that any
function f is broken up with respect to well-localized an-
alyzing elements defined not only at various scales and lo-
cations, as in the traditional multiscale approach, but also
at various orientations associated with the shearing param-
eter s. Figure 1 shows the frequency support of the shear-
let analyzing functions ψ̂ast for some values of s and a.
Thanks to this directional multiscale decomposition, the
continuous shearlet transform is able to precisely capture
the geometry of edges through its asymptotic decay at fine



@@R

(a, s) = ( 1
32 , 1)

@
@

@R

(a, s) = ( 1
4
, 0)

6

(a, s) = ( 1
32 , 0)

ξ1

ξ2

Figure 1: Frequency support of same representative shear-
let analyzing functions ψ̂ast.

scales (a → 0). To precisely describe these properties, let
us introduce the following model of images.
Let Ω = [0, 1]2 and consider the partition Ω =

⋃L
n=1 Ωn∪

Γ, where:

1. each “object” Ωn, for n = 1, . . . , L, is a connected
open set;

2. the set of edges of Ω is given by Γ =
⋃L

n=1 ∂ΩΩn,
where each boundary ∂ΩΩn is a piecewise smooth
curve of finite length.

Hence, we consider the space of images u ∈ I(Ω) of the
form

u(x) =
L∑

n=1

un(x)χΩn(x) for x ∈ Ω\Γ

where, for each n = 1, . . . , L, un ∈ C1
0 (Ω) has bounded

partial derivatives, and the sets Ωn are pairwise disjoint
in measure. We have the following result, which is a sig-
nificant refinement with respect to the simple detection of
singularities obtained using traditional wavelets.
Theorem 2.1. Let f ∈ I(Ω).

(i) If t /∈ Γ, then, for each N ∈ N
lim

a→0+
a−N SHψf(a, s, t) = 0.

(ii) If t ∈ Γ is a regular point and s does not correspond
to the normal direction of Γ at t then

lim
a→0+

a−N SHψB(a, s, t) = 0, for all N > 0;

otherwise, if s = s0 corresponds to the normal direc-
tion of Γ at t then

0 < lim
a→0+

a−
3
4 |SHψB(a, s0, t)| < ∞.

(iii) If t ∈ Γ is a corner point and s does not correspond
to any of the normal directions of Γ at t, then

lim
a→0+

a−
9
4 |SHψB(a, s, t)| < ∞;

otherwise, if s = s0 corresponds to one of the normal
directions of Γ at t then

0 < lim
a→0+

a−
3
4 |SHψB(a, s0, t)| < ∞.

Thus, the continuous shearlet transform has rapid asymp-
totic decay, as a → 0, everywhere except for locations t
on the edges and orientations s which are normal to the
edges. We refer to [7, 4, 3] for additional detail, including
a more precise description of the behavior at the corner
points. We also refer to [1] for some similar (even if more
restricted) results based on the curvelet transform.

2.1 Lipschitz regularity
The notion of Lipschitz regularity is a method to quantita-
tively describe the local regularity of functions and distri-
butions.
Given α ≥ 0, a function f is Lipschitz α at x0 ∈ R2 if
there exists a positive constant K and a polynomial px0 of
degree m = bαc such that, for all x in a neighborhood of
x0:

|f(x)− px0(x)| ≤ K |x− x0|α . (1)

A function f is uniformly Lipschitz α over an open set
Ω ⊂ R2 if there exists a constant K > 0, independent of
x0, such that the above inequality holds for all x0 ∈ Ω.
If f is uniformly Lipschitz α > m in a neighborhood of
x0, then f is necessarily m times differentiable at x0. Also
notice that if 0 ≤ α < 1, then px0 = f(x0) and condition
(1) becomes

|f(x)− f(x0)| ≤ K |x− x0|α .

If f is Lipschitz α with α < 1 at x0, then f is not differ-
entiable at x0. The closer the Lipschitz exponent is to 0,
the more “singular” the function is. If f is bounded but
discontinuous at x0, then it is Lipschitz 0 at x0, indicating
the presence of an edge.
Also recall that if f(x) is Lipschitz α, then its primitive
g(x) is Lipschitz α + 1 (the converse however is not true;
that is, if a function is Lipschitz α at x0, then its derivative
need not be Lipschitz α - 1 at the same point). This obser-
vation explains the following definition which extends the
concept of Lipschitz regularity to distributions.
Let α be a real number. A tempered distribution f is uni-
formly Lipschitz α on Ω ⊂ R2 if its primitive is uniformly
Lipschitz α + 1 on Ω ⊂ R2.
It follows that a distribution may have a negative Lipschitz
exponent. For example, one can show that if f is a Dirac
delta distribution centered at x0, then f is Lipschitz -1 at
x0. We refer to [8] and to the references indicated there
for more details.
The function ψ satisfies the property that for each n ∈ N,
there exists a constant cn > 0 such that

|ψ(x)| ≤ cn(1 + |x|)−n

for all x ∈ R2 (for details, see [4], p. 26). As a con-
sequence, we obtain ‖ψ‖1 =

∫
R2 |ψ(x)| dx < ∞, and∫

R2 |ψ(x)||x|α dx < ∞.
The following result (whose proof is reported in the
appendix) is an adaptation of a similar theorem about the



continuous wavelet transform due to Jaffard [6]. If we
assume ψ has n vanishing moments, i.e.

∫
tkψ(t) dt = 0

for all k = 0, . . . , n − 1, we would need to add the
condition α ≤ n. However, the general construction
of ψ implies that ψ has an infinite number of vanishing
moments. Thus this assumption is unnecessary.

Theorem 2.2. If f ∈ L2(R2) is Lipschitz α > 0 at t0,
then there exists a constant C > 0 such that, for all a < 1,

|SHψf(a, s, t)| ≤ C a
1
2 (α+ 3

2 )
(
1 +

∣∣∣a− 1
2 (t− t0)

∣∣∣
)

.

The theorem can be extended to the case where f is a
distribution. In addition, the estimation of the decay of
the shearlet transform of the Dirac delta and other distri-
butions was computed in [7]. These results show that, for
locations t corresponding to delta-type singularities, the
shearlet transform has a very different behavior from edge
points. In fact, the amplitude of |SHψf(a, s, t0)| grows
like O(a−

1
4 ) as a → 0. Similarly, for spike singularities,

one can show that the amplitude of the shearlet transform
increases at fine scales. This shows that classification of
points by their Lipschitz regularity is important as it can
be used to distinguish true edge points from points corre-
sponding to noise. This principle was already exploited,
for example, in [8].

3. Shearlet-based Edge Detection

Taking advantage of the theoretical observations reported
above, a discrete version of the shearlet transform was de-
veloped and applied to the purpose of locating and iden-
tifying edges in images. Because of space limitations,
we will limit ourselves to presenting a few numerical
demonstrations. A detailed account of the discrete shear-
let transform and shearlet-based edge detection algorithms
is found in [2, 10].
Figures 2 and 3 compare a shearlet-based edge detection
routine against a wavelet-based routine using a consistent
set of predetermined default parameters. For a base-line
comparison against standard routines, we also used the
Sobel and Prewitt methods using their default parame-
ters. The results highlight the superior performance of the
shearlet-based method. To assess the performance of the
edge detector, we have given the value of the Pratt’s Fig-
ure of Merit (FOM), which is a fidelity measure ranging
from 0 to 1, with 1 indicating a perfect edge detector [9].
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4. Appendix: Proof of Theorem 2.2.

Proof of Theorem 2.2. Since f is Lipschitz α at t0, there
is a polynomial pt0(x) and a constant K > 0 such that

|f(x)− pt0(x)| ≤ K |x− t0|α.

Since SHψpt0(a, s, t) = 0, then

|SHψf(a, s, t)|
≤ a−3/4

∫

R2
|ψ(A−1

a B−1
s (x− t))| |f(x)− pt0(x)| dx

≤ K a−3/4

∫

R2
|ψ(A−1

a B−1
s (x− t))| |x− t0|α dx

= K a3/4

∫

R2
|ψ(y)| |t + BsAay − t0|α dy

≤ K 2α a3/4

(
‖Bs‖α ‖Aa‖α

∫

R2
|ψ(y)| |y|α dy

+
∫

R2
|ψ(y)| |t− t0|α dy

)

≤ K 2α a3/4

(
C(s)α aα/2

∫

R2
|ψ(y)| |y|α dy

+ |t− t0|α
∫

R2
|ψ(y)| dy

)

≤ C a
1
2 (α+ 3

2 )
(
1 + |a−1/2(t− t0)|α

)
.

Here we have used the fact that ‖Aa‖ = a1/2, i.e. the
largest eigenvalue of the matrix Aa. Similarly ‖Bs‖ is the
largest eigenvalue of the matrix Bs, which is 1.
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Figure 2: Results of edge detection methods. From top left, clockwise: Original image, noisy image (PSNR=28.10 dB),
Sobel result (FOM=0.24), shearlet result (FOM=0.44), wavelet result (FOM=0.29), and Prewitt result (FOM=0.23).

Figure 3: Results of edge detection methods. From top left, clockwise: Original image, noisy image (PSNR=24.58 dB),
Sobel result (FOM=0.15), shearlet result (FOM=0.45), wavelet result (FOM=0.27), and Prewitt result (FOM=0.15).


