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Shearlet Based Total Variation for
Denoising

Glenn R. Easley, Demetrio Labate, and Flavia Colonna

Abstract—We propose a shearlet formulation of
the total variation (TV) method for denoising im-
ages. Shearlets have been mathematically proven
to represent distributed discontinuities such as
edges better than traditional wavelets and are
a suitable tool for edge characterization. Com-
mon approaches in combining wavelet-like repre-
sentations such as curvelets with TV or diffusion
methods aim at reducing Gibbs-type artifacts af-
ter obtaining a nearly optimal estimate. We show
that it is possible to obtain much better estimates
from a shearlet representation by constraining the
residual coefficients using a projected adaptive to-
tal variation scheme in the shearlet domain. We
also analyze the performance of a shearlet-based
diffusion method. Numerical examples demon-
strate that these schemes are highly effective at
denoising complex images and outperform a re-
lated method based on the use of the curvelet
transform. Furthermore, the shearlet-TV scheme
requires far fewer iterations than similar competi-
tors.

Index Terms—Shearlets, curvelets, total varia-
tion, diffusion, regularization, denoising.

I. Introduction

Restoring images contaminated by measure-
ment errors that cause noise is an important
problem in signal processing. Common power-
ful techniques for image denoising are based on
wavelets as well as on total variation (TV) and
diffusion.

By relying on certain smoothness assumptions,
wavelet theory can be used to provide an effective
way to denoise image. For example, if the image
is assumed to be a function of class C2(R2) away
from a C2 edge (namely, a composite of a C2

function plus an indicator function of a set whose
boundary is C2), then the nonlinear approxima-
tion of f consisting of the N largest wavelet co-
efficients has error rate O(N−1). Thus, a good
approximation can be obtained from some of the
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largest wavelet coefficients and a denoised esti-
mate of the image can be made by removing the
wavelet coefficients whose absolute value is below
a specified noise level [1]. This approach, how-
ever, often leads to the formation of Gibbs-type
(or ringing) artifacts around sharp discontinu-
ities, due to the elimination of small wavelet coef-
ficients that should have been retained. In addi-
tion, this technique as well as other sophisticated
wavelet coefficient reduction schemes (e.g. [2])
do not necessarily remove all high-noise values
(outliers). Although new wavelet extensions such
as curvelets [3], [4], [5], [6] (which inspired the
source of many of these extensions) and shear-
lets [7], [8] have a better approximation rate, they
may also suffer from the same types of effects.

TV and diffusion-based methods are other
powerful tools for denoising and greatly reduce
these ringing effects. It is generally understood
that they have superior denoising performance
when applied to simple classes of images with
no textures, such as images of conic shapes with
flat colors. These methods, however, often pro-
duce approximations that are reminiscent of oil-
paintings when applied to images that contain
complex textures and shading.

To improve upon these methods, combinations
of these routines have been proposed (e.g. [9],
[10], [11], [12], [13]). The main goal of these
methods was to reduce the the Gibbs-type ring-
ing by adding a constraint on the non-retained
coefficients. In an opposite approach, wavelet-
inspired concepts were used in [14] to improve
the performance and computational efficiency of
TV-based methods. Other PDE-based methods
influenced by concepts from wavelet theory have
been developed in [15], [16], and [17].

In this article, we propose a method for de-
noising images based on combining the new tight
frame of shearlets with TV techniques. A key
feature is that the discrete shearlet transform
has many flexible attributes that lead to bet-
ter stability and reduced Gibbs-type artifacts. A
closely related approach in [19] suggested com-
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bining the tight frame of curvelets with nonlinear
anisotropic diffusion. The results given in [19]
indicate that this technique is highly effective.
We shall demonstrate that our method based
on combining shearlets with TV performs better
than this curvelet-based technique. Furthermore,
the number of iterations is significantly reduced.
In some cases, the reduction in the number of
iterations is nearly six-fold.

In Section II, we give a brief overview of the
TV and the nonlinear diffusion methods. The
shearlet transform and its implementation are
described in Section III. In Section IV, we present
a new method which exploits the best features
of shearlets and TV to obtain superior denois-
ing capabilities. In Section V, we discuss the ex-
perimental results of the comparison among dif-
ferent state-of-the-art techniques, and show that
the method we propose yields significantly better
outcomes. The concluding remarks are given in
Section VI.

II. Total Variation and Diffusion

Let Ω be a bounded region in R
2. The total

variation of a function u ∈ C1(Ω) is defined as

TV (u) =

∫

Ω

‖∇u‖ dA,

where ∇u =
(

∂u
∂x1

, ∂u∂x2

)

and ‖ ‖ is the standard

Euclidean norm.
A common TV technique for the purpose of

denoising is based on minimizing the functional

F (u) =

∫

Ω

‖∇u‖ dA+
λ

2

∫

Ω

(u− u0)
2 dA,

where u is the estimated image, u0 is the noisy
image, and λ ∈ R+ is a penalty parameter (see
[20]). The associated Euler-Lagrange equation is

−∇ ·
( ∇u
‖∇u‖

)

+ λ(u− u0) = 0,

with the Neumann boundary condition ∂u
∂n = 0

on ∂Ω. To improve stability, the term ‖∇u‖ is
replaced by ‖∇u‖α =

√

‖∇u‖2 + α, where α is a
positive parameter.

A method for finding the minimizer of the
functional F is based on looking for the steady
state solution of

∂u

∂t
= ∇ ·

( ∇u
‖∇u‖

)

− λ(u− u0)

with the boundary condition ∂u
∂n = 0 on ∂Ω,

where t is interpreted as an artificial time-
marching parameter [20]. Other techniques for
finding the solution to the Euler-Lagrange equa-
tion include duality-based methods [21], [22],
[23].

The TV method described above is a special
case of the method based on minimizing the func-
tional

∫

Ω

φ(‖∇u‖) dx dy+
λ

2

∫

Ω

(u− u0)
2 dx dy,

where φ ∈ C2(R) is an even regularization func-
tion [24]. The solution is obtained by solving

∂u

∂t
= ∇ ·

(

φ′(‖∇u‖)
‖∇u‖ ∇u

)

− λ(u− u0) (1)

subjected to the Neumann boundary condition.
For λ = 0 and lim

x→∞
φ′(x)/x = 0, equation (1) is

a special case of the Perona and Malik diffusion
equation

∂u

∂t
= ∇ · (ρ(‖∇u‖)∇u) ,

where ρ(x) = φ′(x)/x [25].
In diffusion, the auxiliary function ρ is used

to control the amount of smoothing. In regions
where the gradient ∇u is small, which may corre-
spond to noise or the lack of an edge, the diffusion
process is strong. On the other hand, in regions
where ∇u is large, which are likely to correspond
to the location of an edge, the diffusion process
is weak or non-existent.

In this context, as we shall see, shearlets be-
have like the gradient. Indeed, shearlets can be
used to detect the presence of an edge [26].

III. Shearlet Transform

The continuous wavelet transform Wψ pro-
vides a decomposition of a signal over dilated and
translated versions of a fixed waveform ψ. More
precisely, for a fixed ψ ∈ L2(Rn) (n ∈ N), this is
defined as the mapping Wψ with domain L2(Rn)
such that for f ∈ L2(Rn)

Wψf(a, t) =

∫

Rn

f(x)ψa,t(x) dx, (2)

where ψa,t(x) = a−n/2 ψ(a−1(x − t)), a > 0 and
t ∈ R

n. If the function ψ satisfies the admissibil-
ity condition

∫ ∞

0

|ψ̂(aξ)|2 da
an

= 1 for a.e. ξ ∈ R
n,
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then ψ is called a wavelet, and any f ∈ L2(Rn)
can be recovered via the reproducing formula:

f =

∫ ∞

0

∫

Rn

〈f, ψa,t〉ψa,t dt da
a2n .

One of the most remarkable properties of the
wavelet transform is its ability to identify the sin-
gularities of a signal. In fact, if f is a function
which is smooth apart from a discontinuity at a
point x0, the transform Wψf(a, t) will signal the
location of the singularity by its asymptotic de-
cay at fine scales. More precisely, provided ψ is
a “nice” wavelet, then Wψf(a, t) decays rapidly
as a → 0, unless t is near x0 [27]. This property
allows one to resolve the singular support of f ,
that is, to identify the set of points where f is
not regular.

However, the continuous wavelet transform is
unable to provide additional information about
the geometry of the set of singularities of f . This
is due the fact that this transform is isotropic
(the analyzing elements ψa,t are obtained by ap-
plying the same dilation factor for all coordinate
directions) and, as a result, it has a very limited
ability to resolve edges and other distributed dis-
continuities which usually occur in multidimen-
sional data.

To deal with multidimensional signals effec-
tively, one has to introduce a transform with a
superior directional sensitivity. For example, this
can be obtained by employing a non-isotropic
version of the continuous wavelet transform (2)
called the continuous shearlet transform, intro-
duced by the authors and their collaborators in
[28] and [29]. In dimension n = 2, this is defined
as the mapping

SHψf(a, s, t) = 〈f, ψa,s,t〉,

where a > 0, s ∈ R, t ∈ R
2, and the analyzing

elements ψa,s,t, called shearlets, are given by

ψa,s,t(x) = | detMa,s|−
1
2ψ(M−1

a,sx− t), (3)

where Ma,s =

(

a
√
as

0
√
a

)

. Observe that Ma,s =

BsAa, where Aa =
(

a 0

0
√
a

)

and Bs =
(

1 s

0 1

)

.

Hence to each matrix Ma,s are associated two
distinct actions: an anisotropic dilation produced
by the matrixAa, and a shearing produced by the
non-expansive matrix Bs.

HHY
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Fig. 1. Frequency support of the horizontal shearlets
(left) and vertical shearlets (right) for different values of
a and s.

The generating function ψ is well localized and
satisfies appropriate admissibility conditions [28],
[29], so that for each f ∈ L2(R2), we have

f =

∫

R2

∫ ∞

−∞

∫ ∞

0

〈f, ψa,s,t〉ψa,s,t
da

a3
ds dt. (4)

In particular, for ξ = (ξ1, ξ2) ∈ R
2, ξ2 6= 0, ψ̂ is

chosen to be of the form

ψ̂(ξ) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

),

where ψ̂1, ψ̂2 are smooth functions with supports
contained in [−2,−1

2
]∪ [ 1

2
, 2] and [−1, 1], respec-

tively. In the frequency domain, the value of
ψ̂a,s,t(ξ1, ξ2) is given by

a
3
4 e−2πiξt ψ̂1(a ξ1) ψ̂2(a

− 1
2 ( ξ2
ξ1

− s)),

and, thus, each shearlet ψ̂a,s,t has support in the
set

{(ξ1, ξ2) : ξ1 ∈ [− 2
a ,− 1

2a ]∪[ 1
2a ,

2
a ], | ξ2ξ1 −s| ≤

√
a}.

This shows that each element ψa,s,t has frequency
support on a pair of trapezoids, at various scales,
symmetric with respect to the origin and oriented
along a line of slope s. The support becomes in-
creasingly thin as a → 0. As a result, the shear-
lets form a collection of well-localized waveforms
at various scales, orientations and locations, con-
trolled by a, s, t, respectively. The frequency sup-
ports of some representative shearlets are illus-
trated in Figure 1. We refer to [28] and [29] for
additional details about this construction.
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Ω3

Ω0Ω1Ω2

ψa,s,t

Fig. 2. An illustration of an image that is E1,3(Ω) and
the essential support of a shearlet ψa,s,t that intersects
an edge.

Thanks to their analytic and geometric prop-
erties, the continuous shearlets are able to cap-
ture very precisely the geometry of edges. These
properties are examined in detail in [29], where
it was shown that the asymptotic decay rate of
the continuous shearlet transform SHψf(a, s, t),
for a→ 0 (fine scales), can be used to signal both
the location and the orientation of the edges of
an image u. For example, let Ω be a bounded
subset of R

2 such that

Ω =
L
⋃

n=1

Ωn ∪ Γ, (5)

where:
1. the sets Ωn, n = 1, . . . , L, are pairwise dis-

joint domains (i.e. connected open sets);

2. Γ =
⋃L
n=1 ∂ΩΩn, where each boundary

∂ΩΩn (with respect to the relative topology
in Ω) is a smooth C3 curve of finite length.

Consider the space of images E1,3(Ω) defined as
the collection of functions defined on Ω of the
form

f(x) =

L
∑

n=1

fn(x)χΩn
(x) for x ∈ Ω\Γ

where fn ∈ C1
0(Ω), for each n = 1, . . . , L,

with bounded partial derivatives. This model of
images is typically adopted in PDE/variational
methods. An illustration is shown in Figure 2.

For each x in a C3 component of Γ, we define
the jump of f at x, denoted by [f ]x, as

[f ]x = lim
ε→0+

f(x + ε vx) − f(x− ε vx)

where vx is a unit normal vector along Γ at x.
Then we have the following result.

Theorem III.1: Let f ∈ E1,3(Ω). Suppose
that, for t ∈ Γ, in a neighborhood of t =
(t1, t2) the boundary curve is parametrized as
(E(t2), t2).

1. If s = −E′(t2), then there is a positive con-
stant K such that

lim
a→0

a−
3
4 SHψf(a, s, t) = K |[f ]t|, as a → 0.

2. If s 6= −E′(t2), or if t /∈ Γ, then

lim
a→0

a−
3
4 SHψf(a, s, t) = 0.

This shows that the asymptotic decay of the
continuous shearlet transform of f is slowest for
t on the boundary Γ and s corresponding to the
normal orientation to Γ at t. This information
can be used to detect the boundary set for a func-
tion f ∈ E1,3(Ω).

The above property indicates that shearlets
can be used to locate and characterize edges.
In fact, Theorem III.1 shows that the shearlet
coefficients of large magnitude will come from
edges. Furthermore, the decay rate across scales
can be used to distinguish between noise spikes
and edges.

A. Discrete shearlet transform

By sampling the continuous shearlet trans-
form SHψf(a, s, t) on appropriate discretizations
of the scaling, shear, and translation parame-
ters (a, s, t) ∈ R

+ × R × R
2, one obtains a dis-

crete transform which is associated to a Parse-
val (tight) frame for L2(R2) [8]. To do this,
we parametrize the anisotropic matrices Aa by
dyadic numbers and the shear matrices Bs by in-
tegers. Specifically, choosing a = 2−j and s = −`
with j, ` ∈ Z, we obtain the collection of matrices
M2−j,−`. Note that M−1

2−j ,−` = M2j ,`, where

M2j,` =

(

2j `2j/2

0 2j/2

)

=

(

1 `
0 1

) (

2j 0

0 2j/2

)

= B`0A
j
0,

having denoted by A0 and B0 the matrices
(

2 0

0
√

2

)

, and
(

1 1

0 1

)

, respectively. Also, let us re-

place the continuous translation variable t ∈ R
2

by a point in the discrete lattice Z
2. From (3) we

obtain the discrete system of shearlets {ψj,`,k},
where

ψj,`,k = | detA0|j/2 ψ(B`0 A
j
0x− k),
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for j, ` ∈ Z, k ∈ Z
2. For appropriate choices of a

well localized generating function ψ, the discrete
shearlets form a Parseval frame for L2(R2). That
is, for each f ∈ L2(R2), we have the reproducing
formula:

f =
∑

j,`∈Z,k∈Z2

〈f, ψj,`,k〉ψj,`,k, (6)

with convergence in the L2 sense. Notice that
this equation is the discrete analogue of (4).

The discrete shearlets inherit from their con-
tinuous counterpart a special ability to deal with
multidimensional functions. In fact, it is proved
in [30] that the shearlet are essentially optimal
in approximating two-dimensional functions with
smooth edges.

Theorem III.2: Let f be defined on a bounded
domain Ω ⊂ R

2, and suppose that f is C2 apart
from discontinuities along C2 curves. Let f̃N be
the approximation of f obtained by taking the
N largest coefficient |ψj,`,k| in the shearlets ex-
pansion of f given by (6). Then the asymptotic
approximation error is given by

‖f − f̃N‖2 ≤ C (logN)3N−2, N → ∞.

This approximation error is close to opti-
mal (the optimal rate being O(N−2)) and it
significantly outperforms traditional wavelets,
whose corresponding asymptotic error decays as
N−1. The curvelets, introduced by Candès and
Donoho, are the only other system known to sat-
isfy similar approximation properties. Notice,
however, that the curvelets, unlike the shearlets,
are not an affine system since they are not ob-
tained by applying dilations and translations to
a single generator.

The shearlet approach has some similarities
with the contourlets [31], [32]. However, the con-
tourlets are a purely discrete construct, while the
shearlet theory provides a nice transition from
the continuous to the discrete setting, and this
is important to derive useful mathematical esti-
mates such as those in Theorems III.1 and III.2.
We refer to [33] for additional comments and
comparisons.

The reason for the optimal approximation
properties of shearlets lies in their special abil-
ity to capture distributed discontinuities. In-
deed, let f be a two-dimensional function which
is smooth apart from some edges. As a closer

look at the proof of Theorem III.2 would show,
at fine scales, the shearlet coefficients 〈f, ψj,`,k〉
are negligible unless an edge of f passes near the
point xj,`,k = A−j

0 B−`
0 k and its orientation cor-

responds to the value of `. This shows that f
can be very well approximated using a shearlet
representation f̃ as

∑

j,`,k∈M1

〈f, ψj,`,k〉ψj,`,k +
∑

j,`,k∈M2

〈f, ψj,`,k〉ψj,`,k

where M1, M2 are “small” index sets, the first
corresponding to the coarse scale coefficients as-
sociated with the smooth regions of f and the
second to the fine scale coefficients associated
with the edges of f .

These observations suggest that the shearlet
decomposition can be used to characterize cer-
tain function spaces which are particularly use-
ful in image analysis. In fact, images are usu-
ally realized as L2 objects, while the more no-
ticeable features in images belong to proper sub-
classes of L2. Edges, for example, are well quan-
tified within the smaller space BV of functions
of bounded variation. The other relevant fea-
tures, including homogeneous regions, texture
and other oscillatory patterns, belong to cer-
tain intermediate classes lying between the larger
space L2(R2) and the smaller space BV (R2). By
adapting the ideas proposed in some recent pa-
pers such as [17], the shearlet representation can
be used to provide an appropriate decomposition
of the space L2(R2) into a sequence of spaces as-
sociated with a hierarchy of scales. Namely, by
using a shrinkage approach to remove shearlets
below a threshold, f ≈ ∑

|cµ|>λ cµψµ, one is able

to extract the features of f above a certain scale.
This provides a multiscale description of f in an
intermediate scale of spaces between BV and L2.
Notice that, unlike traditional wavelets, this ap-
proach is able to optimally capture directional
features and is thus particularly suitable for im-
age representation.

B. Implementation

The discrete shearlets described above pro-
vide a nonuniform angular covering of the fre-
quency plane. For numerical implementation,
it is preferred to reformulate the shearlet trans-
form as follows. Define ψ̂(0)(ξ) = ψ̂1(ξ1)ψ̂2(

ξ2
ξ1

),
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Fig. 3. An image of the shearlet filters (vj ∗wj,`) in the
frequency domain.

ψ̂(1)(ξ) = ψ̂1(ξ2)ψ̂2(
ξ1
ξ2

) and

A1 =

(√
2 0

0 2

)

, B1 =

(

1 0
1 1

)

.

Given ψ
(d)
j,`,k(x) = 2

3j

2 ψ(d)(B`dA
j
dx − k), for d =

0, 1, the shearlet transform is the correspondence

mapping f ∈ L2(R2) into 〈f, ψ(d)
j,`,k〉, where j ≥

0,−2j ≤ ` ≤ 2j − 1, and k ∈ Z
2.

Based on ψ1 and ψ2, filters vj and w
(d)
j,` can be

found so that

〈f, ψ(d)
j,`,k〉 = f ∗ (vj ∗ w(d)

j,` )[k]

(see [33] for details). To simplify the notation,
we suppress the superscript (d) and absorb the
distinction between d = 0 and 1 by re-indexing
the parameter ` so that it has double the car-
dinality. Figure 3 illustrates an example of the
filters (vj ∗ wj,`).

IV. Constrained TV from a Shearlet

Domain

For τ ∈ R
+, define the threshold function

Tτ (x) to be x if |x| ≥ τ and zero otherwise. A
denoised estimate ũ from the discrete shearlet
transform can expressed as

∑

M1

〈u, ψj,`,k〉ψj,`,k +
∑

M2

Tτ (〈u, ψj,`,k〉)ψj,`,k.

To obtain a good estimate, the thresholding pa-
rameter τ is dependent on j and `. In particu-
lar, if we assume the image is subjected to white
Gaussian noise, we set τj,` = cjσj,`, where σj,` is
the standard deviation of the noise at scale j with
shearing direction `, and cj is a scaling parame-
ter. Denote by MC

2 the set of indices of M2 in

the shearlet domain that correspond to the coef-
ficients that would be set to zero in the above re-
construction. A projection operator PS onto the
reconstruction from these coefficients can then be
expressed as

PS(u) =
∑

j,`,k∈MC
2

〈u, ψj,`,k〉ψj,`,k.

Our proposed method will be to essentially
solve

∂u
∂t = ∇ ·

(

φ′(‖∇PS(u)‖)
‖∇PS(u)‖ ∇PS(u)

)

−λx,y(u−u0)

with the Neumann boundary condition ∂u
∂n = 0

on ∂Ω and the initial condition u(x, y, 0) =
u0(x, y) for x, y ∈ Ω. The quantity λx,y = λ(x, y)
is a spatially varying fidelity term based on a
measure of local variances that is updated after
a number of iterations or progressions of artifical
time steps. This adaptive element is intended to
improve the recovery of textures by locally con-
trolling the amount of denoising over various im-
age regions according to their content (see [16]
for more details).

In an effort to deal with images described as
a cartoon-like image plus a residual containing
textures and noise, we propose a solution based
on a hierarchy of scales. First, we find a solution
to (1) which is a cartoon-like denoised image uc
that misses textures and small details. Using the
residual image ur = u0 − uc, a local variance is
calculated as

Pur
(i, j) =

1

mnσ4

∑

ĩ,j̃

(ur (̃i, j̃) − µ[ur])
2gi,j (̃i, j̃),

where m × n is the size of the image u0, µ
and σ are the mean and the standard devia-
tion of the noise, respectively, and gi,j (̃i, j̃) =
g(|i− ĩ|, |j− j̃|) is a normalized and radially sym-
metric smoothing window, e.g. a Gaussian func-

tion e−[(i−ĩ)2+(j−j̃)2]/2β, with β > 0.

The proposed algorithm can be roughly de-
scribed as follows, where ∆t denotes the time

step and η(u) = ∇ ·
(

φ′(‖∇u‖)
‖∇u‖ ∇u

)

.

Shearlet TV Algorithm
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|u− ũC |u |u− ũS |

(b)(a) (c)

Fig. 4. Types of residual artifacts after using a thresholding based on the assumption the standard deviation of the
noise was 10: (a) Given image. (b) Difference between image (a) and estimate based on the curvelet transform. (c)
Difference between image (a) and estimate based on the time-domain shearlet transform.

Given εN > 0, and a number L of iterations:
u0 = u0, s

1 = u0, s
2 = 0, λx,y = 0

while 1

mn

Pm−1

i=0

Pn−1

j=0
|s2i,j − s1i,j | > εN

s1 = u0

for k = 0 : L− 1
uk+1 = uk + ∆t[η(PS(uk)) − λx,y(uk − u0)]

end
λx,y = η(uL)(uL − u0)Pur ∗ g
s2 = uL

u0 = uL

end

In our numerical implementation, we use
throughout L = 7 and the auxiliary function
φ(x) =

√
x2 + α for α ∈ R

+. We discretize
the partial derivatives by means of a centered-
difference approximation (e.g. (∂u/∂y)i,j =
1/(2h)(ui−1,j − ui+1,j) and (∂2u/∂y2)i,j =
1/h2(ui−1,j − 2ui,j − ui+1,j) for some h ∈ R

+).
An alternative method we suggest is based on

applying the projection operator to the TV ker-
nel, by solving

∂u
∂t

= PS

[

∇ ·
(

φ′(‖∇u‖)
‖∇u‖ ∇u

)]

− λx,y(u− u0)

with the Neumann boundary condition ∂u
∂n =

0 on ∂Ω and the initial condition u(x, y, 0) =
ũ(x, y) for x, y ∈ Ω. To obtain a slight improve-
ment in performance, we can use ur = u0−w(u0),
where w is an adaptive Wiener filtering operator.
As we shall see, this alternative method can be
more effective at denoising images in some par-
ticular cases.

A related approach is to solve the diffusion
equation

∂u

∂t
= ∇ · (ρ(‖∇PCu‖)∇PCu)

with periodic boundary conditions and the ini-
tial condition u(x, y, 0) = u0(x, y) for x, y ∈ Ω.
The projection operator PC used in [19] is based
on the curvelet transform instead of the shear-
let transform. Although both the curvelet and
shearlet transforms have the same decay rates,
their implementations are significantly different.
The discrete shearlet transform can be imple-
mented with no subsampling and with small
finitely supported filters in the time-domain. (An
example showing a comparison between a fre-
quency based implementation of shearlets and a
time-domain implementation is shown in [33].)
The residual artifacts for the two transforms af-
ter thresholding are shown in Figure 4.

Based on the differences in performance be-
tween the transforms, we propose solving

∂u

∂t
= ∇ · (ρ(‖∇PSu‖)∇PSu)

with the Neumann boundary condition ∂u
∂n =

0 on ∂Ω and the initial condition u(x, y, 0) =
u0(x, y) for x, y ∈ Ω.

V. Experimental Results

Numerous experiments on the new methods
have been done using the images shown in Fig-
ure 5. We have compared our proposed shear-
let methods against the curvelet diffusion rou-
tine of [19] and several standard estimation rou-
tines using total variation, diffusion with ρ(x) =
1/(1 + x2/γ2) for γ ∈ R

+, and the stationary
wavelet transform (SWT) implemented with the
Daubechies-Antonini 7/9 filters [18].
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Furthermore, we made a comparison with the
curvelet diffusion against the shearlet diffusion
where the algorithms are essentially the same ex-
cept for the use of different transforms, the dif-
ference being in the boundary assumptions. The
results show that the discrete shearlet transform
yields improved performance and a significant re-
duction in the number iterations. Finally, we in-
cluded a comparison with a standard estimate
from shearlets.

Our proposed methods allow one to determine
a stopping criterion based on the differences be-
tween updates. Since the curvelet diffusion al-
gorithm demonstrated in [19] was iterated un-
til peak performance was obtained, we did the
same for all iterative methods presented. All
tested algorithms had their free parameters fixed
throughout the experiments and were chosen to
achieve their best performance over a wide col-
lection of images. All images were processed with
equivalent parameters, such as the time step,
which was set to be 0.2.

We have found that in our proposed algorithm
the use of u0 = ũ instead of u0 yields a slightly
better performance. For example, in the exper-
iment with a noisy Barbara image whose SNR
is 7.48 dB, in 1 iteration of the adaptive scheme
(which corresponds to choosing L = 7), when us-
ing u0 = u0 we get an estimate whose SNR is
13.75 dB, whereas, using u0 = ũ, we get an esti-
mate whose SNR is 14.07 (see Table I). Notice
that the implementation of the curvelet-based
diffusion scheme in [19] initiates the iteration
with u0 − ũ, which amounts to using ũ in the
first iteration.

Tables I and II display additional results of
some of our comparisons. Our other experiments
are shown in Figures 6,7,8, and 9.

VI. Conclusion

We have proposed models for implementing
TV schemes and a diffusion scheme restricted
from a shearlet domain. In particular, we have
suggested finding the steady-state solution to
an associated Euler-Lagrange equation where
only the non-thresholded shearlet coefficients are
changed by means of a projection operator. The-
oretically, shearlets can represent well images
with edges and good denoised estimates can be
achieved by adapting in our iteration schemes a
sequence of spaces associated with a hierarchy

Fig. 5. From top left, clockwise: Lily, Barbara, Plane,
Elaine.

TABLE I - Routines (performance in PSNR)
Number of iterations used are indicated in parenthesis

Noisy Shear. TV Shear. Diff Curve. Diff

Barbara
9.98 dB 15.95 (1) 15.70 (6) 14.89 (6)
7.48 dB 14.07 (1) 13.56 (6) 13.00 (9)
5.54 dB 12.10 (4) 11.61 (8) 11.54 (13)
Elaine
9.75 dB 16.93 (2) 16.73 (16) 16.35 (57)
7.25 dB 16.34 (2) 16.05 (16) 15.72 (80)
5.31 dB 15.63 (2) 15.41 (18) 15.16 (103)

of scales that are spatially localized. The algo-
rithms suggested prove themselves both in terms
of efficiency (number of iterations) and perfor-
mance (quality of the reconstruction) and offer a
new paradigm in the development of TV-based
algorithms. We intend to address in future re-
search to what extent this new paradigm could
be useful for solving problems related to inpaint-
ing.
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