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Abstract. This paper introduces a new Parseval frame, based on the 3–D shearlet representation, which is
especially designed to capture geometric features such as discontinuous boundaries with very high efficiency.
We show that this approach exhibits essentially optimal approximation properties for 3–D functions f which
are smooth away from discontinuities along C2 surfaces. In fact, the N term approximation fS

N obtained
by selecting the N largest coefficients from the shearlet expansion of f satisfies the asymptotic estimate

‖f − fS
N‖22 ³ N−1(log N)2, as N →∞.

Up to the logarithmic factor, this is the optimal behavior for functions in this class and significantly outper-
forms wavelet approximations, which only yields a N−1/2 rate. Indeed, the wavelet approximation rate was
the best published nonadaptive result so far and the result presented in this paper is the first nonadaptive
construction which is provably optimal (up to a loglike factor) for this class of 3D data.

Our estimate is consistent with the corresponding 2–D (essentially) optimally sparse approximation
results obtained by the authors using 2–D shearlets and by Candès and Donoho using curvelets.

1. Introduction

In a seminal paper published in 2004 [1], Candès and Donoho proved a remarkable result about sparse
representations of 2-dimensional data, showing that the curvelet representation, a multiscale system of
waveforms defined at various directions and positions at each scale, is essentially as good as an adaptive
representation from the point of view of its ability to approximate images containing edges. Specifically, for
functions f which are C2 away from C2 edges, the N term approximation fC

N obtained from the N largest
coefficients of its curvelet expansion, obeys

(1.1) ‖f − fC
N‖22 ³ N−2(log N)3, as N →∞.

Ignoring the loglike factor, this is the optimal approximation rate for this class of functions while, in compar-
ison, the wavelet and Fourier representations only achieves approximation rate N−1 and N−1/2, respectively.

The work by Candès and Donoho was motivated by fundamental theoretical questions about the mathe-
matical representations of functions containing edge discontinuities, and has great relevance for a variety of
technologies and applications. In fact, the notion of sparsity has implications going far beyond approxima-
tion theory, since it entails the intimate understanding of the most essential information contained in data,
which is critically important for the development of improved algorithms in areas such as data modeling,
feature extraction, image denoising and classification [6]. Inspired in part by this work, the shearlet rep-
resentation was introduced by the authors of this paper and their collaborators in [13, 9] as an alternative
approach which satisfies the same (essentially) optimally sparse approximation rate (1.1) when dealing with
the same class of 2–D data. Similarly to the curvelet construction, the elements of the shearlet system form
a multiscale pyramid of waveforms defined at various directions and positions and satisfying parabolic scal-
ing. However, the shearlet approach relies on a different mathematical framework, based on the structure of
affine systems, so that all elements of the representation system are derived from a single (or finite set of)
generators through the action of the affine group. The unique properties of the shearlet approach provide
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not only the benefit of greater flexibility and mathematical simplicity, but also ensure that there is a natural
transition from the continuum to the discrete setting [17, 8]. This has been exploited in a wide range of very
competitive applications such as those presented in [2, 5, 7, 8, 11, 16, 20]. Also notice that, very recently, a
novel construction which uses compactly supported shearlet analyzing functions [15], was shown to provide
optimally sparse 2D representations as in (1.1).

In this paper, we show that the shearlet approach extends naturally to the 3-dimensional setting where
it also provides optimally sparse nonadaptive representations of 3D data. In fact, we construct a Parseval
frame of shearlets to represent 3-dimensional functions f which are smooth away from discontinuities along
C2 boundaries, and prove that the N -term approximation fS

N , obtained from the N largest coefficients of
its shearlet representation, satisfies the estimate:

(1.2) ‖f − fS
N‖22 ³ N−1(log N)2, as N →∞.

Up the logarithmic factor, this is the optimal approximation rate for this type of functions [4] in the sense
that no orthonormal bases or Parseval frames can yield approximation rates that are better than N−1.
Even if one considers finite linear combinations of elements taking from arbitrary dictionaries, there is no
depth-limited search dictionary that can achieve a rate better than N−1 [4]. In contrast, more traditional
methods based on wavelet and Fourier approximations are significantly less efficient since their asymptotic
approximation rate only decays as N−1/2 and N−1/3, respectively [6, 18]. Notice that the result presented
in this paper is the first nonadaptive construction which is provably optimal (up to a loglike factor) for a
large class of 3D data.

x3

x2

x1

Σ

2−j2−j

2−2j

Figure 1. At scale 2−2j, the number of shearlet elements which are tangent to a bounded
surface Σ are approximately 2j × 2j = 22j.

1.1. Significance. As in the 2–D case, a simple heuristic argument can be used to justify why a 3–D
wavelet system cannot yield an approximation rate better than N−1/2, in general, when dealing with 3–D
data f containing discontinuous surfaces, while a 3-D shearlet system is expected to provide a much sparser
representation. Indeed, at scale 2−2j , a wavelet φj,k(x) = 23jφ(22jx − k) is essentially supported on a box
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of size 2−2j × 2−2j × 2−2j . Hence, there are approximately O(24j) wavelet coefficients Cj,k(f) = 〈f, φj,k〉
associated with the surface of discontinuity (while the remaining coefficients are negligible at fine scales).
Since ∫

R3
|φj,k(x)| dx = 23j

∫
|ψ(22jx− k)| dx = 2−3j

∫

R3
|φ(y)| dy,

a direct computation shows that, at scale 2−2j , all these wavelet coefficients are controlled by

|Cj,k(f)| ≤ ‖f‖∞ ‖φj,k‖L1 ≤ C 2−3j .

If follows that the N -th largest wavelet coefficient |CN (f)| is bounded by O(N−3/4) and, thus, if fW
N is the

approximation of f obtained by taking the N largest coefficients of its wavelet expansion, the L2–error obeys
the estimate:

‖f − fW
N ‖2L2 ≤

∑

`>N

|C`(f)|2 ≤ C N−1/2.

By contrast, the elements of the shearlet system, denoted by ψj,`,k, at scale 2−2j , are essentially supported
on a parallelepiped of size 2−2j × 2−j × 2−j , with location controlled by k, and orientation controlled
by `. At fine scales (j “large”), it is reasonable to assume that the only significant shearlet coefficients
Sj,`,k(f) = 〈f, ψj,`,k,〉 are those corresponding to the shearlet elements which are tangent to the surface of
discontinuity and there are about are O(22j) coefficients of this type (see illustration in Figure 1). Again, a
direct computation (see expression (1.3)) gives that

∫

R3
|ψj,`,k(x)| dx = 2−2j

∫

R3
|ψ(y)| dy,

so that, at scale 2−2j , all these shearlet coefficients are controlled by

|Sj,`k(f)| ≤ ‖f‖∞ ‖ψj,`,k‖L1 ≤ C 2−2j .

It follows that the N -th largest shearlet coefficient |SN (f)| is bounded by O(N−1) and this implies that, if
fN is the approximation of f computed by taking the N largest coefficients of its shearlets expansion, the
L2–error approximately obeys the estimate:

‖f − fS
N‖2L2 ≤

∑

`>N

|S`(f)|2 ≤ C N−1.

The rigorous proof of this estimate, which will be described in this paper, requires a more careful examination
of the shearlet coefficients, including the contribution of those elements that have been considered negligible
in the heuristic argument. As we will see, this will add an additional logarithmic factor to our estimate,
finally yielding (1.2).

1.2. The shearlet representation. The shearlet systems considered in this paper will be derived within
the framework of wavelets with composite dilations introduced by the authors and their collaborators in
[13, 14]. This approach provides a general method for the construction of representation systems made up
of functions ranging not only at various scales and locations, as traditional wavelets, but also at various
orientations, with the ability to deal very effectively with the type of anisotropic phenomena which are a
main feature of the multidimensional data usually found in applications.

Specifically, for ψ ∈ L2(R3), a 3-D shearlet system is a collection of functions of the form

(1.3) {ψj,`,k = | detA|j/2 ψ(B` Ajx− k) : j ∈ Z, ` ∈ L ⊂ Z2, k ∈ Z2},
where A =

(
4 0 0
0 2 0
0 0 2

)
and, for ` = (`1, `2) ∈ Z2, the shear matrices B` are defined as B` =

(
1 `1 `2
0 1 0
0 0 1

)
. Similarly

to the 2-D case, we are interested in shearlet systems whose elements are well localized and form a Parseval
frame. To achieve this, for ξ = (ξ1, ξ2, ξ3) ∈ R3, we define ψ by

ψ̂(ξ) = ψ̂1(ξ1) ψ̂2

(ξ2

ξ1

)
ψ̂2

(ξ3

ξ1

)
,

where ψ1 and ψ2 satisfy the following assumptions:
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Figure 2. Frequency support of a representative shearlet function ψj,`,k, inside the pyrami-
dal region DC . The orientation of the support region is controlled by ` = (`1, `2); its shape
is becoming more elongated as j increases (j = 4 in this plot)

.

(i) ψ̂1 ∈ C∞(R̂), supp ψ̂1 ⊂ [− 1
2 ,− 1

16 ] ∪ [ 1
16 , 1

2 ] and

(1.4)
∑

j≥0

|ψ̂1(2−2jω)|2 = 1 for |ω| ≥ 1
8
;

(ii) ψ̂2 ∈ C∞(R̂), supp ψ̂2 ⊂ [−1, 1] and

(1.5) |ψ̂2(ω − 1)|2 + |ψ̂2(ω)|2 + |ψ̂2(ω + 1)|2 = 1 for |ω| ≤ 1.

It was shown in [10] that there are several examples of functions satisfying these properties. It follows from
equation (1.5) that, for any j ≥ 0,

(1.6)
2j∑

m=−2j

|ψ̂2(2j ω + m)|2 = 1, for |ω| ≤ 1.

Hence, using equations (1.4), (1.6) and the observation that

(ξ1, ξ2, ξ3) A−jB−` = (2−2jξ1,−`12−2jξ1 + 2−jξ2,−`22−2jξ1 + 2−jξ3),

a direct computation gives that:

∑

j≥0

2j∑

`1=−2j

2j∑

`2=−2j

|ψ̂(ξ A−jB−`)|2 =
∑

j≥0

2j∑

`1=−2j

2j∑

`2=−2j

|ψ̂1(2−2j ξ1)|2 |ψ̂2(2j ξ2

ξ1
− `1)|2 |ψ̂2(2j ξ3

ξ1
− `1)|2

=
∑

j≥0

|ψ̂1(2−2j ξ1)|2
2j∑

`1=−2j

|ψ̂2(2j ξ2

ξ1
− `1)|2

2j∑

`2=−2j

|ψ̂2(2j ξ3

ξ1
− `1)|2 = 1,

for (ξ1, ξ2, ξ3) ∈ DC , where DC = {(ξ1, ξ2, ξ3) ∈ R̂2 : |ξ1| ≥ 1
8 , | ξ2

ξ1
| ≤ 1, | ξ3

ξ1
| ≤ 1}. Using this equation

together with the fact that ψ̂ is supported inside [− 1
2 , 1

2 ]3 we have the following result.
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Theorem 1.1. The collection of “horizontal” shearlets:

(1.7) S(ψ) = {ψj,`,k(x) = 22j ψ(B`A
jx− k) : j ≥ 0,−2j ≤ `1, `2 ≤ 2j , k ∈ Z3},

is a Parseval frame for L2(DC)∨ = {f ∈ L2(R3) : supp f̂ ⊂ DC}.
Similarly to the corresponding 2–D case [10], the shearlet elements ψj,`,k are well-localized waveforms (in

fact, ψ̂j,`,k ∈ C∞0 (R̂2)), with frequency support on a parallelepiped of approximate size 22j×2j×2j , at various
scales depending on j ∈ Z, with orientations controlled by the two–dimensional index ` = (`1, `2) ∈ Z2 and
spatial location k ∈ Z3. Those supports becomes increasingly more elongated at finer scales (See Figure 2).

Notice that L2(DC)∨ is a strict subspace of L2. To obtain a Parseval frame for L2(R3), one can construct
a second Parseval frame of shearlets with frequency support in the pyramidal region DC2 = {(ξ1, ξ2, ξ3) ∈
R̂2 : |ξ2| ≥ 1

8 , | ξ1
ξ2
| ≤ 1, | ξ3

ξ2
| ≤ 1}; similarly one obtains a third Parseval frame of shearlets with frequency

support in the pyramidal region DC3 = {(ξ1, ξ2, ξ3) ∈ R̂2 : |ξ3| ≥ 1
8 , | ξ1

ξ3
| ≤ 1, | ξ2

ξ3
| ≤ 1}; Finally, one can

easily construct a Parseval frame (or an orthonormal basis) for V0 = L2([− 1
8 , 1

8 ]3)∨. Then any function in
L2(R3) can be expressed as a sum f = PCf + PC2f + PC3f + PV0f , where each component corresponds to
the orthogonal projection of f into one of the 4 subspaces of L2(R3) described above. Since each one of the
shearlet systems defined on a pyramidal region behaves very similarly, in the following it will be sufficient to
examine the sparsity properties for the “horizontal” system (1.7).

2. Main Results

Before stating the main theorems, let us define more precisely the class of functions that will be used to
model the data we are interested in. We follow [3] and introduce STAR2(A), a class of indicator functions of
sets B with C2 boundaries ∂B. In polar coordinates, let ρ(θ, φ) : [0, 2π)× [0, π) → [0, 1]2 be a radius function
and define B by x ∈ B if and only if |x| ≤ ρ(θ, φ). In particular, the boundary ∂B can be parametrized as
the surface in R3:

(2.8) β(θ, φ) =




ρ(θ, φ) cos(θ) sin φ
ρ(θ, φ) sin(θ) sin φ

ρ(θ, φ) cos φ


 .

The class of boundaries of interest to us are defined by

(2.9) sup
i+j=2

|ρi,j(θ, φ)| ≤ A, ρ ≤ ρ0 < 1.

We say that a set B ∈ STAR2(A) if B ⊂ [0, 1]3 and B is a translate of a set obeying (2.8) and (2.9).
In addition, we set C2

0 ([0, 1]3) to be the collection of twice differentiable functions supported inside [0, 1]3.
Finally, we define the set E2(A) of functions which are C2 away from a C2 surface as the collection of
functions of the form

f = f0 + f1 χB ,

where f0, f1 ∈ C2
0 ([0, 1]3), B ∈ STAR2(A) and ‖f‖C2 =

∑
|α|≤2‖Dαf‖∞ ≤ 1.

We can now state the following main result.

Theorem 2.1. Let M be the set of indices {(j, (`1, `2), k) : j ≥ 0,−2j ≤ `1, `2 ≤ 2j , k ∈ Z2} and {ψµ}µ∈M

be the Parseval frame of shearlets given by (1.7). Let f ∈ E2(A) and {sµ(f) = 〈f, ψµ〉 : µ ∈ M} be the
sequence of shearlet coefficients associated with f . Then

(2.10) sup
f∈E2(A)

|s(f)|(N) ≤ C N−1 (log N),

where |s(f)|(N) denotes the N -th largest entry in this sequence {sµ(f)}.
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Using Theorem 2.1, we are just one step away from our main result about shearlet approximations. Indeed,
let fS

N be the N–term approximation of f obtained from the N largest coefficients of its shearlet expansion,
namely

fS
N =

∑

µ∈IN

〈f, ψµ〉ψµ,

where IN ⊂ M is the set of indices corresponding to the N largest entries of the sequence {|〈f, ψµ〉|2 : µ ∈ M}.
Since the approximation error satisfies the estimate

‖f − fS
N‖22 ≤

∑

m>N

|s(f)|2(m),

from (2.10) we immediately have:

Theorem 2.2. Let f ∈ E2(A) and fS
N be the approximation to f defined above. Then

‖f − fS
N‖22 ≤ C N−1 (log N)2.

2.1. Arguments and constructions. For reasons of brevity, it will not be possible to present a complete
proof of Theorem 2.1 in this short communication. A complete and detailed proof will appear in a separate
work [12]. In the following, we will sketch the main ideas of the proof and emphasize the most significant
differences with respect to the 2–D argument. As we will show, the general structure of the proof follows
the overall structure of the corresponding 2-dimensional sparsity result in [10]. However, the main technical
arguments needed to estimate the effect of the surface discontinuities in the shearlet representation require
the introduction of a fundamentally new approach which is significantly different from the 2D case.

As in [10], it will be convenient to introduce the weak–`p quasi–norm ‖·‖w`p to measure the sparsity of
the shearlet coefficients {〈f, ψµ〉 : µ ∈ M}. This is defined as

‖sµ‖w`p = sup
N>0

N
1
p |sµ|(N),

where |sµ|(N) is the N -th largest entry in the sequence {sµ} and it is equivalent (cf. [19, Sec.5.3]) to the
expression:

‖sµ‖w`p =
(

sup
ε>0

#{µ : |sµ| > ε} εp

) 1
p

.

To analyze the decay properties of the shearlet coefficients {〈f, ψµ〉}µ∈M at a given scale 2−j , j ≥ 0,
we will smoothly localize the function f near dyadic cubes. Namely, for a scale parameter j ≥ 0 fixed,
let Mj = {(j, `, k) : −2j ≤ `1, `2 ≤ 2j , k ∈ Z3} and Qj be the collection of dyadic cubes of the form
Q = [k1

2j , k1+1
2j ]× [k2

2j , k2+1
2j ]× [k3

2j , k3+1
2j ], with k1, k2, k3 ∈ Z. For w a nonnegative C∞ function with support

in [−1, 1]3, we define a smooth partition of unity
∑

Q∈Qj

wQ(x) = 1, x ∈ R3,

where, for each dyadic square Q ∈ Qj , wQ(x) = w(2jx1 − k1, 2jx2 − k2, 2jx3 − k3). We will then examine
the shearlet coefficients of the localized function fQ = f wQ, i.e., {〈fQ, ψµ〉 : µ ∈ Mj}.

It turns out that for f ∈ E2(A), the coefficients {〈fQ, ψµ〉 : µ ∈ Mj} exhibit a very different decay
behavior depending on whether the surface intersects the support of wQ or not. Let Qj = Q0

j ∪ Q1
j , where

the union is disjoint and Q0
j is the collection of those dyadic cubes Q ∈ Qj such that the surface intersects

the support of wQ. Since each Q has sidelength 2 · 2−j , then Q0
j has cardinality |Q0

j | ≤ C0 22j , where C0 is
independent of j. Similarly, since f is compactly supported in [0, 1]3, |Q1

j | ≤ 23j + 6 · 22j .
Using this notation, we can now state the basic results that are needed to prove Theorem 2.1.

Theorem 2.3. Let f ∈ E2(A). For Q ∈ Q0
j , with j ≥ 0 fixed, the sequence of shearlet coefficients {〈fQ, ψµ〉 :

µ ∈ Mj} obeys
‖〈fQ, ψµ〉‖w`1 ≤ C 2−2j ,

for some constant C independent of Q and j.
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Theorem 2.4. Let f ∈ E2(A). For Q ∈ Q1
j , with j ≥ 0 fixed, the sequence of shearlet coefficients {〈fQ, ψµ〉 :

µ ∈ Mj} obeys
‖〈fQ, ψµ〉‖w`1 ≤ C 2−3j ,

for some constant C independent of Q and j.

Before discussing those proofs, let us show how Theorems 2.3 and 2.4 are used to prove Theorem 2.1.

Proof of Theorem 2.1.
Using Theorems 2.3 and 2.4, by the p–triangle inequality for weak `p spaces, p ≤ 1, we have

‖sj(f)‖w`1 ≤
∑

Q∈Qj

‖∂fQψµ‖w`1

=
∑

Q∈Q0
j

‖〈fQ, ψµ〉‖w`1 +
∑

Q∈Q1
j

‖〈fQ, ψµ〉‖w`1

≤ C |Q0
j | 2−2j + C |Q1

j | 2−3j .

Since |Q0
j | ≤ C0 22j , where C0 is independent of j, and |Q1

j | ≤ 23j + 6 · 22j , it follows that

‖sj(f)‖w`1 ≤ C,

for some C independent of j. This immediately implies that

(2.11) R(j, ε) = #{µ ∈ Mj : |〈f, ψµ〉| > ε} ≤ C ε−1.

Also, observe that, since ψ̂ ∈ C∞0 (R2), then

|〈f, ψµ〉| =
∣∣∣∣
∫

R2
f(x) 22j ψ(B`Ajx− k) dx

∣∣∣∣

≤ 22j ‖f‖∞
∫

R2
|ψ(B`Ajx− k)| dx

= 2−2j ‖f‖∞
∫

R2
|ψ(y)| dy < C ′ 2−2j .(2.12)

As a consequence, there is a scale jε such that |〈f, ψµ〉| < ε for each j ≥ jε. Specifically, it follows from
(2.12) that R(j, ε) = 0 for j > 2 (log2(ε−1) + log2(C ′)) > 2 log2(ε−1). Thus, using (2.11), we have that

#{µ ∈ M : |〈f, ψµ〉| > ε} ≤
∑

j≥0

R(j, ε) =
2 log2(ε

−1)∑

j=0

R(j, ε) ≤ C ε−1 log2(ε
−1),

and this implies (2.10). ¤
The proofs of Theorems 2.3 and 2.4 are rather involved. Theorems 2.4, in particular, follows essentially

the same ideas as the 2–D case; this is not surprising since it deals with the situation where the shearlets
are away from the discontinuity. In contrast, Theorems 2.3, which deals with shearlet coefficients associated
with the discontinuous surface, requires the introduction of new analytical tools which are very different
from the 2–D case. In the following section, we will sketch the main ideas of the proof of Theorems 2.3.

2.2. Proof of Theorem 2.3 (sketch). Let us consider a function f ∈ E2(A) which contains a C2 surface
of discontinuity. For j > j0 sufficiently large, over a cube of side 2−j , the surface of discontinuity can
be parametrized as x1 = E(x2, x3) or x2 = E(x1, x3) or x3 = E(x1, x2). For simplicity, without loss of
generality, we will assume that this surface, denoted by Σ, satisfies the equation

x1 = E(x2, x3), −2−j ≤ x2, x3 ≤ 2j ,

that
E(0, 0) = E1(0, 0) = E2(0, 0)
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and that, for all m,n ∈ N such that m + n = 2, we have:

|E(x2, x3)| ≤ 1
2

2−2j |Emn(x2, x3)| on [−2−j , 2−j ]2.

This ensures that the surface is locally nearly flat near the origin. In the following, we will only discuss the
situation j > j0. The situation when j ≤ j0 is much simpler and will not be discussed here.

The key step in the following argument is the estimation of the decay of the shearlet coefficient corre-
sponding to the surface of discontinuity, and this requires a more elaborated argument than the 2D case.
For this analysis, it is useful to consider the following localized version of f . Let w be a nonnegative C∞

window function with support in [−1, 1]3, and define a surface fragment as a function of the form:

(2.13) f(x) = w(2jx) g(x)χ[x1>E(x2,x3)](x), x ∈ [−2−j , 2−j ]3,

where g ∈ C2
0 ((−1, 1)3). We have the following fundamental result whose proof requires several delicate

steps (involving the computation of the Ray Transform of f) but will omitted for space constraint. Without
loss of generality we may assume that |l1| ≤ |l2| due to the fact that the variables ξ2 and ξ3 are symmetric
in the construction of the horizontal shearlets.

Lemma 2.5 ([12]). Let f be the surface fragment given by expression (2.13). Then, for each ξ ∈ DC , j ≥ 0
and −2j ≤ `2 ≤ 2j, the following estimate holds:

(2.14)
∫

R̂3
|f̂(ξ)|2 |Γj,`(ξ)|2 dξ ≤ C 2−4j(1 + |`2|)−5,

where

(2.15) Γj,`(ξ) = ψ̂1

(
2−2j ξ1

)
ψ̂2

(
2j ξ2

ξ1
− `1

)
ψ̂3

(
2j ξ3

ξ1
− `2

)
.

Using Lemma 2.5 and a similar result which is valid for the second order partial derivatives of Γj,`(ξ), we
now deduce that

(2.16)
|`2|∑

`1=−|`2|

∫

R̂3

∣∣∣L
(
f̂(ξ) Γj,`(ξ)

)∣∣∣
2

dξ ≤ C 2−4j (1 + |`2|)−5.

where L be the second order differential operator defined by:

(2.17) L =

(
I −

(
22j

2π (1 + |`2|)
)2

∂2

∂ξ2
1

) (
1−

(
2j

2π

)2
∂2

∂ξ2
2

) (
1−

(
2j

2π

)2
∂2

∂ξ2
3

)
.

Observe that

ξA−jB−`k =
(
ξ1 ξ2 ξ3

)



2−2j 0 0
0 2−j 0
0 0 2−j







1 −`1 −`2
0 1 0
0 1 1







k1

k2

k3




= (k1 − k2`1 − k3`2) 2−2jξ1 + k22−jξ2 + k32−jξ3.(2.18)

Hence, a direct computation gives that

(2.19) L
(
e2πiξA−jB−`k

)
=

{(
1 + ( |`2|

(1+|`2|) )
2( k1
|`2| −

k2`1
|`2| ± k3)2

)
(1 + k2

2)(1 + k2
3) e2πiξA−jB−`k if `2 6= 0

(1 + k2
1)(1 + k2

2)(1 + k2
3) e2πiξA−jB−`k if `2 = 0,

where we have +k3 or −k3 depending on whether `2 is positive or negative. Using integration by parts, we
have that

〈f, ψµ〉 = | detA|−j/2

∫

R̂3
L

(
f̂(ξ) Γj,`(ξ)

)
L−1

(
e2πiξA−jB−`k

)
dξ.

We will examine only situation where `2 6= 0. The other case are much simpler and will be omitted. In this
case, using (2.19), we have that

(2.20) L−1
(
e2πiξA−jB−`k

)
= G(k, `)−1 e2πiξA−jB−`k,
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where G(k, `) =
(
1 + ( |`2|

(1+|`2|) )
2( k1
|`2| −

k2`1
|`2| ± k3)2

)
(1 + k2

2)(1 + k2
3). Thus, it follows that

〈f, ψµ〉 = | detA|−j/2 G(k, `)−1

∫

R̂3
L

(
f̂(ξ) Γj,`(ξ)

)
e2πiξA−jB−`k dξ,

or, equivalently, that

G(k, `) 〈f, ψµ〉 = | detA|−j/2

∫

R̂3
L

(
f̂(ξ) Γj,`(ξ)

)
e2πiξA−jB−`k dξ.

Let K = (K1,K2,K3) ∈ Z3 and define RK = {k = (k1, k2, k3) ∈ Z3 : k1
|`2| ∈ [K1,K1 + 1], −k2`1

|`2| ∈
[K2, K2 + 1], k3 = K3}. Since, for j, ` fixed, the set {| detA|−j/2 e2πiξA−jB−`k : k ∈ Z2} is an orthonormal
basis for the L2 functions on [− 1

2 , 1
2 ]AjB`, and the function Γj,`(ξ) is supported on this set, then

∑

k∈RK

G(k, `)2 〈f, ψµ〉|2 ≤
∫

R̂3

∣∣∣L
(
f̂(ξ) Γj,`(ξ)

)∣∣∣
2

dξ.

This implies that

|`2|∑

`1=−|`2|

∑

k∈RK

G(k, `)2 〈f, ψµ〉|2 ≤
|`2|∑

`1=−|`2|

∫

R̂3

∣∣∣L
(
f̂(ξ) Γj,`(ξ)

)∣∣∣
2

dξ.

From the definition of RK , it follows that

|`2|∑

`1=−|`2|

∑

k∈RK

|〈f, ψµ〉|2 ≤ C
(
1 + (K1 −K2 ±K3)2

)−2
(1+K2

2 )−2(1+K2
3 )−2

|`2|∑

`1=−|`2|

∫

R̂3

∣∣∣L
(
f̂(ξ) Γj,`(ξ)

)∣∣∣
2

dξ.

Thus, by (2.16), we have that

(2.21)
|`2|∑

`1=−|`2|

∑

k∈RK

|〈f, ψµ〉|2 ≤ C L−2
K 2−4j(1 + |`2|)−5,

where LK =
(
1 + (K1 −K2 ±K3)2

)
(1 + K2

2 )(1 + K2
3 ).

For j, ` fixed, let Nj,`,K(ε) = #{k ∈ RK : |ψj,`,k| > ε}. Since |`1| ≤ |`2|, it is clear that Nj,`,K(ε) ≤
C (1+ |`2|)2 (C is independent of `1) and, hence,

∑|`2|
`1=−|`2|Nj,`,K(ε) ≤ C (1+ |`2|)3. Using the new notation,

from (2.21) we have that
|`2|∑

`1=−|`2|
Nj,`,K(ε) ≤ C L−2

K 2−4j ε−2(1 + |`|)−5.

This implies that

(2.22)
|`2|∑

`1=−|`2|
Nj,`,K(ε) ≤ C min

(
(|`|+ 1)3, L−2

K 2−4j ε−2(1 + |`|)−5
)
.

Using (2.22) we will now show that:

(2.23)
2j∑

`2=−2j

|`2|∑

`1=−|`2|
Nj,`,K(ε) ≤ C L−1

K 2−2j ε−1.
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In fact, let `∗2 be defined by (`∗2 + 1)3 = L−2
K 2−4j ε−2(1 + `∗2)

−5. That is, (`∗2 + 1)4 = L−1
K 2−2j ε−1. Then

2j∑

`2=−2j

|`2|∑

`1=−|`2|
Nj,`,K(ε) ≤

∑

|`2|≤(`∗2+1)

|`2|∑

`1=−|`2|
Nj,`,K(ε) +

∑

|`2|>(`∗2+1)

|`2|∑

`1=−|`2|
Nj,`,K(ε)

≤
∑

|`2|≤(`∗2+1)

(|`2|+ 1)3 +
∑

|`2|>(`∗2+1)

L−2
K 2−4j ε−2(1 + |`2|)−5

≤ C`∗2 + 1)4 + CL−2
K 2−4j ε−2(1 + `∗2)

−4 ≤ C (`∗2 + 1)4,

which gives (2.23).
Since

∑
K∈Z3 L−1

K < ∞, using (2.23) we then have that

#{µ ∈ Mj : |〈f, ψµ〉| > ε} ≤
∑

K∈Z3

2j∑

`2=−2j

|`2|∑

`1=−|`2|
Nj,`,K(ε) ≤ C 2−2j ε−1

∑

K∈Z3

L−1
K ≤ C 2−2j ε−1,

and this completes the proof, thanks to the equivalent definition of weak `1 norm. ¤
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