Math 4377/6308 Advanced Linear Algebra
1.2 Vector Spaces
1.2 Vector Spaces

- Vector Spaces
 - Introduction
 - Definition and Axioms

- Vector Spaces: Examples
 - Row vectors, column vectors
 - 2×2 matrices, $m \times n$ matrices
 - Sequences, c_0, l^{∞}, l^p.
 - Functions, polynomials

- Properties and Theorems
Many concepts concerning vectors in \(\mathbb{R}^n \) can be extended to other mathematical systems.

- Parallelogram law for vector addition.
- Reading: §1.1.
We can think of a vector space in general, as a collection of objects that behave as vectors do in \mathbb{R}^n. The objects of such a set are called vectors.

Field

Let F be a field, whose elements are referred to as scalars.

- \mathbb{R} (real numbers), \mathbb{C} (complex numbers), \mathbb{Q} (rational numbers), etc.
- Reading: Appendix C.
A vector space over F is a nonempty set V, whose elements are referred to as vectors, together with two operations.

- The first operation, called addition and denoted by $+$, assigns to each pair (u, v) of vectors in V a vector $u + v$ in V (Axiom 1).
- The second operation, called scalar multiplication and denoted by juxtaposition, assigns to each pair $(a, u) \in F \times V$ a vector au in V (Axiom 6).

Furthermore, the following properties must be satisfied:

(VS 1) (Commutativity of addition) (Axiom 2) For all vectors $u, v \in V$,

$$u + v = v + u.$$
(VS 2) \textbf{(Associativity of addition)} (Axiom 3) For all vectors \(u, v, w \in V \),
\[
(u + v) + w = u + (v + w)
\]

(VS 3) \textbf{(Existence of a zero)} (Axiom 4) There is a vector (called the zero vector) \(0 \) in \(V \) such that
\[
u + 0 = u.
\]
for all vectors \(u \in V \).

(VS 4) \textbf{(Existence of additive inverses)} (Axiom 5) For each vector \(u \) in \(V \), there is a vector in \(V \) (called the additive inverse of \(u \)), denoted by \(-u\), satisfying
\[
u + (-u) = 0.
\]
Vector Space (cont.)

(VS 5-8) **(Properties of scalar multiplication)** (Axioms 7-10) For all scalars $a, b \in F$ and for all vectors $u, v \in V$,

1. $1u = u$.
2. $(ab)u = a(bu)$.
3. $a(u + v) = au + av$.
4. $(a + b)u = au + bu$.

A vector space over a field F is sometimes called an F-space. A vector space over the real field is called a **real vector space** and a vector space over the complex field is called a **complex vector space**.
Example

The set F^n of all ordered n-tuples whose components lie in a field F, is a vector space over F, with addition and scalar multiplication defined componentwise:

$$(a_1, \cdots, a_n) + (b_1, \cdots, b_n) = (a_1 + b_1, \cdots, a_n + b_n)$$

and

$$c(a_1, \cdots, a_n) = (ca_1, \cdots, ca_n)$$

When convenient, we will also write the elements of F^n in column form

$$
\begin{pmatrix}
a_1 \\
\vdots \\
a_n
\end{pmatrix}
$$
Example

Let $M_{2\times 2} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \text{ are real} \right\}$

In this context, note that the 0 vector is $\begin{bmatrix} \end{bmatrix}$.
Vector Spaces: \(m \times n \) Matrices

Example

The set \(\mathcal{M}_{m,n}(F) \) of all \(m \times n \) matrices with entries in a field \(F \) of the form:

\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\]

with \(a_{ij} \in F \) for \(1 \leq i \leq m, \ 1 \leq j \leq n \), is a vector space over \(F \), under the operations of matrix addition and scalar multiplication:

\[
(A + B)_{ij} = A_{ij} + B_{ij},
\]

\[
(cA)_{ij} = cA_{ij},
\]

for \(1 \leq i \leq m, \ 1 \leq j \leq n \).
Vector Spaces: Sequences

Example

Many sequence spaces are vector spaces. The set \(\text{Seq}(F) \) of all infinite sequences with members from a field \(F \) is a vector space under the componentwise operations

\[
\{s_n\} + \{t_n\} = \{s_n + t_n\}
\]

and

\[
a\{s_n\} = \{as_n\}
\]

Example (\(c_0 \))

In a similar way, the set \(c_0 \) of all sequences of complex numbers that converge to 0 is a vector space.

Example (\(l^\infty \))

The set \(l^\infty \) of all bounded complex sequences is a vector space.
Example (l^p)

If $1 \leq p < \infty$, then the set l^p of all complex sequences \(\{s_n\} \) for which

\[
\sum_{n=1}^{\infty} |s_n|^p < \infty
\]

is a vector space under componentwise operations. To see that addition is a binary operation on l^p, one verifies Minkowski’s inequality

\[
\left(\sum_{n=1}^{\infty} |s_n + t_n|^p \right)^{1/p} \leq \left(\sum_{n=1}^{\infty} |s_n|^p \right)^{1/p} + \left(\sum_{n=1}^{\infty} |t_n|^p \right)^{1/p}
\]

which we will not do here.
Example

Let $\mathcal{F}(S, F)$ denote the set of all functions from a nonempty set S to a field F. This is a vector space over F, under the operations of ordinary addition and scalar multiplication of functions:

$$(f + g)(s) = f(s) + g(s),$$

and

$$(af)(s) = a[f(s)],$$

for each $s \in S$.
Vector Spaces: Polynomials

Example

Let \(n \geq 0 \) be an integer and let \(P_n = \) the set of all polynomials of degree at most \(n \geq 0 \).

Members of \(P_n \) have the form

\[
p(t) = a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n
\]

where \(a_0, a_1, \ldots, a_n \) are real numbers and \(t \) is a real variable. The set \(P_n \) is a vector space.

We will just verify 3 out of the 10 axioms here.

Let \(p(t) = a_0 + a_1 t + \cdots + a_n t^n \) and \(q(t) = b_0 + b_1 t + \cdots + b_n t^n \) (set higher coefficients to zero if different degrees). Let \(c \) be a scalar.
Axiom 1:

The polynomial $p + q$ is defined as follows:

$$(p + q)(t) = p(t) + q(t).$$

Therefore,

$$p + q$$

is also a polynomial of degree at most n. So

$p + q$ is in P_n.
Vector Spaces: Polynomials (cont.)

Axiom 4:

\[
0 = 0 + 0t + \cdots + 0t^n
\]

(zero vector in \(P_n \))

\[
(p + 0)(t) = p(t) + 0 = (a_0 + 0) + (a_1 + 0)t + \cdots + (a_n + 0)t^n
\]

\[
= a_0 + a_1 t + \cdots + a_n t^n = p(t)
\]

and so \(p + 0 = p \)
Axiom 6:

\[(cp)(t) = cp(t) = (\underline{}) + (\underline{})t + \cdots + (\underline{})t^n\]

which is in \(P_n\).

The other 7 axioms also hold, so \(P_n\) is a vector space.
Vector Spaces: True or False

1. Every vector space contains a zero vector.
2. A vector space may have more than one zero vector.
3. In any vector space, $ax = bx$ implies that $a = b$.
4. In any vector space, $ax = ay$ implies that $x = y$.
5. A vector in F^n may be regarded as a matrix in $M_{n\times 1}(F)$.
6. An $m \times n$ matrix has m columns and n rows.
7. In $P(F)$, only polynomials of the same degree may be added.
8. In f and g are polynomials of degree n, then $f + g$ is a polynomial of degree n.
9. If f is a polynomial of degree n and c is nonzero scalar, then cf is a polynomial of degree n.
10. A nonzero scalar of F may be considered to be a polynomial in $P(F)$ having degree zero.
11. Two functions in $F(S, F)$ are equal if and only if they have the same value at each element of S.
Theorem (1.1 Cancellation Law for Vector Addition)

If \(x, y, z \) are vectors in a vector space \(V \) such that \(x + z = y + z \), then \(x = y \).
Corollary 1 (Uniqueness of the Zero Vector)

The vector 0 described in (VS 3) is unique (the zero vector).
Corollary 2 (Uniqueness of the Additive Inverse)

The vector \(-u\) described in (VS 4) is unique (the additive inverse).
Theorem (1.2)

In any vector space \(V \), the following statements are true:

(a) \(0x = 0 \) for each \(x \in V \).

(b) \((-a)x = -(ax) = a(-x) \) for each \(a \in F \) and \(x \in V \)

(c) \(a0 = 0 \) for each \(a \in F \)