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Abstract

In spite of their remarkable success in signal processing applications, it is now widely
acknowledged that traditional wavelets are not very effective in dealing multidimen-
sional signals containing distributed discontinuities such as edges. To overcome this
limitation, one has to use basis elements with much higher directional sensitivity
and of various shapes, to be able to capture the intrinsic geometrical features of
multidimensional phenomena.

This paper introduces a new discrete multiscale directional representation called
the Discrete Shearlet Transform. This approach, which is based on the shearlet
transform, combines the power of multiscale methods with a unique ability to cap-
ture the geometry of multidimensional data and is optimally efficient in representing
images containing edges. We describe two different methods of implementing the
shearlet transform. The numerical experiments presented in this paper demonstrate
that the Discrete Shearlet Transform is very competitive in denoising applications
both in terms of performance and computational efficiency.
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1 Introduction

One of the most useful features of wavelets is their ability to efficiently approx-
imate signals containing pointwise singularities. Consider a one-dimensional
signal s(t) which is smooth away from point discontinuities. If s(t) is approxi-
mated using the best M -term wavelet expansion, then the rate of decay of the
approximation error, as a function of M , is optimal. In particular, it is signif-
icantly better than the corresponding Fourier approximation error [14,32].

However, it is now widely acknowledged that traditional wavelet methods do
not perform as well with multidimensional data. Indeed wavelets are very effi-
cient in dealing with pointwise singularities only. In higher dimensions, other
types of singularities are usually present or even dominant, and wavelets are
unable to handle them very efficiently. Images, for example, typically contain
sharp transitions such as edges, and these interact extensively with the ele-
ments of the wavelet basis. As a result, “many” terms in the wavelet represen-
tation are needed to accurately represent these objects. In order to overcome
this limitation of traditional wavelets, one has to increase their directional sen-
sitivity and a variety of methods for addressing this task have been proposed
in recent years. They include several schemes of “directional wavelets” (such as
[1,3]), contourlets [12,31], complex wavelets [25,34] brushlets [9], ridgelets [6],
curvelets [7], bandelets [29] and shearlets [20,18], introduced by the authors
and their collaborators.

To make this discussion more rigorous, it will be useful to examine this problem
from the point of view of approximation theory. If F = {ψµ : µ ∈ I} is a
basis or, more generally, a tight frame for L2(R2), then an image f can be
(nonlinearly) approximated by the partial sums

fM =
∑

µ∈IM

〈f, ψµ〉ψµ,

where IM is the index set of the M largest inner products |〈f, ψµ〉|. The re-
sulting approximation error is

εM = ‖f − fM‖2 =
∑

µ/∈IM

|〈f, ψµ〉|2,

and this quantity approaches asymptotically zero as M increases. For many
signal processing applications, the goal is to design the representation system
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F that achieves the best asymptotic decay rate for this error. For example,
for compression applications it has been shown that the distortion rate is
proportional εM [17]. Similarly, the efficiency of noise removal algorithms that
use thresholding estimators have been shown to depend upon εM [15].

Let C2 be the space of functions that are twice continuously differentiable. If
the image f is C2, then the approximation fM obtained from the M largest
wavelet coefficients satisfies

εM ≤ C M−2.

However, images typically contain edges. If f is C2 everywhere away from edge
curves that are piecewise C2, then the discontinuity creates many wavelet coef-
ficients of large amplitude. As a result (see [32]), the asymptotic approximation
error obtained using wavelets only decays as:

εM ≤ C M−1.

This is better than Fourier approximations (in which case the error decays as
M−1/2), but far from the theoretical optimal approximation, where εM decays
as M−2 [13].

This shows that one can improve upon the wavelet representation by appro-
priately exploiting the geometric regularity of the edges. Indeed, Candès and
Donoho have recently introduced the curvelet representation, a tight frame of
elongated oscillatory functions at various scales, that produce an essentially
optimal approximation rate [7]. Namely, it satisfies

εM ≤ C (log M)3 M−2. (1.1)

However, curvelets are not generated from the action of a finite family of op-
erators on a single function, as is the case with wavelets. This means their
construction is not associated with a multiresolution analysis. This and other
issues make the discrete implementation of curvelets very challenging as is
evident by the fact that two different implementations of it have been sug-
gested by the originators (see [35] and [5]). In an attempt to provide a better
discrete implementation of the curvelets, the contourlet representation has
been recently introduced [11,31,33]. This is a discrete time-domain construc-
tion, which is designed to achieve essentially the same frequency tiling as the
curvelet representation (observe however that the contourlets are not a ‘dis-
cretization’ of curvelets).

The authors of this paper and their collaborators have recently introduced the
shearlet representation [18–22], which yields the same optimal approximation
properties (1.1). This new representation is based on a simple and rigorous
mathematical framework which not only provides a more flexible theoretical
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tool for the geometric representation of multidimensional data, but is also
more natural for implementation. In addition, the shearlet approach can be
associated to a multiresolution analysis [22,27]. In this paper, we will de-
velop discrete implementations of the shearlet transform to obtain the Dis-
crete Shearlet Transform. We will show that the mathematical framework of
the shearlet transform allows us to develop a simple and faithful transition
from the continuous to the discrete representation. It will become clear from
our constructions that the shearlet approach can be viewed as a simplifying
theoretical justification for the contourlet transform. The shearlet transform,
however, offers a much more flexible approach, and allows one to develop a
variety of alternative implementations, with complete control over the math-
ematical properties of the transform, and features that can be adapted to
specific applications.

The paper is organized as follows. In Section 2 we describe the mathematical
theory of shearlets and its connection with the theory of affine systems with
composite dilations. In Section 3 we introduce the Discrete Shearlet Trans-
form. Finally, in Section 4, we present several demonstrations of the Discrete
Shearlet Transform for noise removal applications. Concluding remarks are
made in Section 5.

2 Shearlets

The theory of composite wavelets, recently introduced by the authors and their
collaborators [20–22], provides an especially effective approach for combining
geometry and multiscale analysis by taking advantage of the classical theory of
affine systems. In dimension n = 2, the affine systems with composite dilations
are the collections of the form:

AAB(ψ) = {ψj,`,k(x) = | det A|j/2 ψ(B` Ajx− k) : j, ` ∈ Z, k ∈ Z2}, (2.2)

where ψ ∈ L2(R2), A,B are 2×2 invertible matrices and | det B| = 1. The ele-
ments of this system are called composite wavelets if AAB(ψ) forms a Parseval
frame (also called tight frame) for L2(R2); that is,

∑

j,`,k

|〈f, ψj,`,k〉|2 = ‖f‖2,

for all f ∈ L2(R2). In this approach, the dilations matrices Aj are asso-
ciated with scale transformations, while the matrices B` are associated to
area-preserving geometrical transformations, such as rotations and shear. This
framework allows one to construct Parseval frames whose elements range not
only at various scales and locations, like wavelets, but also at various orienta-
tions.
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In this paper, we will consider a special example of composite wavelets in
L2(R2), called shearlets. These are collections of the form (2.2) where A = A0

is the anisotropic dilation matrix and B = B0 is the shear matrix, which are
given by

A0 =




4 0

0 2


 , B0 =




1 1

0 1


 .

For any ξ = (ξ1, ξ2) ∈ R̂2, ξ1 6= 0, let ψ(0) be given by

ψ̂(0)(ξ) = ψ̂(0)(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2

(
ξ2

ξ1

)
, (2.3)

where ψ̂1, ψ̂2 ∈ C∞(R̂), supp ψ̂1 ⊂ [−1
2
,− 1

16
] ∪ [ 1

16
, 1

2
] and supp ψ̂2 ⊂ [−1, 1].

This implies that ψ̂(0) is C∞ and compactly supported with supp ψ̂(0) ⊂
[−1

2
, 1

2
]2. In addition, we assume that

∑

j≥0

|ψ̂1(2
−2jω)|2 = 1 for |ω| ≥ 1

8
, (2.4)

and, for each j ≥ 0,

2j−1∑

`=−2j

|ψ̂2(2
j ω − `)|2 = 1 for |ω| ≤ 1. (2.5)

From the conditions on the support of ψ̂1 and ψ̂2 one can easily observe that
the functions ψj,`,k have frequency support:

supp ψ̂
(0)
j,`,k ⊂ {(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4]∪[22j−4, 22j−1], | ξ2

ξ1
+` 2−j| ≤ 2−j}.

That is, each element ψ̂j,`,k is supported on a pair of trapezoids, of approximate
size 22j × 2j, oriented along lines of slope ` 2−j (see Figure 1(b)).

There are several examples of functions ψ1, ψ2 satisfying the properties de-
scribed above (see Appendix A.1). The equations (2.4) and (2.5) imply that

∑

j≥0

2j−1∑

`=−2j

|ψ̂(0)(ξ A−j
0 B−`

0 )|2 =
∑

j≥0

2j−1∑

`=−2j

|ψ̂1(2
−2j ξ1)|2 |ψ̂2(2

j ξ2

ξ1

− `)|2 = 1

for (ξ1, ξ2) ∈ D0, where D0 = {(ξ1, ξ2) ∈ R̂2 : |ξ1| ≥ 1
8
, | ξ2

ξ1
| ≤ 1}. That

is, the functions {ψ̂(0)(ξ A−j
0 B−`

0 )} form a tiling of D0. This is illustrated in
Figure 1(a).

This property, together with the fact that ψ̂(0) is supported inside [−1
2
, 1

2
]2,
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(a)

ξ1

ξ2

(b)

-¾

∼ 22j

6

?
∼ 2j

Fig. 1. (a) The tiling of the frequency plane R̂2 induced by the shearlets. The tiling
of D0 is illustrated in solid line, the tiling of D1 is in dashed line. (b) The frequency
support of a shearlet ψj,`,k satisfies parabolic scaling. The figure shows only the
support for ξ1 > 0; the other half of the support, for ξ1 < 0, is symmetrical.

implies that the collection:

{ψ(0)
j,`,k(x) = 2

3j
2 ψ(0)(B`

0A
j
0x− k) : j ≥ 0,−2j ≤ ` ≤ 2j − 1, k ∈ Z2}, (2.6)

is a Parseval frame for L2(D0)
∨ = {f ∈ L2(R2) : supp f̂ ⊂ D0}. Details about

this can be found in [22].

Similarly we can construct a Parseval frame for L2(D1)
∨, where D1 is the

vertical cone D1 = {(ξ1, ξ2) ∈ R̂2 : |ξ2| ≥ 1
8
, | ξ1

ξ2
| ≤ 1}. Let

A1 =




2 0

0 4


 , B1 =




1 0

1 1


 ,

and ψ(1) be given by

ψ̂(1)(ξ) = ψ̂(1)(ξ1, ξ2) = ψ̂1(ξ2) ψ̂2

(
ξ1

ξ2

)
,

where ψ̂1, ψ̂2 are defined as above. Then the collection

{ψ(1)
j,`,k(x) = 2

3j
2 ψ(1)(B`

1A
j
1x− k) : j ≥ 0,−2j ≤ ` ≤ 2j − 1, k ∈ Z2} (2.7)

is a Parseval frame for L2(D1)
∨. Finally, let ϕ̂ ∈ C∞

0 (R2) be chosen to satisfy
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G(ξ) = |ϕ̂(ξ)|2 +
∑

j≥0

2j−1∑

`=−2j

|ψ̂(0)(ξA−j
0 B−`

0 )|2 χD0(ξ)

+
∑

j≥0

2j−1∑

`=−2j

|ψ̂(1)(ξA−j
1 B−`

1 )|2 χD1(ξ) = 1, for ξ ∈ R̂2,

where χD denotes the indicator function of the set D. This implies that
supp ϕ̂ ⊂ [−1

8
, 1

8
]2, with |ϕ̂(ξ)| = 1 for ξ ∈ [− 1

16
, 1

16
]2, and the set {ϕ(x − k) :

k ∈ Z2} is a Parseval frame for L2([− 1
16

, 1
16

]2)∨. Observe that, by the proper-
ties of ψ(d), d = 0, 1, it follows that the function G(ξ) = G(ξ1, ξ2) is continuous
and regular along the lines ξ2/ξ1 = ±1 (as well as for any other ξ ∈ R̂2).

Thus, we have the following:

Theorem 2.1 Let ϕk(x) = ϕ(x − k) and ψ
(d)
j,`,k(x) = 2

3j
2 ψ(d)(B`

dA
j
dx − k),

where ϕ, ψ are given as above. Then the collection of shearlets:

{ϕk : k ∈ Z2} ⋃ {ψ(d)
j,`,k(x) : j ≥ 0, −2j + 1 ≤ ` ≤ 2j − 2, k ∈ Z2, d = 0, 1}

⋃ {ψ̃(d)
j,`,k(x) : j ≥ 0, ` = −2j, 2j − 1, k ∈ Z2, d = 0, 1},

where
̂̃
ψ

(d)

j,`,k(ξ) = ψ̂
(d)
j,`,k(ξ) χDd

(ξ), is a Parseval frame for L2(R2).

As shown above, the “corner” elements ψ̃
(d)
j,`,k(x), ` = −2j, 2j − 1, are simply

obtained by truncation on the cones χDd
in the frequency domain. As men-

tioned above, the corner elements in the horizontal cone D0 match nicely with
those in the vertical cone D1.

For d = 0, 1, the shearlet transform is mapping f ∈ L2(R2) into the elements

〈f, ψ
(d)
j,`,k〉, where j ≥ 0,−2j ≤ ` ≤ 2j − 1, k ∈ Z2.

Let us summarize the mathematical properties of shearlets:

• Shearlets are well localized. In fact, they are compactly supported in the
frequency domain and have fast decay in the spatial domain.

• Shearlets satisfy parabolic scaling. Each element ψ̂j,`,k is supported on a pair
of trapezoids, each one contained in a box of size approximately 2j × 22j

(see Figure 1(b)). Because the shearlets are well localized, in the spatial
domain each ψj,`,k is essentially supported on a box of size 2−j×2−2j. Their
supports become increasingly thin as j →∞.

• Shearlets exhibit highly directional sensitivity. The elements ψ̂j,`,k are ori-
ented along lines with slope given by −` 2−j. As a consequence, the cor-
responding elements ψj,`,k are oriented along lines with slope ` 2−j. The
number of orientations doubles at each finer scale.
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• Shearlets are spatially localized. For any fixed scale and orientation, the
shearlets are obtained by translations on the lattice Z2.

• Shearlets are optimally sparse. The following is proved in [19, Thm. 1.1]) :
Theorem. Let f be C2 away from piecewise C2 curves, and fS

N be the
approximation to f obtained using the N largest coefficients in the shearlet
expansion. Then we have:

‖f − fS
N‖2

2 ≤ C N−2 (log N)3.

Thus the shearlets form a tight frame of well localized waveforms, at various
scales and directions, and are optimally sparse in representing images with
edges. Only the curvelets of Candès and Donoho are known to satisfy similar
sparsity properties 2 . With respect to the curvelets, however, our construction
has some fundamental differences. Indeed, the shearlets are generated from the
action of a family of operators on a single function, while this is not true for the
curvelets (they are not of the form (2.2)). In particular, unlike the shearlets,
the curvelets are not associated with a fixed translation lattice. Concerning the
directional sensitivity, the number of orientations in our construction doubles
at each scale, while in the curvelet case it doubles at each other scale. This
is consistent with the fact that our dilations factors in the dilation matrix A
are 4 and 2 rather than 2 and

√
2, as in the case of curvelets. In addition,

the shearlets are defined on the Cartesian domain and the various directions
are obtained from the action of shearing transformations. By contrast, the
curvelets are constructed in the polar domain and the orientations are obtained
by applying rotations. Finally, thanks to their mathematical structure, the
shearlets are associated to a multiresolution analysis (see [27,30]).

Also the discrete construction of the contourlets introduced by Do and Vetterli
[12] has the intent to provide a partition of the frequency plane very similar to
the one represented in Figure 1. In this sense, the theory of shearlets can be
seen as a theoretical justification for the contourlets. Observe, however, that
the shearlets are band-limited functions, while the contourlets are a discrete-
time construction implemented using filter banks. Indeed, the framework of
composite wavelets from which the shearlets are derived allows one to consider
directional multiscale representations with compact support [26]. It is an open
problem whether one can construct a directional multiscale Parseval frame of
functions that are both compactly supported and smooth.

2 Also the contourlets are claimed in [12] to satisfy the same sparsity property.
The argument used in [12] assumes that there exist smooth compactly supported
functions approximating a frequency partition similar to Figure 1. However, the
existence of functions with such properties is an open and nontrivial problem.
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3 The Discrete Shearlet Transform

It will be convenient to describe the collection of shearlets presented above
in a way which is more suitable to derive its numerical implementation. For
ξ = (ξ1, ξ2) ∈ R̂2, j ≥ 0, and ` = −2j, . . . , 2j − 1, let

W
(0)
j,` (ξ) =





ψ̂2(2
j ξ2

ξ1
− `) χD0(ξ) + ψ̂2(2

j ξ1
ξ2
− ` + 1) χD1(ξ) if ` = −2j

ψ̂2(2
j ξ2

ξ1
− `) χD0(ξ) + ψ̂2(2

j ξ1
ξ2
− `− 1) χD1(ξ) if ` = 2j − 1

ψ̂2(2
j ξ2

ξ1
− `) otherwise

and

W
(1)
j,` (ξ) =





ψ̂2(2
j ξ2

ξ1
− ` + 1) χD0(ξ) + ψ̂2(2

j ξ1
ξ2
− `) χD1(ξ) if ` = −2j

ψ̂2(2
j ξ2

ξ1
− `− 1) χD0(ξ) + ψ̂2(2

j ξ1
ξ2
− `) χD1(ξ) if ` = 2j − 1

ψ̂2(2
j ξ1

ξ2
− `) otherwise,

where ψ2,D0,D1 are defined in Section 2. For 1− 2j ≤ ` ≤ 2j − 2, each term
W

(d)
j,` (ξ) is a window function localized on a pair of trapezoids, as illustrated

in Figure 1(a). When ` = −2j or ` = 2j − 1, at the junction of the horizontal

cone D0 and the vertical cone D1, W
(d)
j,` (ξ) is the superposition of two such

functions.

Using this notation, for j ≥ 0,−2j ≤ ` ≤ 2j − 1, k ∈ Z2, d = 0, 1, we can write
the Fourier transform of the shearlets in the compact form

ψ̂
(d)
j,`,k(ξ) = 2

3j
2 V (2−2j ξ) W

(d)
j,` (ξ) e−2πiξA−j

d
B−`

d
k,

where V (ξ1, ξ2) = ψ̂1(ξ1) χD0(ξ1, ξ2)+ψ̂1(ξ2) χD1(ξ1, ξ2). The shearlet transform
of f ∈ L2(R2) can be computed by

〈f, ψ
(d)
j,`,k〉 = 2

3j
2

∫

R2
f̂(ξ) V (2−2j ξ) W

(d)
j,` (ξ) e2πiξA−j

d
B−`

d
k dξ. (3.8)

Indeed, one can easily verify that

1∑

d=0

2j−1∑

`=−2j

|W (d)
j,` (ξ1, ξ2)|2 = 1,

and from this it follows that

|ϕ̂(ξ1, ξ2)|2 +
1∑

d=0

∑

j≥0

2j−1∑

`=−2j

|V (22jξ1, 2
2jξ2)| |W (d)

j,` (ξ1, ξ2)|2 = 1 for (ξ1, ξ2) ∈ R̂2.
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3.1 A Frequency-Domain Implementation

We will now derive an algorithmic procedure for computing (3.8) in frequency
domain which is faithful to the mathematical transformation described above.

An N × N image consists of a finite sequence of values, {x[n1, n2]}N−1,N−1
n1,n2=0

where N ∈ N. Identifying the domain with the finite group Z2
N , the inner

product of images x, y : Z2
N → C is defined as

〈x, y〉 =
N−1∑

u=0

N−1∑

v=0

x(u, v)y(u, v).

Thus the discrete analog of L2(R2) is `2(Z2
N).

Given an image f ∈ `2(Z2
N), let f̂ [k1, k2] denote its 2D Discrete Fourier Trans-

form (DFT):

f̂ [k1, k2] =
1

N

N−1∑

n1,n2=0

f [n1, n2] e
−2πi(

n1

N
k1+

n1

N
k2), −N

2
≤ k1, k2 < N

2
.

Here and in the following we adopt the convention that brackets [·, ·] de-
note arrays of indices, and parentheses (·, ·) denote function evaluations. We
shall interpret the numbers f̂ [k1, k2] as samples f̂ [k1, k2] = f̂(k1, k2) from the
trigonometric polynomial

f̂(ξ1, ξ2) =
N−1∑

n1,n2=0

f [n1, n2] e
−2πi(

n1

N
ξ1+

n1

N
ξ2).

First, to compute
f̂(ξ1, ξ2) V (2−2jξ1, 2−2jξ2) (3.9)

in the discrete domain, at the resolution level j, we apply the Laplacian
pyramid algorithm [4], which is implemented in the time-domain. This will
accomplish the multiscale partition illustrated in Figure 1, by decomposing
f j−1

a [n1, n2], 0 ≤ n1, n2 < Nj−1, into a low pass filtered image f j
a [n1, n2], a

quarter of the size of f j−1
a [n1, n2], and a high pass filtered image f j

d [n1, n2].
Observe that the matrix f j

a [n1, n2] has size Nj ×Nj, where Nj = 2−2jN , and
f 0

a [n1, n2] = f [n1, n2] has size N ×N . In particular, we have that

f̂ j
d(ξ1, ξ2) = f̂(ξ1, ξ2) V (2−2jξ1, 2−2jξ2)

and thus, f j
d [n1, n2] are the discrete samples of a function f j

d(x1, x2), whose
Fourier transform is f̂ j

d(ξ1, ξ2).

In order to obtain the directional localization illustrated in Figure 1, we will
compute the DFT on the pseudo-polar grid, and then apply a one-dimensional
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band-pass filter to the components of the signal with respect to this grid. More
precisely, let us define the pseudo-polar coordinates (u, v) ∈ R2 as follows:

(u, v) = (ξ1,
ξ2

ξ1

) if (ξ1, ξ2) ∈ D0

(u, v) = (ξ2,
ξ1

ξ2

) if (ξ1, ξ2) ∈ D1

After performing this change of coordinates, we obtain gj(u, v) = f̂ j
d(ξ1, ξ2),

and, for ` = 1− 2j, . . . , 2j − 1, we have:

f̂(ξ1, ξ2) V (2−2jξ1, 2−2jξ2) W
(d)
j` (ξ1, ξ2) = gj(u, v) W (2jv − `) (3.10)

This expression shows that the different directional components are obtained
by simply translating the window function W . The discrete samples gj[n1, n2] =
gj(n1, n2) are the values of the DFT of f j

d [n1, n2] on a pseudo-polar grid. That
is, the samples in the frequency domain are taken not on a Cartesian grid, but
along lines across the origin at various slopes. This has been recently referred
to as the pseudo-polar grid. One may obtain the discrete Frequency values of
f j

d on the pseudo-polar grid by direct extraction using the Fast Fourier Trans-
form (FFT) with complexity O(N2 log N) or by using the Pseudo-polar DFT
(PDFT).

Definition 3.1 For a given N ×N signal f [n1, n2], the Pseudo-polar DFT is
given by Pf = [f̂1, f̂2]

T , where f̂1, f̂2 are given by:

f̂1[k1, k2] =
N/2−1∑

n1=−N/2

N/2−1∑

n2=−N/2

f [n1, n2]e
−in1

πk1
N e−in2

πk1
N

2k2
N ,

for −N ≤ k1 < N,−N/2 ≤ k2 < N/2, and

f̂2[k1, k2] =
N/2−1∑

n1=−N/2

N/2−1∑

n2=−N/2

f [n1, n2]e
−in2

πk2
N ein1

πk2
N

2k1
N ,

for −N/2 ≤ k1 < N/2,−N ≤ k2 < N .

It is known that the operator P can be preconditioned so that it provides
a nearly tight frame (when using a direct extraction routine the operator is
a tight frame [10]). Furthermore, both the forward and inverse PDFT can
be implemented with complexity O(N2 log N) using the Pseudo-polar FFT
(see [2], where this is referred to as the Fast Slant Stack Algorithm).

Now let {wj,`[n] : n ∈ Z} be the sequence whose discrete Fourier transform
gives the discrete samples of the window function W (2jk − `), that is, ŵj,`[k] =
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(4,4)

(4,4)

f [n1, n2]

f 1
a

f 2
a

f 1
d

f 2
d

Fig. 2. The figure illustrates the succession of Laplacian pyramid and directional
filtering.

W (2jk − `). Then, for fixed n1 ∈ Z, we have

F1

(
F−1

1

(
gj[n1, n2]

)
∗ wj`[n2]

)
= gj[n1, n2]F1

(
wj`[n2]

)
, (3.11)

where ∗ denotes the one-dimensional convolution along the n2 axis. Here, F1

is the one-dimensional discrete Fourier transform defined by

F1(q)[k1] =
1√
N

N/2−1∑

n1=−N/2

q[n1] e
−2πik1n1

N

for a given 1-D signal q with length N . Thus (3.11) gives the algorithmic
implementation for computing the discrete samples of gj(u, v) W (2jv − `).

Using the notation we have introduced, the shearlet coefficients 〈f, ψ
(0)
j,`,k〉,

given by (3.8), are now simply

∫ ∫
2−

3
2
j gj(u, v) W (2jv − `) exp

(
2πi

(
n1 + `n2

4j
ξ1 +

n2

2j
ξ2

))
dξ1 dξ2. (3.12)

Thus, to compute (3.12) in the discrete domain, it suffices to compute the
inverse PDFT or directly re-assemble the Cartesian sampled values and apply
the inverse two-dimensional FFT. For d = 1, the shearlet coefficients 〈f, ψ

(1)
j,`,k〉

are computed in similar way.

Observe that, in this implementation, we have a large flexibility in the choice
of the frequency window function W . As we mentioned in Section 2 there
are plenty of choices in the construction of the function ψ2 (recall that W
is defined in terms of the function ψ2). In Section 3.3 we will implement
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the windowing in the time-domain. This way we will be able to create the
windowing using wavelet filters by combining the decomposition and synthesis
filters appropriately.

Let us summarize the procedure described above at fixed resolution level j.
This is illustrated by the scheme of Figure 2. Suppose f ∈ `2(Z2

N).

(1) Apply the Laplacian pyramid scheme to decompose
f j−1

a into a low pass image f j
a and a high pass image

f j
d . For f j−1

a ∈ `2(Z2
Nj−1

), the matrix f j
a ∈ `2(Z2

Nj
),

where Nj = Nj−1/4 and f j
d ∈ `2(Z2

Nj−1
).

(2) Compute f̂ j
d on a pseudo-polar grid. This gives the

matrix Pf j
d .

(3) Apply a Band-Pass filtering to the matrix Pf j
d (this

performs (3.11)).
(4) Directly re-assemble the Cartesian sampled values

and apply the inverse two-dimensional FFT or use
the inverse PDFT from the previous step.

The algorithm runs in O(N2 log N) operations.

Figure 3 illustrates the two level shearlet decomposition of the Peppers image.
The first level decomposition generates 4 subbands, and the second level de-
composition generates 8 subbands, corresponding to the different directional
bands illustrated by the scheme in Figure 2.

Figure 4 displays examples of the basis functions for the frequency-domain
based shearlet transform. The first level decomposition is separated into 16
directional subbands and the second level decomposition is separated into 8
directional subbands.

3.2 Correlation with the Theory

The above frequency-based implementation yields the spatial-frequency tiling
determined by the shearlet transform. Recall that each element ψ̂j,`,k is sup-
ported on a pair of trapezoids, each one contained in a box of size approx-
imately 2j × 22j. Thus, the non-linear approximation error rate is expected
to be what the theory predicts. Note that, in this implementation, the down-
sampling is only applied in the vertical and horizontal directions with no
anisotropic subsampling. Thus the decomposition is highly redundant. For ex-
ample, given an image of size N ×N , a three-level decomposition would con-
tain 2jN2 + 2j−1(N/4)2 + (N/16)2 coefficients when 2j directional subbands
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Fig. 3. An illustration of the shearlet transform. The top image is the original
Peppers image. The image below the top image contains the approximate shearlet
coefficients. Images of the detail shearlet coefficients are shown below this with an
inverted grayscale for better presentation.

are chosen at the first decomposition level. The incorporation of anisotropic
subsampling is a non-trivial matter that will be investigated in a follow-up
paper.

We now demonstrate that the approximation properties predicted by the the-
ory of shearlets are very closely correlated to the corresponding properties of
its discrete implementation.

Figure 5(b) shows the non-linear approximation error ‖f−fM‖/‖f‖ where fM

is the partial reconstruction of f using the M-largest coefficients in the shearlet
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Fig. 4. Examples of basis functions of the frequency-domain implemented shearlet
transform. The top row corresponds to the basis functions of the first decomposition
level. The bottom row corresponds to the basis functions of the second decomposi-
tion level.
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Fig. 5. Non-linear approximation curve of the shearlet and wavelet representations.
(a) Original image. (b) Partial reconstruction error ‖f − fM‖/‖f‖.
(or wavelet) representation. In order to compensate for the redundancy of the
shearlet transform and display a fair comparison, we multiply the number of
wavelet coefficients by the redundancy factor of the shearlet transform so that
the number of shearlet and wavelet coefficients is identical.

Our second test image shown in Figure 6(a) is singular along smooth circles
and is otherwise smooth. Our theory (1.1) tells us that in this case we have

‖f − fM‖ ≤ CpM
−1+p

for any p > 0 so that the decay rate of the nonlinear approximation curve is at
least arbitrarily close to 1. Our numerical experiment (see Figure 6(b)) shows
that the decay rate of the nonlinear approximation curve for the shearlet trans-
form is close to 1 for our test image shown in Figure 5(a). In this numerical
experiment, we compare the non-linear approximation curve for our shearlet
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Fig. 6. (a) Original image. (b)Partial reconstruction error ‖f − fM‖/‖f‖ and the
numerically estimated curve.

representation and the numerically estimated curve of the form CM−α. For
this estimated curve, we obtained α ' 0.9634 which is close to 1.

Although there is a redundancy in the number of retained coefficients, the
asymptotic decay rate demonstrated above indicates that this discrete imple-
mentation should perform well as a denoising routine. An analogous situation
occurs for the wavelet transform and its implementation. The success of the
wavelet transform for denoising is based on its non-linear approximation error
rate and yet their most successful implementations for estimation purposes
are typically done by using the highly redundant nonsubsampled version (see,
for example, [8,28]).

3.3 A Time-Domain Implementation

In order to improve the algorithm performance for applications such as de-
noising, we need to implement a local variant of the shearlet transform. This
will reduce the Gibbs type ringing present when filters of large support sizes
are used. Note that the concept of localizing the transform is not new. For
example, a localization has been applied to the ridgelet transform in order to
implement the discrete curvelet transform [35].

In order to obtain a local variant similar to the one used for ridgelets, we would
need to apply the shearlet transforms to small sized image blocks (e.g., blocks
of sizes 8 by 8, or 16 by 16). In order to avoid blocking artifacts, we would need
to introduce an overcomplete decomposition of the image and then synthesize
by a lapped window scheme such as in [35]. Indeed, the added redundancy in
the number of shearlet coefficients makes this a cumbersome approach. But a
much simpler, faster, and time-domain solution is possible.
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Recall that in the implementation there is a large flexibility in the choice
of windowing to be applied. Consider a frequency-based window function W̃
such that

∑2j−1
`=−2j W̃ [2jn2 − `] = 1. Denote by ϕP the mapping function from

the Cartesian grid to the pseudo-polar grid. The shearlet coefficients in the
discrete Fourier domain were earlier calculated as ϕ−1

P (gj[n1, n2]W̃ [2jn2 − `]),

where gj represents f̂ j
d in the pseudo-polar domain. We suggest to calculate

the shearlet coefficients in the frequency domain as

ϕ−1
P (gj[n1, n2])ϕ

−1
P (δ̂P [n1, n2]W̃ [2jn2 − `]),

where δ̂P represents the discrete Fourier transform of the delta function in the
pseudo-polar grid. This is possible because the map ϕP can be described as a
selection matrix S with the property that its elements si,j satisfy the property
s2

i,j = si,j (see [10] for more details). In this way, we can calculate the shearlet

coefficients in the discrete Fourier domain as f̂ j
d [n1, n2]ŵ

s
j,`[n1, n2] where

ŵs
j,`[n1, n2] = ϕ−1

P (δ̂P [n1, n2]W̃ [2jn2 − `]).

The subtle but very important point here is that the new form of the filters
are not found by a simple change of variables. They are found by applying
the specific discrete re-sampling transformation converting from the pseudo-
polar to Cartesian coordinate system. This discrete transformation requires a
re-sampling, where many points in the pseudo-polar coordinate systems may
be mapped into a single point in the Cartesian system.

An illustration of such filters ŵs
j,` found by using a Meyer window are shown

Figure 7.

0 

1

0 0 

1

Fig. 7. Examples of the shearing filters ŵs
j,` constructed using a Meyer wavelet as

the window function W .

As a result of this conversion we now have filters ŵs
j,` such that

2j−1∑

`=−2j

ŵs
j,`(ξ1, ξ2) = 1.
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Because this construction is independent of the image f , we can now construct
shearing filters for any size coordinate system. By taking the inverse discrete
Fourier transform, we thus have the following theorem:

Theorem 3.1 Let ws
` denote the shearing filter ws

0,` with support size L× L.
Given any function f ∈ `2(Z2

N),

2j−1∑

`=−2j

f ∗ ws
` = f.

Although these filters are not compactly supported in the traditional sense,
they can be implemented with a matrix representation that is smaller in size
than the given image.

These observations show that we can perform the shearing filtering “directly”
in the time-domain using a convolution. In our implementation, we will re-
strict the convolution to be of the same size as the given image. In addition, the
small support sizes of the filters reduce the Gibbs-type ringing phenomenon
and improve the computational efficiency of the algorithm. In fact, the small
sized filters allows us to use a fast overlap-add method to compute the convo-
lutions [32]. The gain in speed for the directional filtering combined with the
performance of the Laplacian pyramid algorithm used in our routine yields an
overall performance of O(N2 log N) operations.

Another benefit of this implementation is that we can apply a nonsubsampled
Laplacian pyramid decomposition which has been shown to be very effective in
denoising applications [11]. Although this is a highly redundant decomposition
(e.g. the number of retained coefficients for a three-level decomposition would
be (2j + 2j−1 + 1)N2 when 2j directional subbands are chosen at the first
decomposition level when applied to an N × N image), this version will be
shown to be highly effective for the purpose of denoising.

On the other hand, it is useful to observe that the frequency–domain imple-
mentation discussed in the previous section allows for a much broader class of
wavelet filtering (windowing) to be implemented. This can be useful for other
types of applications.

Displays of various basis functions for the time-domain implemented shearlet
transform are shown in Figure 8. The second level decomposition was divided
into 16 directional subbands and the third level decomposition was divided
into 8 directional subbands.
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Fig. 8. Examples of basis functions of the time-domain implemented shearlet trans-
form. The top row corresponds to the basis functions of the second decomposition
level. The bottom row corresponds to the basis functions of the third decomposition
level.

3.3.1 Comparison with the Contourlets

The time-domain shearlet transform that we described above has similarities
with the contourlet transform [11,31,33]. Recall that the contourlet transform
consists of an application of the Laplacian pyramid followed by directional
filtering. However the directional filtering is obtained using a different ap-
proach from the shearlets. Indeed, the directional filtering of the contourlet
transform is achieved by introducing a directional filter bank that combines
critically sampled fan filter banks and pre/post re-sampling operations.

An important advantage of the shearlet transform over the contourlet trans-
form is that there are no restrictions on the number of directions for the
shearing. That is, we could express the formulation of the windowing W with
a non-dyadic spacing as well. This flexibility is not possible using a fan filter
implementation. In addition, in the shearlet approach, there are no constraints
on the size of the supports for the shearing, unlike the construction of the di-
rectional filter banks in [33]. Finally, we wish to point out that the inversion
of this discrete shearlet transform only requires a summation of the shearing
filters rather than inverting a directional filter bank. This results in an im-
plementation that is most efficient computationally. In addition, this efficient
inversion may have advantages for applications such as compression routines
where the complexity of the decompression algorithm needs to be minimal.

3.4 Computational Efficiency and Accuracy

To give an indication of how computationally efficient the shearlet transform
is, we have compared CPU times for computing the shear filtered coefficients
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(SFC) and its inversion processes (iSFC) to those of the nonsubsampled di-
rectional filter bank (DFB) and its inversion process (iDFB) used as part of
the nonsubsampled contourlet transform.

Our test was based on using a laptop with a 1.73GHz Centrino processor and
1GB of ram. The routines were tested in MATLAB with only one routine of
the DFB codes compiled from C. The DFB codes were provided by the authors
of the nonsubsampled contourlet transform papers. The sizes of the shearing
filters used were 16×16. We measured the following CPU times averaged over
10 iterations:

directions image size cpu time

SFC 8 512 1.4641× 100 sec

iSFC 8 512 2.9687× 10−2 sec

SFC 16 512 2.9266× 100 sec

iSFC 16 512 1.0938× 10−1 sec

DFB 8 512 1.0850× 102 sec

iDFB 8 512 1.0867× 102 sec

DFB 16 512 2.7685× 102 sec

iDFB 16 512 2.7865× 102 sec

Notice that doubling the number of directions for the shearing processes only
marginally increases the computational time, whereas it more than doubles the
time for the directional filter bank process. Also, it can be seen that the time
to invert the shearing is practically negligible for an image of size 512× 512.

Below are the results for the frequency-domain shearing.

directions image size CPU time

Freq-SFC 8 512 3.8898× 101 sec

Freq-iSFC 8 512 2.8125× 10−1 sec

Freq-SFC 16 512 1.2950× 102 sec

Freq-iSFC 16 512 5.8203× 10−1 sec

The average CPU time to decompose an image of size 512 via the LP algorithm
used in the frequency-domain implementation for the shearlet transform was
3.2656× 10−1. The average CPU time to recompose via the LP algorithm was
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3.2969× 10−1. For the nonsubsampled LP algorithm used in the time-domain
shearlet transform, the average CPU time was 4.7656 × 10−1. The average
CPU time to recompose was 4.8281× 10−1.

The relative error in the reconstruction of the frequency-domain implementa-
tion for an image of size 512 (Lena) was 3.8842×10−13. For the nonsubsampled
time-domain shearlet transform, the relative errors were 7.8228×10−16 using a
Meyer wavelet-based window and 7.8249×10−16 using a characteristic function
based window. These results are acceptable and expected when implemented in
a finite precision machine. The frequency-domain implementation only suffers
from a slight performance degradation due to the limits on the discretization
of the one-dimensional Meyer wavelet being used. The degradation is more
visible when used on a signal of length 1024 than for a signal of length 32 or
64. Alternative discretizations of the Meyer wavelet could be used to mitigate
this issue.

4 Numerical Experiments

The highly directional sensitivity of the shearlet transform and its optimal
approximation properties will lead to improvements in many image processing
applications. To illustrate one of its potential uses, we have used the shearlet
transform to remove noise from images. Specifically, suppose that for a given
image f , we have

u = f + ε (4.13)

where ε is Gaussian white noise with zero mean and standard deviation σ;
that is, ε ∈ N(0, σ2). We attempt to recover the image f from the noisy data
u by computing an approximation f̃ of f obtained by applying a thresholding
scheme in the subbands of the shearlet decomposition.

First, we demonstrate the performance in estimation by applying hard thresh-
olding to the subbands of the shearlet decomposition using the frequency-
based routine. The decomposition tested is the same as that shown in Fig-
ure 3. The result is shown in Figure 9. The performance measure used was the
peak signal-to-noise ratio (PSNR) in decibels (dB) defined as

PSNR = 20 log10

255N

‖f − f̃‖F

.

where ‖ · ‖F is the Frobenius norm, the given image f is of size N × N , and
f̃ denotes the estimated image. Included in this experiment are the estimates
found by applying hard thresholding to the discrete wavelet transform defined
in terms of the Daubechies-Antonini 7/9 filters and the contourlet transform
using a decomposition compatible with the shearlet decomposition. We also
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. (a) The original cameraman image. (b) The noisy image (PSNR=22.09dB).
(c) The result of wavelet denoising using the 7/9 filters (PSNR=26.18dB). (d) The
result of contourlet denoising (PSNR=25.82dB). (e) The result of the frequen-
cy-based shearlet denoising (PSNR=27.21dB). (f) The result of the time-domain
shearlet denoising (PSNR=28.01dB).
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include the performance when hard thresholding is applied to the time-domain
based shearlet transform. The decomposition is the same as for the frequency-
based transform but with the shearing filters used to obtain the 8 and 4 direc-
tional subbands constructed using filters of size 16 and 32, respectively. This
experiment suggests a better performance in using the time-domain shearlet
transform for denoising and hence we provide a more complete set of compar-
isons using this implementation.

Taking note of the great performance of the nonsubsampled contourlet trans-
form for image denoising [11], we use a time-domain shearlet transform and
choose the threshold parameters

τi,j = σ2
εi,j

/σ2
i,j,n (4.14)

as in [11] where σ2
i,j,n denotes the variance of the n-th coefficient at the ith

shearing direction subband in the jth scale, and σ2
εi,j

is the noise variance
at scale j and shearing direction i. Various experiments indicate the shear-
let coefficients can be modeled by generalized Gaussian distributions so that
these thresholds should yield a risk close to the optimal Bayes risk, specifi-
cally within 5 percent of it. To estimate the signal variances in each subband
locally, the neighboring coefficients contained in a square window and a maxi-
mum likelihood estimator are used. The variances σ2

εi,j
are estimated by using

a Monte-Carlo technique in which the variances are computed for several nor-
malized noise images and then the estimates are averaged.

The particular form of the time-domain based shearlet transform we tested
was to use the nonsubsampled Laplacian pyramid transform with several dif-
ferent combinations of the shearing filters. This will be simply referred to as
the Nonsubsampled Shearlet Transform (NSST). We use the abbreviation of
NSST1(L1,L2) and NSST2(L1,L2) to indicate the type of windowing used and
the support sizes of the shearing filters ws

` . In particular, we implemented the
shearing on 4 of the 5 scales of the Laplacian pyramid transform decompo-
sition. The shearing filters of sizes L1 × L1, L1 × L1, L2 × L2, and L2 × L2

from finer to coarser were used with the number of shearing directions chosen
to be 16, 16, 8, and 8. Note that the only restriction on the construction of
the shearing filters is that the maximum number of directional subbands is
less than or equal to the size of the filter. NSST1 refers to the case where the
shearing was done by using a Meyer wavelet window and NSST2 to the case
where the shearing was done with a simple characteristic window function.
For example, NSST1(16,32) indicates that a Meyer-based shearing filter of size
16 with 16 directions was applied to the first and second decomposition level
and a Meyer-based shearing filter of size 32 with 8 directions was applied to
the third and fourth decomposition level.

We tested the denoising schemes using the images shown in Figure 10 for
various standard deviation values of the noise. For a baseline comparison, we
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Fig. 10. Test images. From top left, clockwise: Lena, Peppers, Elaine, and Goldhill.

tested the performance of the standard Discrete Wavelet Transform (DWT)
and the Stationary Wavelet Transform (SWT) both defined in terms of the
Daubechies-Antonini 7/9 filters using hard thresholding. For brevity, the per-
formance of these transforms using soft thresholding are not presented since
they performed significantly less than the results obtained by hard threshold-
ing. For more competitive comparisons, we tested the Bivariate Shrinkage algo-
rithm (BivShrink), a thresholding technique based on taking into account the
statistical dependencies among wavelet coefficients, using the discrete wavelet
transform and using the Dual-tree Discrete Wavelet Transform (DDWT)[34].
We also compared the scheme against the Curvelet based denoising scheme of
[35] and the Nonsubsampled Contourlet Transform (NSCT) denoising scheme
of [11] using 16, 16, 8, and 8 directions from finer to coarser scales.

The performance of the shearlet approach relative to other transforms is shown
in Tables I and II. It shows that the shearlet algorithm consistently outper-
forms all the algorithms mentioned above. NSST1(16,32) shows a fraction of
a dB in improvement in terms of PSNR over the BivShrink and NSCT al-
gorithms. The improvement over curvelets and wavelets is in many cases 1
dB or more. The improvement over close-ups of some of the best performing
estimates are shown in Figures 11 and 12 where it can be seen that these
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TABLE I

Noisy BivShrink DDWT Curvelet NSCT NSST1(16,32)

Lena

σ = 10 28.14 dB 34.36 dB 35.36 dB 33.71 dB 35.29 dB 35.38 dB

σ = 15 24.61 dB 32.48 dB 33.63 dB 32.52 dB 33.57 dB 33.71 dB

σ = 20 22.12 dB 31.16 dB 32.37 dB 31.54 dB 32.33 dB 32.47 dB

σ = 25 20.18 dB 30.16 dB 31.38 dB 30.66 dB 31.33 dB 31.46 dB

Peppers

σ = 10 28.14 dB 33.51 dB 34.20 dB 32.81 dB 34.22 dB 34.35 dB

σ = 15 24.61 dB 31.98 dB 32.74 dB 31.72 dB 32.78 dB 32.97 dB

σ = 20 22.12 dB 30.80 dB 31.64 dB 30.84 dB 31.67 dB 31.90 dB

σ = 25 20.18 dB 29.87 dB 30.74 dB 30.01 dB 30.75 dB 30.99 dB

Goldhill

σ = 10 28.14 dB 32.28 dB 32.86 dB 30.98 dB 32.87 dB 32.91 dB

σ = 15 24.61 dB 30.46 dB 31.17 dB 29.90 dB 31.14 dB 31.21 dB

σ = 20 22.12 dB 29.24 dB 30.00 dB 29.08 dB 29.97 dB 30.05 dB

σ = 25 20.18 dB 28.35 dB 29.13 dB 28.41 dB 29.09 dB 29.17 dB

Elaine

σ = 10 28.14 dB 31.91 dB 32.83 dB 32.11 dB 32.86 dB 33.06 dB

σ = 15 24.61 dB 31.50 dB 31.79 dB 31.43 dB 31.84 dB 31.93 dB

σ = 20 22.12 dB 30.38 dB 31.09 dB 30.81 dB 31.15 dB 31.20 dB

σ = 25 20.18 dB 29.79 dB 30.51 dB 30.24 dB 30.55 dB 30.59 dB

slight improvements are visually noticeable. The shearlet transform results
exhibits less Gibbs-type residual artifacts than the other denoising methods.
We attribute this to the small support sizes of the shearing filters.
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TABLE II

DWT SWT NSST1(8,16) NSST2(16,32) NSST2(8,16)

Lena

σ = 10 31.91 dB 33.73 dB 35.22 dB 35.23 dB 35.08 dB

σ = 15 30.10 dB 31.90 dB 33.56 dB 33.60 dB 33.47 dB

σ = 20 28.79 dB 30.55 dB 32.34 dB 32.39 dB 32.26 dB

σ = 25 27.79 dB 29.51 dB 31.35 dB 31.41 dB 31.28 dB

Peppers

σ = 10 31.73 dB 33.30 dB 34.21 dB 34.24 dB 34.13 dB

σ = 15 29.96 dB 31.76 dB 32.83 dB 32.91 dB 32.77 dB

σ = 20 28.70 dB 30.57 dB 31.76 dB 31.86 dB 31.72 dB

σ = 25 27.70 dB 29.53 dB 30.87 dB 30.97 dB 30.83 dB

Goldhill

σ = 10 29.67 dB 31.26 dB 32.76 dB 32.69 dB 32.56 dB

σ = 15 28.01 dB 29.53 dB 31.09 dB 31.08 dB 30.92 dB

σ = 20 26.95 dB 28.35 dB 29.94 dB 29.95 dB 29.81 dB

σ = 25 26.18 dB 27.48 dB 29.08 dB 29.10 dB 28.97 dB

Elaine

σ = 10 30.72 dB 31.75 dB 32.67 dB 32.67 dB 32.56 dB

σ = 15 29.66 dB 30.75 dB 31.76 dB 31.79 dB 31.73 dB

σ = 20 28.78 dB 29.96 dB 31.11 dB 31.15 dB 31.09 dB

σ = 25 28.08 dB 29.30 dB 30.53 dB 30.58 dB 30.52 dB

5 Conclusion

We have developed both a frequency and time-domain based implementa-
tion of the discrete shearlet transform. These two different versions (although
there is some commonality between them) were created for greater flexibil-
ity with future applications in mind. The frequency-based implementation
gives much greater flexibility in the type of windowing that can be utilized
and allows for the possibility of incorporating subsampling. This can be use-
ful for compression-type applications. For the time-domain based or finitely
supported filtering implementation, the discrete shearlet transform becomes
suitable for applications requiring translation invariance such as denoising and
computational efficiency.
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Fig. 11. Close–up of images. From top left, clockwise: Noisy image (PSNR= 22.12
dB), Bivshrink DDWT (PSNR= 31.09 dB), NSST1(16,32) (PSNR=31.20 dB), and
NSCT (PSNR= 31.15 dB).

These discrete shearlet implementations are related to the discrete curvelet
and contourlet transforms. All of these have a similar idealized frequency
decomposition but differ in their implementation and construction. In fact,
we noticed in various denoising experiments that the residual artifacts after
reconstructions are very similar in nature. The features of each particular rep-
resentation will have various advantages for specific applications. Take, for
example, the use of the curvelet transform for image deconvolution to reduce
computational complexity as demonstrated in [16].

In this paper, we have succeeded in demonstrating that the shearlet transform
can be very competitive in performance for denoising images. The main ad-
vantages are that the shearing filters can have smaller support sizes than the
directional filters used in the contourlet transform and can be implemented
much more efficiently. We believe the small support sizes of the shearing filters
may have been the reason for the slight improvement over the contourlet trans-
form for the results tested as can be seen in the close up of the images shown.
An additional appealing point to make in favor of the shearlets approach is
that theoretically they transition very nicely from a continuous perspective
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Fig. 12. Close–up of images. From top left, clockwise: Noisy image (PSNR= 22.12
dB), Bivshrink DDWT (PSNR= 31.64 dB), NSST1(16,32) (PSNR=31.90 dB), and
NSCT (PSNR= 31.67 dB).

to a discrete perspective. In addition, the proposed framework is suitable to
many variations and generalizations.

In light of our developments in this work, other image and multidimensional
data applications will benefit greatly with the use of the discrete shearlet
transform. We intend to study some of these uses in future research endeavors.

A Appendix

A.1 Construction of ψ1, ψ2

In this section we show how to construct examples of functions ψ1, ψ2 satisfying
the properties described in Section 2. Some ideas of these constructions are
adapted from [19].

In order to construct ψ1, let h(t) be an even C∞
0 function, with support in
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Fig. A.1. (a) The function |ψ̂1(ω)|2 (solid line), for ω > 0; the negative side is
symmetrical. This function is obtained, after rescaling, from the sum of the window
functions b2(ω) + b2(2ω) (dashed lines). (b) The function ψ̂2(ω).

(−1
6
, 1

6
), satisfying

∫
R h(t) dt = π

2
, and define θ(ω) =

∫ ω
−∞ h(t) dt. Then one can

construct a smooth bell function as

b(ω) =





sin
(
θ

(
|ω| − 1

2

))
if 1

3
≤ |ω| ≤ 2

3
,

sin
(

π
2
− θ

( |ω|
2
− 1

2

))
if 2

3
< |ω| ≤ 4

3
,

0 otherwise.

It follows from the assumptions we made (cf. [23, Sec.1.4]) that

∞∑

j=−1

b2(2−jω) = 1 for |ω| ≥ 1

3
.

Now letting u2(ω) = b2(2ω) + b2(ω), it follows that

∞∑

j≥0

u2(2−2jω) =
∞∑

j=−1

b2(2−jω) = 1 for |ω| ≥ 1

3
.

Finally, let ψ1 be defined by ψ̂1(ω) = u(8
3
ω). Then supp ψ̂1 ⊂ [−1

2
,− 1

16
]∪[ 1

16
, 1

2
]

and equation (2.4) is satisfied. This construction is illustrated in Figure A.1(a).

For the construction of ψ2, we start by considering a smooth bump function
f1 ∈ C∞

0 (−2, 2) such that 0 ≤ f1 ≤ 1 on (−2, 2) and f1 = 1 on [−1, 1]

(cf. [24, Sec. 1.4]). Next, let f2(t) =

√
1− e

1
t . Then (in the left-limit sense)

f2(0) = 1, f
(k)
2 (0) = 0, for k ≥ 1 and 0 < f2 < 1 on (−1, 0). Define f(t) =

f1(t − 1)f2(t − 1), for t ∈ [−1, 1]. It is then easy to see that f (k)(−1) = 0 for

k ≥ 0, f(1) = 1, and f (k)(1) = 0 for k ≥ 1. Let g(t) =
√

1− f 2(t− 2). Since

g(t) = e
1

2(t−3) , for t ∈ (2, 3), it follows that limt→3− g(k)(t) = 0, for k ≥ 0.
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Finally, we define

ψ̂2(ω) =





f(ω) if ω ∈ [−1, 1),

g(ω) if ω ∈ [1, 3],

0 otherwise.

Then ψ̂2 ∈ C∞
0 (R), with supp ψ̂2 ⊂ [−1, 3], and

ψ̂2

2
(ω) + ψ̂2

2
(ω + 1) = 1, ω ∈ [−1, 1]. (A.1)

From (A.1), it follows that, for any j ≥ 0,

2j−1∑

`=−2j

|ψ̂2(2
j ω − `)|2 = 1 for |ω| ≤ 1.

The function ψ̂2 is illustrated in Figure A.1(b).
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