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ABSTRACT
The method presented in this paper aims to reduce the over-
all radiation exposure from X-ray CT scans when only the
reconstruction of a region of interest is required. To achieve
this goal, the Searchlight CT algorithm restricts the acqui-
sition to X-rays passing mainly through the region of inter-
est. The algorithm uses an iteration of the X-ray transform
and of a regularized inverse, which converges rapidly and
for which generic conditions of converges are provided. The
performance of the Searchlight CT algorithm is illustrated
on both phantom and experimental data.
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1. INTRODUCTION
The goal of this paper is to reconstruct a specifically targeted
region of an unknown 3-dimensional object F when only
partial information of its X-ray transform is available. This
is motivated by medical imaging applications since the use
of collimated X-ray projections, i.e., projections acquired
by restricting the irradiation to a specific region of interest
inside F , has the effect of reducing the overall radiation dose
received by F during a CT scan.

The X-ray transform is the underlying mathematical frame-
work for computed tomography (CT) and several other meth-

ods employed to determine structural properties of objects
by using projected information. Formally, the X-ray trans-
form maps a function F defined on R3 into the set of its line
integrals. That is, if F : I3 → R is a Lebesgue-integrable
function on the set I3, where I is an interval of R, w ∈ R3

and θ is a unit vector in R3, the value of the X-ray Trans-
form of F at (w, θ) is the line integral of F over the straight
line l(w, θ), through w with direction θ, defined by

XF (w, θ) =

∫ ∞

−∞
F (w + tθ) dt. (1)

The problem of interest consists in recovering F from the
values of XF , that is, inverting the transform. However,
while it is possible to write an explicit mathematical expres-
sion for the inversion formula, it turns out that the problem
of reconstructing F from the values of its X-ray transform is
numerically unstable, and this numerical instability becomes
even more challenging if one desires to recover F from an in-
complete set of X-ray data [10].

In this paper, we are interested in a special instance of re-
construction from incomplete data, where the goal is the
reconstruction of a specific Region of Interest, denoted S,
inside an unknown 3-dimensional density function F , using
only the X-rays passing through S. This problem is mo-
tivated by medical diagnostic applications where it is nec-
essary to frequently and regularly monitor a “small” region
inside the human body (e.g., to verify the evolution of a tu-
mor), and, at the same time, it is important to reduce the
overall radiation exposure of the patient.

As expected, naive reconstruction attempts introduce many
undesirable artifacts. Here, we introduce a new numerical
algorithm for the accurate density reconstruction on a Re-
gion of Interest S which only requires an acquisition with
X-rays collimated on S. The algorithm is based on an it-
erative procedure, for which we are able to provide generic
convergence conditions.



2. COLLIMATED RECONSTRUCTION
The classical formula for the inversion of the X-ray transform
is based on the Fourier Slice Theorem [9] which leads to the
so-called filtered back-projection. Specifically, we have

F (x, y, z) = X−1(XF )(x, y, z)

=

∫
R3

F2(XθF )(ξ)ei((x,y,z)·ξ)dξ, (2)

where XθF (w) = XF (w, θ), F2 denotes the 2D Fourier
transform on a plane h(θ(ξ)) with normal vector θ(ξ), and
θ(ξ) is any vector orthogonal to ξ

We are interested in reconstructing a spherical region S con-
tained inside a 3-dimensional F ⊂ I3, under the assumption
that mainly the X-rays passing through S are used in the
acquisition. In view of of this, we denote the retained part
of the X-ray transform as,

T = {(w, θ) : l(w, θ) ∩ S ̸= ∅}

and U = TC . Hence, to model the modified acquisition, we
define the collimated X-ray transform by

X̃F (w, θ) =

 XF (w, θ) (w, θ) ∈ T

0 (w, θ) ∈ U.
(3)

Our objective is the computation of an accurate approxima-
tion of the unknown function F , restricted to the region of

interest S, when the data X̃F are given.

An important step in our Searchlight CT iterative algorithm
is the (repeated) regularization of computed density function
F outside the region of interest S. To this end, we partition
the complement of S in I3 into subsets {Qj}, each subset of
a fixed volume vol(Qj) = v, and perform local averages. We
define the regularization operator σ as

σF (x, y, z) =

 F (x, y, z) (x, y, z) ∈ S ,

τ(F,Qj) (x, y, z) ∈ Qj .
(4)

Here,

τ(F,Qj) =
1

v

∫∫∫
Qj

F (x, y, z)dx dy dz .

Multiple variants of our regularization operator σ can be
used, but will not be considered here for brevity.

The Searchlight CT algorithm is initialized by setting the
collimated data as G = X̃F = 1T .XF , where F is an un-
known density function and the dot denotes point-wise mul-
tiplication of the functions 1T and XF . We obtain the first
approximation of F , denoted as f0, by inverting G. Hence
f0 = X−1G, where the operator X−1 is implemented using
the standard filtered back projection by the Fourier Slice
Theorem, identical to the expression in (2). The subsequent
approximations fn of F are obtained through the following
iterative procedure.

For n = 1, 2, . . .,

1. Compute σfn as in (4).

2. Compute the standard X-ray Transform Xσfn of σfn
by (1). Separating X-rays into the two complementary
sets T and U one obtains

Xσfn = 1T .Xσfn + 1U .Xσfn

3. Replace 1T .Xσfn by the known collimated data G =
1T .XF in the preceding formula to define Yn = G +
1U .Xσfn.

4. Finally compute fn+1 by applying the X-ray Inversion
formula (2) to Yn. Hence,

fn+1 = X−1Yn = X−1[G+ 1U .Xσfn] (5)

The sequence of functions fn generated by this algorithm
converges to a function h which is an approximation of the
unknown function F , inside the region of interest S. This is
discussed in detail in the next section.

Figure 1: XZ view of the reconstruction of a re-
gion S inside a 3D Shepp-Logan Phantom using the
standard Backprojection algorithm (above) and the
Searchlight CT algorithm (middle).



3. ANALYSIS OF CONVERGENCE
To discuss the convergence of the algorithm, we need some
technical assumptions on the unknown density function F .
Specifically, we assume that the support of F is contained
in a fixed closed ball B, and that the regularized density σF
has good approximations by regularized versions of F gener-
ated by convolving F with Gaussian kernels having variances
tending to 0.

The set of X-ray source positions P is taken to be disjoint
from B and assumed to be large enough to ensure the exis-
tence of a formal inverse X−1 correctly defined for uncolli-
mated data. This situation is satisfied, in particular, if P is
a complete sphere.

The iterative algorithm generates fn+1 from fn by (5), start-
ing from the given collimated data G = 1T .XF . Since σ is
idempotent, the functions hn = σfn verify the iterative for-
mula,

hn+1 = σX−1G+ σX−1(1U .Xhn). (6)

Denote by A the fixed function A = σX−1G and by M
the linear operator which maps h to Mh = σX−1(1U .Xh).
Hence, we have

hn+1 = A+Mhn. (7a)

which implies

hn+1 − hn = M(hn − hn−1). (7b)

Assuming that the density functions F lies in a vector space
H and that the space σ(H) can be endowed with a Banach
norm such that the operator M becomes a strict contraction
in the Banach space σ(H), then the iteration converges to
the fixed point of the contraction. A necessary condition for
convergence is that the norm of the function F outside S
is sufficiently small. This can be verified by considering a
function, which vanishes inside S.

Extensive numerical tests have indeed verified that the algo-
rithm converges, under reasonable conditions on the spaceH
and the regularization operator σ, provided that the spher-
ical region of interest S is large enough, and provided that
the indicator function 1U is slightly regularized in the space
of rays by convolution with a Gaussian kernel. A more rig-
orous analysis of the convergence is beyond this scope of this
paper and will be given elsewhere.

The sequence of functions hn converges to a limit h in σ(H)
at geometric speed, and the limit h satisfies

h = A+Mh.

Since M is a strict contraction, this last equation has a
unique solution in σ(H) which is the fixed point of the iter-
ation (7a).

Under the assumption that F ∈ σ(H), we verify that F
satisfies the equation

A+MF = σX−1(1T .XF ) + σX−1(1U .XF ) = F, (8)

which, by the uniqueness of h, implies h = F . Thus, for
F ∈ σ(H), the iterative approximations hn converge to the
true density function F .

However, in general, F ̸∈ σ(H) and, in this situation, the
iterative procedure will only produce an approximation of
F . Since M is a strict contraction, the operator Id−M has
a bounded inverse and hence the solution h of the equation
h = A + Mh is continuous in A. Thus, if F and σ(F ) are
sufficiently close, then the limit h of hn, as n → ∞, is as
close as desired to the unknown function F .

Figure 2: XZ view of the reconstruction of a region
S from a biological tissue sample using the standard
Backprojection algorithm (above) and the Search-
light CT algorithm (middle). The 3D biological data
set was provided by Center of Biomedical Engineer-
ing, UTMB].

4. NUMERICAL DEMONSTRATIONS
We have tested the Searchlight CT algorithm for collimated
reconstruction first on a set of 3D Shepp-Logan phantoms
and next on a set of biological data. The reconstruction
accuracy was evaluated by various performance measures.

We simulated the collimated acquisition when the X-ray
emitting source takes arbitrary (discretized) positions on a



fixed large sphere around the object, where the object data
and X-ray transform data were discretized as follows. The
simulated phantoms have been taken of size 2573 voxels. The
real tissue density data were originally of size 512×512×768
from which a subset of size 2573 was extracted. The regions
of interest we have considered are euclidean balls S ∈ I3,
having arbitrary centers, and various radiuses larger than
40 voxels. Indeed, as reported below, for a given density
F ∈ I3, the ratio ||1SxF ||L1/||F ||L1 must be larger than
a certain lower bound to ensure good performance of colli-
mated reconstruction. The partition of the complement of S
in I3 were chosen to be 8-voxel cubes. The size of the (sim-
ulated) planar 2D set of acquisition sensors was kept fixed
and equal to 452 × 370 voxels for all source positions. The
distance between the center of this planar set of sensors and
the source position were also kept constant.

5. PERFORMANCE OF SEARCHLIGHT CT
For any voxel v = (x, y, z) let F (v) and h(v) be the original
and reconstructed densities respectively. Then theRelative
Reconstruction Error, Rel is defined as,

Rel =

∑
v∈S

|F (v)− h(v)|∑
v∈S

F (v)
(9)

As a comparison, we applied the standard filtered back-
projection method, which is valid for uncollimated data,
and found that it always generates unacceptable inaccuracies
and artifacts when applied to collimated data. For exam-
ple, using a typical 3D Shepp-Logan phantom, the standard
filtered back-projection method with collimated data pro-
duces a highly inaccurate reconstruction with Rel = 23.6%;
by contrast the Searchlight CT algorithm does significantly
better with Rel = 9.5%. The reconstructions are illustrated
in Figure 1.

The above results were obtained using 40 iterations, which
is approximately the number of iterations required for the
algorithm to converge with sufficient accuracy. When the
algorithm is applied to biological data, the number of iter-
ations remains the same with similar values of Rel. This
reconstruction is illustrated in Figure 2.

5.1 Performance Criteria for Reconstruction
The radiation dose d(v) received by a voxel v is defined as
the number of rays passing through v. Let c =

∑
v∈I3 d(v)

be the sum of received doses over all voxels in a collimated
case and m be the maximal dose which is attained in the
uncollimated case. We define the Radiation Exposure
Ex, as

Ex =
c

m
. (10)

As Ex increases, the reconstruction improves and hence Rel
reduces, and this is illustrated in Figure 3 using the same
data described above.

Another standard measure of performance we use is the
Peak Signal to Noise Ratio or PSNR, which is defined

Figure 3: Graph of the Relative Reconstruction Er-
ror vs Radiation Exposure, for a typical 3D Shepp-
Logan phantom.

as,

PSNR = 20 log10

(
max(F )

RMSE

)
(11)

where,

RMSE =

√∑
v∈S

(F (v)− h(v))2

As stated in the previous section, the spherical region of in-
terest S must be large enough to ensure good reconstruction
of collimated reconstruction. To determine which region size
is large enough we introduce the notion of relative density.

The Relative Density D of a region S is defined as the
ratio between the sum of densities over voxels on S and the
sum of densities over all voxels.

Table 1: Performance tests vs. radius of S

S-radius D Ex Rel PSNR
45 voxels 3.8 % 19 % 10.3 % 58.9
60 voxels 8.5 % 31 % 8.6 % 62.2
75 voxels 15.3 % 44 % 7.6 % 63.4
90 voxels 23.8 % 57 % 7.2 % 64.0

Our numerical experiments show thatD must be higher than
2.5% for good collimated reconstruction. Table 1 shows the
values of Ex, Rel and D and PSNR as a function of the
radius of the region of interest S for a typical 3D Shepp
Logan Phantom. For a radius below 40 voxels, D falls below
2.5% and the reconstruction fails. This is in agreement with
our theoretical analysis of convergence criteria. The relative
density D increases when we increase the radius of region S,
and simultaneously the set of rays U defined above decreases,
which ensures that the norm of the operator M decreases.

5.2 Comparison with Other Algorithms
The problem of inverting the X-ray or Radon transform from
limited data has received great attention in the literature,



due to its impact in applications. However, most research so
far was focused on extracting only the singular components
(i.e., the egdes) of the data [8, 12, 2, 6, 5]. Other results,
such are those in [13], can only be applied to the Radon
transform in even dimensions, and even in this situation the
performance of these methods is not fully satisfactory.

In particular, we compared the performance of our algorithm
against to the one proposed in [11], using 2D Shepp-Logan
phantoms (since the method in [11] is 2-dimensional). For
a typical phantom, our Searchlight CT collimated recon-
struction algorithm yields Rel = 4.1% while the algorithm
proposed in [11] yields Rel = 7.7%. Using the standard
filtered back-projection the reconstruction relative error is
Rel = 11.2%. Another major difference concerns the per-
formance in terms of the exposure Ex. Using the method
from [11], the exposure is 45%, while our Searchlight CT
algorithm yields radiation exposure 27%, which is consider-
ably smaller.

6. FUTURE RESEARCH
We have introduced a new reconstruction algorithm of 3D
data using collimated tomography, called Searchlight CT,
and its performance was successfully validated on both syn-
thetic phantoms and biological tissue data. However, the
complete spherical distribution of source positions simulated
(in 2D and in 3D) in this paper is still a fairly theoretical
implementation of collimated CT acquisitions. We are cur-
rently adapting our reconstruction algorithm to the setting
of spiral tomography, which is a much more practical and
realistic settings in 3D tomography [15].
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