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Abstract. In this paper we show that the shearlets, an affine-like system of functions recently introduced by the
authors and their collaborators, are essentially optimal in representing 2–dimensional functions f which are C2 except
for discontinuities along C2 curves. More specifically, if fS

N is the N–term reconstruction of f obtained by using the
N largest coefficients in the shearlet representation, then the asymptotic approximation error decays as

‖f − fS
N‖22 ³ N−2 (log N)3, N →∞,

which is essentially optimal, and greatly outperforms the corresponding asymptotic approximation rate N−1 associated
with wavelet approximations.

Unlike the curvelets, that have similar sparsity properties, the shearlets form an affine-like system and have a
simpler mathematical structure. In fact, the elements of this system form a Parseval frame and are generated by
applying dilations, shear transformations and translations to a single well-localized window function.
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1. Introduction. The notion of efficient representation of data plays an increasingly important
role in areas across applied mathematics, science and engineering. Over the past few years, there
has been a rapidly increasing pressure to handle ever larger and higher dimensional data sets,
with the challenge of providing representations of these data that are sparse (that is, “very” few
terms of the representation are sufficient to accurately approximate the data) and computationally
fast. Sparse representations have implications reaching beyond data compression. Understanding
the compression problem for a given data type entails a precise knowledge of the modelling and
approximation of that data type. This in turn is useful for many other important tasks, including
classification, denoising, interpolation, and segmentation [14].

Multiscale techniques based on wavelets have emerged over the last 2 decades as the most
successful methods for the efficient representation of data, as testified, for example, by their use in the
new FBI fingerprint database [3] and in JPEG2000, the new standard for image compression [4, 20].
Indeed, wavelets are optimally efficient in representing functions with pointwise singularities [28,
Ch.9].

More specifically, consider the wavelet representation (using a “nice” wavelet basis) of a function
f of a single variable that is smooth apart from a point discontinuity. Because the elements of the
wavelet basis are well-localized (i.e., they have very fast decay both in the spatial and in the frequency
domain), very few of them interact significantly with the singularity, and, thus, very few elements of
the wavelet expansion are sufficient to provide an accurate approximation. This contrasts sharply
with the Fourier representation, for which the discontinuity interacts extensively with the elements
of the Fourier basis. Denoting by fN the approximation obtained by using the largest N coefficients
in the wavelet expansion, the asymptotic approximation error satisfies

‖f − fN‖22 ³ N−2, N →∞.

This is the optimal approximation rate for this type of functions [11], and outperforms the corre-
sponding Fourier approximation error rate N−1 [14, 28]. In addition, the Multiresolution Analysis
(MRA) associated with wavelets provides very fast numerical algorithms for computing the wavelet
coefficients [10, 28].
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However, despite their remarkable success in applications, wavelets are far from optimal in
dimensions larger than one. Indeed wavelets are very efficient in dealing with pointwise singularities
only. In higher dimensions other types of singularities are usually present or even dominant, and
wavelets are unable to handle them very efficiently. Consider, for example, the wavelet representation
of a 2-D function that is smooth away from a discontinuity along a curve of finite length (a reasonable
model for an image containing an edge). Because the discontinuity is spatially distributed, it interacts
extensively with the elements of the wavelet basis. As a consequence, the wavelet coefficients have
a slow decay, and the approximation error ‖f − fN‖22 decays at most as fast as O(N−1) [28]. This is
better than the rate of the Fourier approximation error N−1/2, but far from the optimal theoretical
approximation rate (cf. [13])

‖f − fN‖22 ³ N−2, N →∞. (1.1)

There is, therefore, large room for improvements, and several attempts have been made in this
direction both in the mathematical and engineering communities, in recent years. Those include
contourlets, complex wavelets and other “directional wavelets” in the filter bank literature [1, 2, 12,
23, 27, 29], as well as brushlets [8], ridgelets [5], curvelets [7] and bandelets [25].

The most successful approach so far are the curvelets of Candès and Donoho. This is the first
and so far the only construction providing an essentially optimal approximation property for 2–D
piecewise smooth functions with discontinuities along C2 curves [7]. The main idea in the curvelet
approach is that, in order to approximate functions with edges accurately, one has to exploit their
geometric regularity much more efficiently than traditional wavelets. This is achieved by constructing
an appropriate tight frame of well-localized functions at various scales, positions and directions. We
refer to [6, 7] for more details about this construction.

The main goal of this paper is to show that the shearlets, a construction based on the theory of
composite wavelets, also provides an essentially optimal approximation property for 2–D piecewise
smooth functions with discontinuities along C2 curves. We will show that the approximation error
associated with the N–term reconstruction fS

N obtained by taking the N largest coefficients in the
shearlet expansion satisfies

‖f − fS
N‖22 ³ N−2(log N)3, N →∞. (1.2)

This is exactly the approximation rate obtained using curvelets. The proof of our result adapts
several ideas from the corresponding sparsity result of the curvelets [7] and follows the general
architecture of that proof, but does not follow directly from the curvelets construction. Indeed, as
we will argue in the following, our alternative approach based on shearlets has some mathematical
advantages with respect to curvelets, including a simplified construction that provides the framework
for a simpler mathematical analysis and fast algorithmic implementation (see also [9, 15]).

The theory of composite wavelets, recently proposed by the authors and their collaborators
[17, 18, 19], provides a most general setting for the construction of truly multidimensional, efficient,
multiscale representations. Unlike the curvelets, this approach takes full advantage of the theory of
affine systems on Rn. Specifically, the affine systems with composite dilations are the systems:

AAB(ψ) = {ψj,`,k(x) = | detA|j/2 ψ(B` Ajx− k) : j, ` ∈ Z, k ∈ Zn}, (1.3)

where A,B are n × n invertible matrices and | detB| = 1. The elements of this system are called
composite wavelets if AAB(ψ) forms a Parseval frame (also called tight frame) for L2(Rn); that
is,

∑

j,`,k

|〈f, ψj,`,k〉|2 = ‖f‖2,

for all f ∈ L2(Rn). The shearlets, that will be considered in this paper, are a special class of
composite wavelets where A is an anisotropic dilation and B is a shear matrix. Details for this
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construction will be given in Section 1.2. These representations have fully controllable geometrical
features, such as orientations, scales and shapes, that set them apart from traditional wavelets as
well as complex and directional wavelets. In addition, thanks to their mathematical structure, there
is a multiresolution analysis naturally associated with composite wavelets. This is particularly useful
for the development of fast algorithmic implementations of these transformations [24, 26].

Observe that curvelets are not of the form (1.3), and, unlike the shearlets, are not generated
from the action of a family of operators on a single or finite family of functions.

1.1. Notation. Throughout this paper, we shall consider the points x ∈ Rn to be column

vectors, i.e., x =




x1

...
xn


, and the points ξ ∈ R̂n (the frequency domain) to be row vectors, i.e.,

ξ = (ξ1, . . . , ξn). A vector x multiplying a matrix a ∈ GLn(R) on the right, is understood to be
a column vector, while a vector ξ multiplying a on the left is a row vector. Thus, ax ∈ Rn and
ξa ∈ R̂n. The Fourier transform is defined as

f̂(ξ) =
∫

Rn

f(x) e−2πiξx dx,

where ξ ∈ R̂n, and the inverse Fourier transform is

f̌(x) =
∫

R̂n

f(ξ) e2πiξx dξ.

1.2. Shearlets. The collection of shearlets, that we are going to define in this section, is a
special example of composite wavelets in L2(R2), of the form (1.3), where:

A =
(

4 0
0 2

)
, B =

(
1 1
0 1

)
, (1.4)

and ψ will be defined in the following. It is useful to observe that, by applying the Fourier transform
to the elements ψj,`,k in (1.3), we obtain

ψ̂j,`,k(ξ) = |det A|−j/2 ψ(ξA−jB−`) e2πiξA−jB−`k.

For any ξ = (ξ1, ξ2) ∈ R̂2, ξ1 6= 0, let ψ be given by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2

(
ξ2

ξ1

)
, (1.5)

where ψ̂1, ψ̂2 ∈ C∞(R̂), supp ψ̂1 ⊂ [− 1
2 ,− 1

16 ] ∪ [ 1
16 , 1

2 ] and supp ψ̂2 ⊂ [−1, 1]. We assume that

∑

j≥0

|ψ̂1(2−2jω)|2 = 1 for |ω| ≥ 1
8
, (1.6)

and

|ψ̂2(ω − 1)|2 + |ψ̂2(ω)|2 + |ψ̂2(ω + 1)|2 = 1 for |ω| ≤ 1. (1.7)

It follows from the last equation that, for any j ≥ 0,

2j∑

`=−2j

|ψ̂2(2j ω + `)|2 = 1 for |ω| ≤ 1. (1.8)
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Fig. 1.1. (a) The tiling of the frequency plane R̂2 induced by the shearlets. (b) Frequency support of the shearlet
ψj,`,k, for ξ1 > 0. The other half of the support, for ξ1 < 0, is symmetrical.

It also follows from our assumptions that ψ̂ ∈ C∞0 (R̂2), with supp ψ̂ ⊂ [− 1
2 , 1

2 ]2. There are several
examples of functions ψ1, ψ2 satisfying the properties described above (see Appendix A).

Observe that (ξ1, ξ2) A−jB−` = (2−2jξ1,−`2−2jξ1 + 2−jξ2). Using (1.6) and (1.8) it is easy to
see that:

∑

j≥0

2j∑

`=−2j

|ψ̂(ξ A−jB−`)|2 =
∑

j≥0

2j∑

`=−2j

|ψ̂1(2−2j ξ1)|2 |ψ̂2(2j ξ2

ξ1
− `)|2

=
∑

j≥0

|ψ̂1(2−2j ξ1)|2
2j∑

`=−2j

|ψ̂2(2j ξ2

ξ1
− `)|2 = 1,

for (ξ1, ξ2) ∈ DC , where DC = {(ξ1, ξ2) ∈ R̂2 : |ξ1| ≥ 1
8 , | ξ2

ξ1
| ≤ 1}. This equation, together with the

fact that ψ̂ is supported inside [− 1
2 , 1

2 ]2, implies that the collection of shearlets:

SH(ψ) = {ψj,`,k(x) = 2
3j
2 ψ(B`Ajx− k) : j ≥ 0,−2j ≤ ` ≤ 2j , k ∈ Z2}, (1.9)

is a Parseval frame for L2(DC)∨ = {f ∈ L2(R2) : supp f̂ ⊂ DC}. Details about the argument that
this system is a Parseval frame can be found in [19, Sec.5.2.1].

To obtain a Parseval frame for L2(R2), one can construct a second system of shearlets which
form a Parseval frame for the functions with frequency support in the vertical cone DC̃ = {(ξ1, ξ2) ∈
R̂2 : |ξ2| ≥ 1

8 , | ξ1
ξ2
| ≤ 1}. Finally, one can easily construct a Parseval frame (or an orthonormal basis)

for L2([− 1
8 , 1

8 ]2)∨. Then any function in L2(R2) can be expressed as a sum f = PCf + PC̃f + P0f ,
where each component corresponds to the orthogonal projection of f into one of the 3 subspaces of
L2(R2) described above. The tiling of the frequency plane R̂2 induced by this system is illustrated
in Figure 1.1(a). The above construction was first introduced in [16].

The conditions on the support of ψ̂1 and ψ̂2 imply that the functions ψ̂j,`,k have frequency
support:

supp ψ̂j,`,k ⊂ {(ξ1, ξ2) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], | ξ2
ξ1
− ` 2−j | ≤ 2−j}.

Thus, the system SH(ψ), given by (1.9), is a Parseval frame exhibiting the following properties.
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(i) Time-Frequency Localization. Since ψ̂ ∈ C∞0 (R̂2), then |ψ(x)| ≤ CN (1 + |x|)−N , for any
N ∈ N, and, thus, the elements ψj,`,k are well-localized.

(ii) Parabolic Scaling. Each element ψ̂j,`,k has support on a pair of trapezoids, each one con-
tained in a box of size approximately 22j × 2j (see Figure 1.1(b)). Because the shearlets are
well-localized, each ψj,`,k is essentially supported on a box of size 2−2j × 2−j . Thus, their
supports become increasingly thin as j →∞.

(iii) Directional Sensitivity. The elements ψ̂j,`,k are oriented along lines with slope given by
` 2−j . As a consequence, the corresponding elements ψj,`,k are oriented along lines with
slope −` 2−j . The number of orientations (approximately) doubles at each finer scale.

(iv) Spatial Localization. For any fixed scale and orientation, the shearlets are obtained by
translations on the lattice Z2.

(v) Oscillatory Behavior. The shearlets ψj,`,k are non-oscillatory along the orientation axis of
slope −` 2−j , and oscillatory across this axis.

Observe that the curvelets of Candès and Donoho also satisfy similar properties with the fol-
lowing main differences. Concerning property (iii), the number of orientations in the curvelet con-
structions doubles at each other scale. Concerning property (iv), the curvelets are not associated
with a fixed translation lattice. However, for a given scale parameter j and orientation θ, they are
obtained by translations on a grid that depends on j and θ. In fact, as we mentioned before, unlike
the shearlets, the curvelets are not generated from the action of a family of operators on a single or
finite family of functions.

1.3. Main results. One major feature of shearlets is that, if f is a compactly supported
function which is C2 away from a C2 curve, then the sequence of shearlet coefficients {〈f, ψj,`,k〉}
has (essentially) optimally fast decay. As a consequence, if fS

N is the N–term approximation of f
obtained from the N largest coefficients of its shearlet expansion, then the approximation error is
essentially optimal.

Before stating the main theorems, let us define more precisely the class of functions we are
interested in. We follow [7] and introduce STAR2(A), a class of indicator functions of sets B with
C2 boundaries ∂B. In polar coordinates, let ρ(θ) : [0, 2π) → [0, 1]2 be a radius function and define
B by x ∈ B if and only if |x| ≤ ρ(θ). In particular, the boundary ∂B is given by the curve in R2:

β(θ) =
(

ρ(θ) cos(θ)
ρ(θ) sin(θ)

)
. (1.10)

The class of boundaries of interest to us are defined by

sup |ρ′′(θ)| ≤ A, ρ ≤ ρ0 < 1. (1.11)

We say that a set B ∈ STAR2(A) if B ⊂ [0, 1]2 and B is a translate of a set obeying (1.10) and
(1.11). In addition, we set C2

0 ([0, 1]2) to be the collection of twice differentiable functions supported
inside [0, 1]2.

Finally, we define the set E2(A) of functions which are C2 away from a C2 edge as the
collection of functions of the form

f = f0 + f1 χB ,

where f0, f1 ∈ C2
0 ([0, 1]2), B ∈ STAR2(A) and ‖f‖C2 =

∑
|α|≤2‖Dαf‖∞ ≤ 1.

Let M be the set of indices {(j, `, k) : j ≥ 0,−2j ≤ ` ≤ 2j , k ∈ Z2} and {ψµ}µ∈M be the
Parseval frame of shearlets given by (1.9). The shearlet coefficients of a given function f are the
elements of the sequence {sµ(f) = 〈f, ψµ〉 : µ ∈ M}. We denote by |s(f)|(N) the N -th largest entry
in this sequence. We can now state the following results.

Theorem 1.1. Let f ∈ E2(A), and {sµ(f) = 〈f, ψµ〉 : µ ∈ M} be the sequence of shearlet
coefficients associated with f . Then

sup
f∈E2(A)

|s(f)|(N) ≤ C N−3/2 (log N)3/2. (1.12)
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Let fS
N be the N–term approximation of f obtained from the N largest coefficients of its shearlet

expansion, namely

fS
N =

∑

µ∈IN

〈f, ψµ〉ψµ,

where IN ⊂ M is the set of indices corresponding to the N largest entries of the sequence {|〈f, ψµ〉|2 :
µ ∈ M}. Then the approximation error satisfies

‖f − fS
N‖22 ≤

∑

m>N

|s(f)|2(m).

Therefore, from (1.12) we immediately have:
Theorem 1.2. Let f ∈ E2(A) and fS

N be the approximation to f defined above. Then

‖f − fS
N‖22 ≤ C N−2 (log N)3.

1.4. Analysis of the shearlet coefficients. The argument that will be used to prove Theo-
rem 1.1 follows essentially the architecture of the proofs in [7]. In order to measure the sparsity of
the shearlet coefficients {〈f, ψµ〉 : µ ∈ M}, we will use the weak–`p quasi–norm ‖·‖w`p defined as
follows. Let |sµ|(N) be the N -th largest entry in the sequence {sµ}. Then

‖sµ‖w`p = sup
N>0

N
1
p |sµ|(N).

One can show (cf. [30, Sec.5.3]) that this definition is equivalent to

‖sµ‖w`p =
(

sup
ε>0

#{µ : |sµ| > ε} εp

) 1
p

.

To analyze the decay properties of the shearlet coefficients {〈f, ψµ〉} at a given scale 2−j , we
will smoothly localize the function f near dyadic squares. Fix the scale parameter j ≥ 0. For this
j fixed, let Mj = {(j, `, k) : −2j ≤ ` ≤ 2j , k ∈ Z2} and Qj be the collection of dyadic cubes of the
form Q = [k1

2j , k1+1
2j ] × [k2

2j , k2+1
2j ], with k1, k2 ∈ Z. For w a nonnegative C∞ function with support

in [−1, 1]2, we define a smooth partition of unity
∑

Q∈Qj

wQ(x) = 1, x ∈ R2,

where, for each dyadic square Q ∈ Qj , wQ(x) = w(2jx1 − k1, 2jx2 − k2). We will then examine the
shearlet coefficients of the localized function fQ = f wQ, i.e., {〈fQ, ψµ〉 : µ ∈ Mj}.

For f ∈ E2(A), the decay properties of the coefficients {〈fQ, ψµ〉 : µ ∈ Mj} will exhibit a very
different behavior depending on whether the edge curve intersects the support of wQ or not. Let
Qj = Q0

j ∪ Q1
j , where the union is disjoint and Q0

j is the collection of those dyadic cubes Q ∈ Qj

such that the edge curve intersects the support of wQ. Since each Q has sidelength 2 · 2−j , then Q0
j

has cardinality |Q0
j | ≤ C0 2j , where C0 is independent of j. Similarly, since f is compactly supported

in [0, 1]2, |Q1
j | ≤ 22j + 4 · 2j .

We have the following results, that will be proved in Section 2.
Theorem 1.3. Let f ∈ E2(A). For Q ∈ Q0

j , with j ≥ 0 fixed, the sequence of shearlet coefficients
{〈fQ, ψµ〉 : µ ∈ Mj} obeys

‖〈fQ, ψµ〉‖w`2/3 ≤ C 2−
3j
2 ,
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for some constant C independent of Q and j.
Theorem 1.4. Let f ∈ E2(A). For Q ∈ Q1

j , with j ≥ 0 fixed, the sequence of shearlet coefficients
{〈fQ, ψµ〉 : µ ∈ Mj} obeys

‖〈fQ, ψµ〉‖w`2/3 ≤ C 2−3j ,

for some constant C independent of Q and j.
As a consequence of these two theorems, we have the following.
Corollary 1.5. Let f ∈ E2(A) and, for j ≥ 0, sj(f) be the sequence sj(f) = {〈f, ψµ〉 : µ ∈

Mj}. Then

‖sj(f)‖w`2/3 ≤ C,

for some C independent of j.
Proof. Using Theorems 1.3 and 1.4, by the p–triangle inequality for weak `p spaces, p ≤ 1, we

have

‖sj(f)‖2/3

w`2/3 ≤
∑

Q∈Qj

‖〈fQ, ψµ〉‖2/3

w`2/3

=
∑

Q∈Q0
j

‖〈fQ, ψµ〉‖2/3

w`2/3 +
∑

Q∈Q1
j

‖〈fQ, ψµ〉‖2/3

w`2/3

≤ C |Q0
j | 2−j + C |Q1

j | 2−2j .

The proof is completed by observing that |Q0
j | ≤ C0 2j , where C0 is independent of j, and |Q1

j | ≤
22j + 4 · 2j .

We can now prove Theorem 1.1

Proof of Theorem 1.1. By Corollary 1.5, we have that

R(j, ε) = #{µ ∈ Mj : |〈f, ψµ〉| > ε} ≤ C ε−2/3. (1.13)

Also, observe that, since ψ̂ ∈ C∞0 (R2), then

|〈f, ψµ〉| =
∣∣∣∣
∫

R2
f(x) 23j/2 ψ(B`Ajx− k) dx

∣∣∣∣

≤ 23j/2 ‖f‖∞
∫

R2
|ψ(B`Ajx− k)| dx

= 2−3j/2 ‖f‖∞
∫

R2
|ψ(y)| dy < C ′ 2−3j/2. (1.14)

As a consequence, there is a scale jε such that |〈f, ψµ〉| < ε for each j ≥ jε. Specifically, it follows
from (1.14) that R(j, ε) = 0 for j > 2

3 (log2(ε−1) + log2(C ′)) > 2
3 log2(ε−1). Thus, using (1.13), we

have that

#{µ ∈ M : |〈f, ψµ〉| > ε} ≤
∑

j≥0

R(j, ε) ≤ C ε−2/3 log2(ε
−1),

and this implies (1.12). ¤

2. Proofs. This section contains the constructions and proofs needed for the theorems in Sec-
tion 1.4.
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2.1. Proof of Theorem 1.3. Suppose that a function in E2(A) contains a C2 edge. Following
the approach in [7], we suppose that, for j > j0, the scale 2−j is small enough so that over the square

−2−j ≤ x1, x2 ≤ 2−j the edge curve may be parametrized as
(

E(x2)
x2

)
, or

(
x1

E(x1)

)
(the case where

j ≤ j0 is small requires a much simpler analysis and will be discussed in Section 2.3). Without
loss of generality, let us assume that the first parametrization holds. Then an edge fragment is a
function of the form

f(x1, x2) = w(2jx1, 2jx2) g(x1, x2)χ{x1≥E(x2)},

where g ∈ C2
0 ((0, 1)2). For simplicity, let us assume that the edge goes through the origin and, at

this point, its tangent is vertical (see Figure 2.1). Then, using the regularity of the edge curve, we
have that

(i) E(0) = 0, E′(0) = 0;
(ii) sup|x2|≤2−j |E(x2)| ≤ 1

2 sup|x2|≤2−j 2−2j |E′′(x2)|.
That means that, for |x2| ≤ 2−j , the edge curve is almost straight. Observe that any arbitrary
edge fragment is obtained by rotating and translating the one above. Since the analysis of the edge
fragment that will be presented in the following is not affected by these transformations, there is no
loss of generality in considering this case only.

x1

x2

E(x2)

6

?

2 · 2−j

Fig. 2.1. Representation of an edge fragment.

In order to quantify the decay properties of the shearlet coefficients, we first need to analyze
the decay of the Fourier transform of the edge fragment along radial lines in the region DC ⊂ R̂2,
defined in Section 1.2. It will be convenient to introduce polar coordinates. Let ξ = (ξ1, ξ2) ∈ DC .
Using polar coordinates, we have

ξ1 = λ cos θ, ξ2 = λ sin θ, with |θ| ≤ π

4
, λ ∈ R, |ξ1| ≥ 1

8
.

Using this notation, the radial lines have the form (λ cos θ, λ sin θ), λ ∈ R, |θ| ≤ π
4 .

For ξ = (ξ1, ξ2) ∈ DC , j ≥ 0, −2j ≤ ` ≤ 2j , we introduce the notation

Γj,`(ξ) = ψ̂1

(
2−2j ξ1

)
ψ̂2

(
2j ξ2

ξ1
− `

)
. (2.1)
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We have that:
Proposition 2.1. Let f be an edge fragment and Γj,` be given by (2.1). Then

∫

R2
|f̂(ξ)|2 |Γj,`(ξ)|2 dξ ≤ C 2−3j (1 + |`|)−5.

In order to prove this proposition, we need to recall the following result [7, Theorem 6.1]:
Theorem 2.2. Let f be an edge fragment and Ij a dyadic interval [22j−α, 22j+β ] with α ∈

{0, 1, 2, 3, 4}, β ∈ {0, 1, 2}. Then, for all θ:
∫

|λ|∈Ij

|f̂(λ cos θ, λ sin θ)|2 dλ ≤ C 2−3j
(
1 + 2j | sin θ|

)−5

.

Proof of Proposition 2.1. The assumptions on the support of ψ̂1 and ψ̂2 imply that

supp ψ̂1(2−2jξ1) ⊂
{
ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1]

}
, (2.2)

and

supp ψ̂2(2j ξ2
ξ1
− `) ⊂ {

(ξ1, ξ2) : |2j ξ2

ξ1
− `| ≤ 1

}
.

Since tan θ = ξ2
ξ1

, the last expression can be written as

supp ψ̂2(2j ξ2
ξ1
− `) ⊂ {

(λ, θ) : 2−j(`− 1) ≤ tan θ ≤ 2−j(` + 1)
}
. (2.3)

Since λ2 = ξ2
1 + ξ2

2 = ξ2
1 (1 + (tan θ)2) and |`| ≤ 2j , then, using (2.2) and (2.3), we have:

|λ| ≤ 22j−1
(
1 + 2−2j(1 + |`|)2

) 1
2 ≤ 22j−1

(
1 + 2−2j(1 + 2j)2

) 1
2 ≤ 22j+1;

and

|λ| ≥ 22j−4
(
1 + 2−2j(|`| − 1)2

) 1
2 ≥ 22j−4.

Thus, the support of Γj,` is contained in

Wj,` = {(λ, θ) : 22j−4 ≤ |λ| ≤ 22j+1, arctan(2−j(`− 1)) ≤ θ ≤ arctan(2−j(` + 1))}.
Observe that, in particular, |θ| ≤ arctan 2. Since, for |θ| ≤ 2, we have that1 tan θ ≈ sin θ, it follows
from (2.3) that, on Wj,`

2j | sin θ| ≈ 2j 2−j |`|) = |`|. (2.4)

Thus, using (2.4) and Theorem 2.2, we have that
∫

R̂2
|f̂(ξ)|2 |Γj,`(ξ)|2 dξ ≤ C

∫

Wj,`

|f̂(λ cos θ, λ sin θ)|2 λ dλ dθ

≤ C

∫ arctan(2−j(`+1))

arctan(2−j(`−1))

∫ 22j+1

22j−4
|f̂(λ cos θ, λ sin θ)|2 |λ| dλ dθ

≤ C 22j+1

∫ arctan(2−j(`+1))

arctan(2−j(`−1))

2−4j
(
1 + 2j | sin θ|

)−5

dθ

≤ C 2−2j (1 + |`|)−5
(
arctan(2−j(`− 1))− arctan(2−j(` + 1))

)

= C 2−3j (1 + |`|)−5. ¤
1We use the notation f(x) ≈ g(x), x ∈ D, to mean that there are constants C1, C2 > 0 such that C1 g(x) ≤

f(x) ≤ C2 g(x), for all x ∈ D.
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The following proposition provides a similar estimate for the partial derivatives of the Fourier
transform of the edge fragment.

Proposition 2.3. Let f be an edge fragment, Γj,` be given by (2.1) and L be the differential
operator:

L =

(
I −

(
22j

2π (1 + |`|)
)2

∂2

∂ξ2
1

) (
1−

(
2j

2π

)2
∂2

∂ξ2
2

)

Then
∫

R̂2

∣∣∣L
(
f̂(ξ) Γj,`(ξ)

)∣∣∣
2

dξ ≤ C 2−3j (1 + |`|)−5.

In order to prove this proposition, we need to recall the following result [7, Corollary 6.6]:
Corollary 2.4. Let f be an edge fragment and Ij a dyadic interval [22j−α, 22j+β ] with α ∈

{0, 1, 2, 3, 4}, β ∈ {0, 1, 2}. Then, for each m = (m1,m2) ∈ N× N and for each θ,
∫

|λ|∈Ij

∣∣∣∣
∂m1

∂ξm1
1

∂m2

∂ξm2
2

f̂(λ cos θ, λ sin θ)
∣∣∣∣
2

dλ ≤ Cm 2−2j|m|
(
2−(4+2m1)j (1 + 2j | sin θ|)−5 + 2−10j

)
,

where Cm is independent of j and `, and N = N ∪ {0}
We also need the following:
Lemma 2.5. Let Γj,` be given by (2.1). Then, for each m = (m1,m2) ∈ N × N, m1,m2 ∈

{0, 1, 2},
∣∣∣∣

∂m1

∂ξm1
1

∂m2

∂ξm2
2

Γj,`(ξ1, ξ2)
∣∣∣∣ ≤ Cm 2−(2m1+m2)j (1 + |`|)m1 ,

where |m| = m1 + m2 and Cm is independent of j and `.
Proof. We will only check the cases m = (1, 0), (0, 1), (2, 0), (0, 2), (1, 1). The other cases are

similar.
(i) A direct computation gives

∂

∂ξ1
Γj,`(ξ1, ξ2) = 2−2j ψ̂′1(2

−2jξ1) ψ̂2(2j ξ2
ξ1
− `)− 2j ξ2

ξ2
1

ψ̂1(2−2jξ1) ψ̂′2(2
j ξ2

ξ1
− `).

Since |2j ξ2
ξ1
| ≤ 1 and |xi1| ≥ 22j−4, then

∣∣∣∣2j ξ2

ξ2
1

∣∣∣∣ ≤ 2−2j ≤ 2−2j (1 + |`|). (2.5)

Thus, using (2.5), we have:
∣∣∣∣

∂

∂ξ1
Γj,`(ξ1, ξ2)

∣∣∣∣ ≤ C 2−2j (1 + |`|). (2.6)

(ii) For the partial derivative with respect to ξ2 we have:

∂

∂ξ2
Γj,`(ξ1, ξ2) =

2j

ξ1
ψ̂1(2−2jξ1) ψ̂′2(2

j ξ2
ξ1
− `).

Thus, using |ξ1| ≥ 22j−4, we have
∣∣∣∣

∂

∂ξ2
Γj,`(ξ1, ξ2)

∣∣∣∣ ≤ C 2−j . (2.7)
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(iii) For the second partial derivative with respect to ξ1 we have:

∂2

∂ξ2
1

Γj,`(ξ1, ξ2) = 2−2j

(
2−2j ψ̂′′1 (2−2jξ1) ψ̂2( 2jξ2

ξ1
− `)− 2j ξ2

ξ2
1

ψ̂′1(2
−2jξ1) ψ̂′2(

2jξ2
ξ1

− `)
)

− 2j

(
−2ξ2

ξ3
1

ψ̂1(2−2jξ1) ψ̂′2(
2jξ2
ξ1

− `) +
2−2jξ2

ξ2
1

ψ̂′1(2
−2jξ1) ψ̂′2(

2jξ2
ξ1

− `)

− 22j
( ξ2

ξ2
1

)2

ψ̂1(2−2jξ1) ψ̂′′2 ( 2jξ2
ξ1

− `)
)

.

Using again (2.5) and |ξ1| ≥ 22j−4, we have:
∣∣∣∣

∂2

∂ξ2
1

Γj,`(ξ1, ξ2)
∣∣∣∣ ≤ C 2−4j (1 + |`|)2. (2.8)

(iv) For the second partial derivative with respect to ξ2 we have:

∂2

∂ξ2
2

Γj,`(ξ1, ξ2) =
(2j

ξ1

)2

ψ̂1(2−2jξ1) ψ̂′′2 (2j ξ2
ξ1
− `).

Thus:
∣∣∣∣

∂2

∂ξ2
2

Γj,`(ξ1, ξ2)
∣∣∣∣ ≤ C 2−2j . (2.9)

(v) For the mixed second partial derivative we have:

∂2

∂ξ2 ∂ξ1
Γj,`(ξ1, ξ2) =

2−j

ξ1
ψ̂′1(2

−2jξ1) ψ̂′2(
2jξ2
ξ1

− `)− 2j

ξ2
1

ψ̂1(2−2jξ1) ψ̂′2(
2jξ2
ξ1

− `)

+
22j ξ2

ξ3
1

ψ̂1(2−2jξ1) ψ̂′′2 ( 2jξ2
ξ1

− `).

Thus:
∣∣∣∣

∂2

∂ξ2 ∂ξ1
Γj,`(ξ1, ξ2)

∣∣∣∣ ≤ C 2−3j (1 + |`|). (2.10)

This completes the proof.

We can now prove Proposition 2.3.

Proof of Proposition 2.3. From Corollary 2.4, using (2.4), we have:

∫ 22j+1

22j−4

∣∣∣∣
∂2

∂ξ2
1

f̂(λ cos θ, λ sin θ)
∣∣∣∣
2

dλ ≤ C 2−4j
(
2−8j (1 + |`|)−5 + 2−10j

)
.

Thus, using the same idea as in the proof of Proposition 2.1:

∫

R̂2

∣∣∣∣
( ∂2

∂ξ2
1

f̂(ξ)
)

Γj,`(ξ)
∣∣∣∣
2

dξ

≤ C

∫ arctan(2−j(`+1))

arctan(2−j(`−1))

∫ 22j+1

22j−4

∣∣∣∣
∂2

∂ξ2
1

f̂(λ cos θ, λ sin θ)
∣∣∣∣
2

|λ| dλ dθ

≤ C 2−3j
(
2−8j (1 + |`|)−5 + 2−10j

)
. (2.11)
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Similarly, using Corollary 2.4 and Lemma 2.5, we have
∫

R̂2

∣∣∣∣
( ∂

∂ξ1
f̂(ξ)

)( ∂

∂ξ1
Γj,`(ξ)

)∣∣∣∣
2

dξ

≤ C 2−4j(1 + |`|)2
∫ arctan(2−j(`+1))

arctan(2−j(`−1))

∫ 22j+1

22j−4

∣∣∣∣
∂

∂ξ1
f̂(λ cos θ, λ sin θ)

∣∣∣∣
2

|λ| dλ dθ

≤ C 2−4j(1 + |`|)2 2−j
(
2−6j (1 + |`|)−5 + 2−10j

)

= C 2−5j(1 + |`|)2
(
2−6j (1 + |`|)−5 + 2−10j

)
; (2.12)

and
∫

R̂2

∣∣∣∣f̂(ξ)
( ∂2

∂ξ2
1

Γj,`(ξ)
)∣∣∣∣

2

dξ

≤ C 2−8j(1 + |`|)4
∫ arctan(2−j(`+1))

arctan(2−j(`−1))

∫ 22j+1

22j−4

∣∣∣f̂(λ cos θ, λ sin θ)
∣∣∣
2

|λ| dλ dθ

≤ C 2−8j(1 + |`|)4 2−3j (1 + |`|)−5 = C 2−11j (1 + |`|)−1. (2.13)

Finally, combining (2.11), (2.12), (2.13), and using the fact that |`| ≤ 2j , we have that
∫

R̂2

∣∣∣∣
( 22j

2π(1 + |`|)
)2 ∂2

∂ξ2
1

(
f̂(ξ) Γj,`(ξ)

)∣∣∣∣
2

dξ ≤ C 2−3j (1 + |`|)−5. (2.14)

Similarly for the derivatives with respect to ξ2, we have
∫

R̂2

∣∣∣∣
( ∂2

∂ξ2
2

f̂(ξ)
)

Γj,`(ξ)
∣∣∣∣
2

dξ ≤ C 2−3j
(
2−4j (1 + |`|)−5 + 2−10j

)
; (2.15)

∫

R̂2

∣∣∣∣
( ∂

∂ξ2
f̂(ξ)

)( ∂

∂ξ2
Γj,`(ξ)

)∣∣∣∣
2

dξ ≤ C 2−3j
(
2−4j (1 + |`|)−5 + 2−10j

)
; (2.16)

∫

R̂2

∣∣∣∣f̂(ξ)
( ∂2

∂ξ2
2

Γj,`(ξ)
)∣∣∣∣

2

dξ ≤ C 2−7j (1 + |`|)−5. (2.17)

Combining (2.15), (2.16), (2.17), and using again the fact that |`| ≤ 2j , we have that
∫

R̂2

∣∣∣∣
( 2j

2π

)2 ∂2

∂ξ2
2

(
f̂(ξ) Γj,`(ξ)

)∣∣∣∣
2

dξ ≤ C 2−3j (1 + |`|)−5. (2.18)

Similarly, one can show that
∫

R̂2

∣∣∣∣
23j

(1 + |`|)(2π)2
∂2

∂ξ2
2

∂2

∂ξ2
1

(
f̂(ξ) Γj,`(ξ)

)∣∣∣∣
2

dξ ≤ C 2−3j (1 + |`|)−5. (2.19)

The proof is completed using (2.14), (2.18), (2.19) and Lemma 2.5. ¤
We can now prove Theorem 1.3. The following proof adapts some ideas from [7].

Proof of Theorem 1.3. Fix j ≥ 0 and, for simplicity of notation, let f = fQ. For µ ∈ Mj , the
shearlet coefficient of f is

〈f, ψµ〉 = 〈f, ψj,`,k〉 = | detA|−j/2

∫

R̂2
f̂(ξ) Γj,`(ξ) e2πiξA−jB−`k dξ,
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where Γj,`(ξ) is given by (2.1) and A, B are given by (1.4). Observe that

2πiξA−jB−`k = 2πi
(
ξ1 ξ2

) (
2−2j 0

0 2−j

) (
1 −`
0 1

)(
k1

k2

)

= 2πi
(
(k1 − k2`)2−2jξ1 + k22−jξ2

)
. (2.20)

Using (2.20), a direct computation shows that

∂2

∂ξ2
1

(
2πξA−jB−`k

)
= −(2π)2 2−4j(k1 − k2`)2 =

{
−(2π)2 `2 2−4j(k1

` − k2)2 if ` 6= 0
−(2π)2 2−4jk2

1 if ` = 0

∂2

∂ξ2
2

(
2πξA−jB−`k

)
= −(2π)2 2−2jk2

2. (2.21)

By the equivalent definition of weak `p norm, the theorem is proved provided we show that

#{µ ∈ Mj : |〈f, ψµ〉| > ε} ≤ C 2−j ε−
2
3 . (2.22)

Let L be the second order differential operator defined in Proposition 2.3. Using (2.20) and
(2.21), it follows that

L
(
e2πiξA−jB−`k

)
=

{(
1 + ( `

(1+|`|) )
2(k1

` − k2)2
)

(1 + k2
2) e2πiξA−jB−`k if ` 6= 0

(1 + k2
1)(1 + k2

2) e2πiξA−jB−`k if ` = 0.
(2.23)

Integration by parts gives

〈f, ψµ〉 = |det A|−j/2

∫

R̂2
L

(
f̂(ξ) Γj,`(ξ)

)
L−1

(
e2πiξA−jB−`k

)
dξ.

Let us consider first the case ` 6= 0. In this case, from (2.23) we have that

L−1
(
e2πiξA−jB−`k

)
= G(k, `)−1 e2πiξA−jB−`k. (2.24)

where G(k, `) =
(

1 +
(

`
(1+|`|)

)2 (
k1
` − k2

)2
)

(1 + k2
2). Thus:

〈f, ψµ〉 = | detA|−j/2 G(k, `)−1

∫

R̂2
L

(
f̂(ξ) Γj,`(ξ)

)
e2πiξA−jB−`k dξ,

or, equivalently:

G(k, `) 〈f, ψµ〉 = |det A|−j/2

∫

R̂2
L

(
f̂(ξ) Γj,`(ξ)

)
e2πiξA−jB−`k dξ.

Let K = (K1,K2) ∈ Z2 and define RK = {k = (k1, k2) ∈ Z2 : k1
` ∈ [K1,K1 + 1], k2 = K2}. Since,

for j, ` fixed, the set {| detA|−j/2 e2πiξA−jB−`k : k ∈ Z2} is an orthonormal basis for the L2 functions
on [− 1

2 , 1
2 ]AjB`, and the function Γj,`(ξ) is supported on this set, then

∑

k∈RK

|〈G(k, `) f, ψµ〉|2 ≤
∫

R̂2

∣∣∣L
(
f̂(ξ) Γj,`(ξ)

)∣∣∣
2

dξ.

From the definition of RK it follows that
∑

k∈RK

|〈f, ψµ〉|2 ≤ C
(
1 + (K1 −K2)2

)−2
(1 + K2)

−2
∫

R̂2

∣∣∣L
(
f̂(ξ) Γj,`(ξ)

)∣∣∣
2

dξ.
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By Proposition 2.3,
∑

k∈RK

|〈f, ψµ〉|2 ≤ C L−2
K 2−3j(1 + |`|)−5, (2.25)

where LK =
(
1 + (K1 −K2)2

) (
1 + K2

2

)
. For j, ` fixed, let Nj,`,K(ε) = #{k ∈ RK : |ψj,`,k| > ε}.

Then it is clear that Nj,`,K(ε) ≤ C (|`|+ 1) and (2.25) implies that

Nj,`,K(ε) ≤ C L−2
K 2−3j ε−2(1 + |`|)−5.

Thus

Nj,`,K(ε) ≤ C min
(|`|+ 1, L−2

K 2−3j ε−2(1 + |`|)−5
)
. (2.26)

Using (2.26) we will now show that:

2j∑

`=−2j

Nj,`,K(ε) ≤ C L
− 2

3
K 2−j ε−

2
3 . (2.27)

In fact, let `∗ be defined by (`∗ + 1) = L−2
K 2−3j ε−2(1 + `∗)−5. That is, `∗ + 1 = L

−1/3
K 2−j/2 ε−1/3.

Then

2j∑

`=−2j

Nj,`,K(ε) ≤
∑

|`|≤(`∗+1)

Nj,`,K(ε) +
∑

|`|>(`∗+1)

Nj,`,K(ε)

≤
∑

|`|≤(`∗+1)

(|`|+ 1) +
∑

|`|>(`∗+1)

L−2
K 2−3j ε−2(1 + |`|)−5

≤ (`∗ + 1)2 + C L−2
K 2−3j ε−2(1 + `∗)−4 ≤ C (`∗ + 1)2,

which gives (2.27).

Since
∑

K∈Z2 L
− 2

3
K < ∞, using (2.27) we then have that

#{µ ∈ Mj : |〈f, ψµ〉| > ε} ≤
∑

K∈Z2

2j∑

`=−2j

Nj,`,K(ε) ≤ C 2−j ε−
2
3

∑

K∈Z2

L
− 2

3
K ≤ C 2−j ε−

2
3 ,

and, thus, (2.22) holds.
The case ` = 0 is similar. Indeed, in this case

L−1
(
e2πiξA−jB−`k

)
= (1 + k2

1)
−1(1 + k2

2)
−1 e2πiξA−jB−`k,

and we can proceed as in the case ` 6= 0, with LK = (1 + K2
1 ) (1 + K2

2 ). It is clear that also in this

case
∑

K∈Z2 L
− 2

3
K < ∞. This completes the proof of the theorem. ¤

2.2. Proof of Theorem 1.4. In order to prove Theorem 1.4, the following lemmata will be
useful.

Lemma 2.6. Let f = g wQ, where g ∈ E2(A) and Q ∈ Q1
j . Then

∫

Wj,`

|f̂(ξ)|2 dξ ≤ C 2−10j . (2.28)
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Proof. The following proof follows [7, Lemma 8.1] and is reported here for completeness.
The function f belongs to C2

0 (R2) and its second partial derivative with respect to x1 is

∂2f

∂x2
1

=
∂2g

∂x2
1

wQ + 2
∂ g

∂x1

∂ wQ

∂x1
+ f

∂2wQ

∂x2
1

= h1 + h2 + h3.

Using the fact that wQ is supported in a square of sidelength 2 · 2−j , we have
∫

R̂2
|ĥ1(ξ)|2 dξ =

∫

R2
|h1(x)|2 dx ≤ C 2−2j .

Next, observe that ‖ ∂
∂x1

h2‖∞ ≤ C 22j . Using again the condition on the support of wQ it follows
that

∫

R̂2
|2πξ1 ĥ2(ξ)|2 dξ =

∫

R2

∣∣∣∣
∂

∂x1
h2(x)

∣∣∣∣
2

dx ≤ C 22j ,

and thus, for ξ ∈ Wj,` (hence ξ1 ≈ 22j),
∫

Wj,`

|ĥ2(ξ)|2 dξ ≤ C 2−2j .

Finally, observing that ‖ ∂2

∂x2
1
h3‖∞ ≤ C 24j , a similar computation to the one above shows that

∫

Wj,`

|ĥ3(ξ)|2 dξ ≤ C 2−2j .

Since −(2π)2 ξ2
1 f̂(ξ) = ĥ1(ξ) + ĥ2(ξ) + ĥ3(ξ), it follows from the estimates above that

∫

Wj,`

|f̂(ξ)|2 dξ ≤ C 2−10j .

This completes the proof.
Lemma 2.7. Let m = (m1,m2) ∈ N× N, ξ = (ξ1, ξ2) ∈ R̂2 and Γj,` be given by (2.1). Then

2j∑

`=−2j

∣∣∣∣
∂m1

∂ξm1
1

∂m2

∂ξm2
2

Γj,`(ξ)
∣∣∣∣
2

≤ Cm 2−2|m|j ,

where Cm is independent of j and ξ and |m| = m1 + m2.
Proof. Observe that Wj,` ∩ Wj,`+`′ = ∅, whenever |`′| ≥ 3. Since |`| ≤ 2j , the lemma then

follows from Lemma 2.5.
Lemma 2.8. Let f = g wQ, where g ∈ E2(A) and Q ∈ Q1

j . Define

T =
(

I − 2j

(2π)2
∆

)
, (2.29)

where ∆ = ∂2

∂ξ2
1

+ ∂2

∂ξ2
2
. Then

∫

R̂2

2j∑

`=−2j

∣∣∣T 2
(
f̂ Γj,`

)
(ξ)

∣∣∣
2

dξ ≤ C 2−10j .
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Proof. Observe that, for N ∈ N,

∆N
(
f̂ Γj,`

)
=

∑

|α|+|β|=2N

Cα,β

(
∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂

) (
∂β1

∂ξβ1
1

∂β2

∂ξβ2
2

Γj,`

)
.

Then, using Lemma 2.7, we have that

∫

R̂2

2j∑

`=−2j

∣∣∣∣
∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)
∣∣∣∣
2

∣∣∣∣∣
∂β1

∂ξβ1
1

∂β2

∂ξβ2
2

Γj,`(ξ)

∣∣∣∣∣

2

dξ ≤ Cβ 2−2|β|j
∫

Wj,`

∣∣∣∣
∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)
∣∣∣∣
2

dξ

Recall that f(x) is of the form g(x)w(2jx). It follows that xα f(x) = 2−j|α| g(x)wα(2jx), where
wα(x) = xαw(x). By Lemma 2.6, g(x)wα(2jx) obeys the estimate (2.28). Thus, observing that
∂α1

∂ξ
α1
1

∂α2

∂ξ
α2
2

f̂(ξ) is the Fourier transform of (−2πix)αf(x), we have that

∫

Wj,`

∣∣∣∣
∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)
∣∣∣∣
2

dξ ≤ Cα 2−2j|α| 2−10j .

Combining the estimates above we have that, for each α, β with |α|+ |β| = 2N ,

∫

R̂2

2j∑

`=−2j

∣∣∣∣
∂α1

∂ξα1
1

∂α2

∂ξα2
2

f̂(ξ)
∣∣∣∣
2

∣∣∣∣∣
∂β1

∂ξβ1
1

∂β2

∂ξβ2
2

Γj,`(ξ)

∣∣∣∣∣

2

dξ ≤ Cα,β 2−10j 2−4jN . (2.30)

Since T 2 = 1− 2 2j

(2π)2 ∆ + 22j

(2π)4 ∆2, the lemma now follows from (2.30) and Lemma 2.7. ¤

We can now prove Theorem 1.4.
Proof of Theorem 1.4.
Using (2.21), for T given by (2.29), we have that

T
(
e2πiξA−jB−`k

)
=

(
1 + 2−2j(k1 − k2 `)2 + k2

2

)
e2πiξA−jB−`k (2.31)

Fix j ≥ 0 and let f = fQ. Then, using integration by parts as in the proof of Theorem 1.3,
from (2.31) it follows that

〈f, ψµ〉 = |detA|−j
(
1 + 2−2j(k1 − k2 `)2 + k2

2

)−2
∫

R̂2
T 2

(
f̂ Γj,`

)
(ξ) e2πiξA−jB−`k dξ.

Let K = (K1,K2) ∈ Z2 and RK be the set {(k1, k2) ∈ Z2 : k2 = K2, 2−j(k1 −K2`) ∈ [K1,K1 + 1]}.
Observing that, for each K, there are only 1 + 2j choices for k1 in RK , it follows that the number
of terms in RK is bounded by 1 + 2j . Thus, arguing again as in the proof of Theorem 1.3, we have
that

∑

k∈RK

|〈f, ψµ〉|2 ≤ C
(
1 + K2

1 + K2
2

)−4
∫

R̂2

∣∣∣T 2
(
f̂ Γj,`

)
(ξ)

∣∣∣
2

dξ.

From this inequality, using Lemma 2.8, we have that

2j∑

`=−2j

∑

k∈RK

|〈f, ψµ〉|2 ≤ C (1 + K2)−4

∫

R̂2

2j∑

`=−2j

∣∣∣T 2
(
f̂ Γj,`

)
(ξ)

∣∣∣
2

dξ

≤ C (1 + K2)−4 2−10j . (2.32)
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For any N ∈ N, provided 1
2 < p < 2, the Hölder inequality yields:

N∑
m=1

|am|p ≤
(

N∑
m=1

|am|2
)p

2

N (1−p
2 ). (2.33)

Since the cardinality of RK is bounded by 1+2j , it follows from (2.32) and (2.33) that, for 1
2 < p < 2,

2j∑

`=−2j

∑

k∈RK

|〈f, ψµ〉|p ≤ C
(
22j

)(1−p
2 )

(1 + K2)−2p 2−5pj .

Thus, since p > 1
2 ,

∑

µ∈Mj

|〈f, ψµ〉|p ≤ C 2
(
2j(1−p

2 )−5pj
) ∑

K∈Z2

(1 + K2)−2p ≤ C 2(2−3p)j ,

and, in particular

‖〈f, ψµ〉‖`2/3 ≤ C 2−3j . ¤

2.3. Coarse Scale Analysis. In Section 2.1, we assumed that the scale parameter j is large
enough. The situation where j is small can be treated in a much simpler way. In fact, if fQ is an
edge fragment, then a trivial estimate shows that

‖fQ‖2 =

(∫

supp wQ

|fQ(x)|2 dx

)1/2

≤ C |supp wQ| = C 2−j .

It follows that ‖〈fQ, ψµ〉‖`2 ≤ C 2−j and, thus, by Hölder inequality,

‖〈fQ, ψµ〉‖`2/3 ≤ C 2j .

This satisfies Theorem 1.3 for j small.

2.4. Additional Remarks.
• In order to define the collection of shearlets, in Section 1.2 we have constructed a function

ψ̂ ∈ C∞0 . This property allows us to obtained a collection of elements that are well localized.
Observe, however, that we only need ψ̂ ∈ C2

0 in order to prove all the results presented in
this paper.

• In this paper, we have considered the representation of functions containing a discontinuity
along a C2 curve. More generally, we can consider the situation where a function f contains
many edge curves of this type, exhibiting finitely many junctions or corners between them.
In this setting, the discontinuity curve is not globally C2 but only piecewice C2. The results
reported in this paper, namely Theorems 1.1 and 1.2, extend to this setting as well. We
refer to [7] for a similar discussion in the case of curvelets.

• The assumption we made about the regularity of the discontinuity curve plays a critical role
in our construction. If the discontinuity curve is in Cα, with α > 2, then our argument still
works and we can still prove Theorem 1.2. This result, however, is not (essentially) optimal
as in the case α = 2. On the other hand, if the discontinuity curve is in Cα, with α < 2,
then the estimate given by Theorem 1.2 does not hold and the estimate could be worse, in
general. We refer to [25] for additional observations about this fact, and for an alternative
approach, based on an adaptive construction, to the sparse representation of functions with
edges.
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• There are natural ways of extending the shearlets to dimensions larger than 2. We refer
to [19] for a discussion of these extensions, as well as the extensions of the shear transforma-
tions to the general multidimensional setting. For example, in dimension 3, let A =

(
4 0
0 2 I2

)
,

define the shear matrices {Sk =
(

1 k
0 I2

)
: k ∈ Z2}, where I2 is the 2 × 2 identity matrix,

0 = ( 0
0 ), and, for ξ = (ξ1, ξ2, ξ3) ∈ R3, define ψ by

ψ̂(ξ) = ψ̂1(ξ1) ψ̂2

(ξ2

ξ1

)
ψ̂2

(ξ3

ξ1

)
,

where ψ1 and ψ2 are given as in the 2–D case. Then, similarly to their 2–D counterpart,
one can construct a Parseval frame of well-localized 3–D shearlets

{ψj,`,k = | detA|−j/2 ψ(S` A−jx− k) : j ∈ Z, ` ∈ Z2, k ∈ Z2},

with frequency support on a parallelepiped of approximate size 22j×2j×2j , at various scales
j, with orientations controlled by the two–dimensional index ` and spatial location k. Then,
using an heuristic argument, one can argue that these systems provide sparse representations
for 3–dimensional functions f that are smooth away from ‘nice’ surface discontinuities of
finite area. In fact, thanks to their frequency support and their localization properties, the
elements ψj,`,k, at scale j, are essentially supported on a parallelepiped of size 2−2j × 2−j ×
2−j , with location controlled by k, and orientation controlled by `. Thus, there are at most
O(22j) significant shearlet coefficients SHj,`,k(f) = 〈f, ψj,`,k〉, and they are bounded by
C 2−2j . This implies that the N–th largest 3–D shearlet coefficient |SHN (f)| is bounded
by O(N−1) and, thus, if f is approximated by taking the N largest coefficients in the 3–D
shearlets expansion, the L2–error would approximately obey:

‖f − fS
N‖2L2 ≤

∑

`>N

|SH`(f)|2 ≤ C N−1,

up to lower order factors. A rigorous proof of this fact will be presented elsewhere.

Appendix A. Construction of ψ1, ψ2. In this section we show how to construct examples
of functions ψ1, ψ2 satisfying the properties described in Section 1.2.

In order to construct ψ1, let h(t) be an even C∞0 function, with support in (− 1
6 , 1

6 ), satisfying∫
R h(t) dt = π

2 , and define θ(ω) =
∫ ω

−∞ h(t) dt. Then one can construct a smooth bell function as

b(ω) =





sin
(
θ
(|ω| − 1

2

))
if 1

3 ≤ |ω| ≤ 2
3 ,

sin
(

π
2 − θ

(
|ω|
2 − 1

2

))
if 2

3 < |ω| ≤ 4
3 ,

0 otherwise.

It follows from the assumptions we made (cf. [21, Sec.1.4]) that

∞∑

j=−1

b2(2−jω) = 1 for |ω| ≥ 1
3
.

Now letting u2(ω) = b2(2ω) + b2(ω), it follows that

∞∑

j≥0

u2(2−2jω) =
∞∑

j=−1

b2(2−jω) = 1 for |ω| ≥ 1
3
.

Finally, let ψ1 be defined by ψ̂1(ω) = u( 8
3ω). Then supp ψ̂1 ⊂ [− 1

2 ,− 1
16 ] ∪ [ 1

16 , 1
2 ] and equation (1.6)

is satisfied. This construction is illustrated in Figure A.1(a).
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Fig. A.1. (a) The function |ψ̂1(ω)|2 (solid line), for ω > 0; the negative side is symmetrical. This function
is obtained, after rescaling, from the sum of the window functions b2(ω) + b2(2ω) (dashed lines). (b) The function

ψ̂2(ω).

For the construction of ψ2, we start by considering a smooth bump function f1 ∈ C∞0 (−1, 1)

such that 0 ≤ f1 ≤ 1 on (−1, 1) and f1 = 1 on [− 1
2 , 1

2 ] (cf. [22, Sec. 1.4]). Next, let f2(t) =
√

1− e
1
t .

Then (in the left limit sense) f2(0) = 1, f
(k)
2 (0) = 0, for k ≥ 1 and 0 < f2 < 1 on (−1, 0). Define

f(t) = f1(t)f2(t), for t ∈ [−1, 0]. It is then easy to see that f (k)(−1) = 0, for k ≥ 0, and f(0) =

1, f (k)(0) = 0, for k ≥ 1. Since g(t) = e
1

2(t−1) , for t ∈ ( 1
2 , 1), it follows that limt→1− g(k)(t) = 0, for

k ≥ 0. Finally, we define

ψ̂2(ω) =





f(ω) if ω ∈ [−1, 0),
g(ω) if ω ∈ [0, 1],
0 otherwise.

Then ψ̂2 ∈ C∞0 (R), with supp ψ̂2 ⊂ [−1, 1], and

ψ̂2
2
(ω) + ψ̂2

2
(ω − 1) = 1, ω ∈ [0, 1].

The last equality implies (1.7). The function ψ̂2 is illustrated in Figure A.1(b).
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