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Abstract

Affine systems are reproducing systems of the form

AC = {Dc Tk ψ` : 1 ≤ ` ≤ L, k ∈ Zn, c ∈ C},

which arise by applying lattice translation operators Tk to one or more genera-
tors ψ` in L2(Rn), followed by the application of dilation operators Dc, associated
with a countable set C of invertible matrices. In the wavelet literature, C is usually
taken to be the group consisting of all integer powers of a fixed expanding matrix.
In this paper, we develop the properties of much more general systems, for which
C = {c = a b : a ∈ A, b ∈ B} where A and B are not necessarily commuting matrix
sets. C need not contain a single expanding matrix. Nonetheless, for many choices
of A and B, there are wavelet systems with multiresolution properties very similar
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to those of classical dyadic wavelets. Typically, A expands or contracts only in cer-
tain directions, while B acts by volume-preserving maps in transverse directions.
Then the resulting wavelets exhibit the geometric properties, e.g., directionality,
elongated shapes, scales, oscillations, recently advocated by many authors for mul-
tidimensional signal and image processing applications. Our method is a systematic
approach to the theory of affine-like systems yielding these and more general fea-
tures.
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1 Introduction

There is considerable interest, both in mathematics and its applications, in
the study of efficient representations of multidimensional functions. The mo-
tivation comes partly from signal processing, where such representations are
useful in image compression and feature extraction, and from the investigation
of certain classes of singular integral operators. For example, it was pointed
out in several recent research papers that oriented oscillatory waveforms play
a fundamental role in the construction of representations for multidimensional
functions and signals (cf. [3], [5], [8], and articles in [20]). In particular, it was
shown that, in order to be optimally sparse in a certain sense, such represen-
tations must contain basis elements with many more locations, scales, shapes
and directions than the “classical” wavelets (cf. [4]).

In this paper, we introduce a new class of representation systems which have
exactly the features we have described, as well as several other properties
which are closely analogous to the properties of systems constructed in [7],
and, therefore, for the reasons explained there as well as in [4,5,8], have great
potential in applications. We call these systems affine systems with com-
posite dilations, and they have the form

AAB(Ψ) = {Da Db Tk Ψ : k ∈ Zn, b ∈ B, a ∈ A}, (1)

where Ψ = (ψ1, . . . , ψL) ⊂ L2(Rn), Tk are the translations, defined by
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Tk f(x) = f(x−k), Da are the dilations, defined by Da f(x) = | det a|−1/2 f(a−1x),
and A,B are countable subsets of GLn(R). By choosing Ψ, A, and B appro-
priately, we can make AAB(Ψ) an orthonormal (ON) basis or, more gener-
ally, a Parseval frame (PF) for L2(Rn). In this case, we call Ψ an ON AB-
multiwavelet or a PF AB-multiwavelet, respectively. If the system has
only one generator, that is, Ψ = {ψ}, then we use the expression wavelet
rather than multiwavelet in this definition.

As we will show, the mathematical theory of these systems provides a simple
and flexible framework for the construction of several classes of orthonormal
bases and Parseval frames. For example, in Section 5, we construct AB PF
wavelets with good time-frequency decay properties, whose elements contain
“long and narrow” waveforms with many locations, scales, shapes and direc-
tions. These examples have similarities to the curvelets [4] and contourlets [7],
which have been recently introduced in order to obtain efficient representations
of natural images. Our approach is more general and presents a simple method
for obtaining several such orthonormal bases and Parseval frames that exhibit
these and other geometric features. In particular, our approach extends natu-
rally to higher dimensions and allows a multiresolution construction which is
well suited to a fast numerical implementation.

The paper will be organized as follows. In Section 2 we introduce the study of
AB multiwavelets by constructing some examples of such systems in L2(R2).
In Section 3 we examine the conditions on A,B ∈ GLn(R) that ensure the
existence of AB multiwavelets and present several classes of these systems for
L2(Rn). In Sections 4 and 5, we describe the AB multiwavelets generated
using a generalization of the classical MRA. Finally, in Section 6, we describe
an example of a singly generated orthonormal AB wavelet.

2 Example

In this paper, we shall present a variety of affine systems with composite
dilations. Perhaps, the most efficient way of entering into the study of these
systems is to examine in some detail a particular example of such a system.

Throughout this paper, we shall consider the points x ∈ Rn to be column

vectors, i.e., x =




x1

...

xn




, and the points ξ ∈ R̂n (the frequency domain) to be

row vectors, i.e., ξ = (ξ1, . . . , ξn). A vector x multiplying a matrix a ∈ GLn(R)
on the right, is understood to be a column vector, while a vector ξ multiplying a
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on the left is a row vector. Thus, ax ∈ Rn and ξa ∈ R̂n. The Fourier transform
is defined as

f̂(ξ) =
∫

Rn
f(x) e−2πiξx dx,

where ξ ∈ R̂n, and the inverse Fourier transform is

f̌(x) =
∫

R̂n
f(ξ) e2πiξx dξ.

Let a =




2 0

0 ε


, where ε 6= 0, b =




1 1

0 1


 and G = {(bj, k) : j ∈ Z, k ∈ Z2}.

Then G is a group with group multiplication:

(b`,m) (bj, k) = (b`+j, k + b−jm). (1)

In particular, we have (bj, k)−1 = (b−j,−bjk). The multiplication (1) is consis-
tent with the operation that maps x ∈ R2 into bj(x+k) ∈ R2. This is clarified
by introducing the unitary representation π of G, acting on L2(R2), defined
by (

π(bj, k)f
)
(x) = f(b−jx− k) =

(
Dj

b Tkf
)
(x), (2)

for f ∈ L2(R2). The observation that

(D`
b Tm) (Dj

b Tk) = (D`+j
b Tk+b−jm),

where `, j ∈ Z, k,m ∈ Z2, shows how the group operation (1) is associated
with the unitary representation (2).

Let S0 = {ξ = (ξ1, ξ2) ∈ R̂2 : |ξ1| ≤ 1} and define

V0 = L2(S0)
∨ = {f ∈ L2(Rn) : supp f̂ ⊂ S0}.

Since, for all j ∈ Z and k ∈ Z2, we have

(
π(bj, k)f

)∧
(ξ) =

(
Dj

b Tkf
)∧

(ξ) = e−2πiξbjk f̂(ξbj), (3)

and ξbj = (ξ1, ξ2)b
j = (ξ1, ξ2 + jξ1), then the action of bj maps the vertical

strip domain S0 into itself and, thus, the space V0 is invariant under the action
of π(bj, k). The same invariance property holds similarly for the vertical strips

Si = S0 ai = {ξ = (ξ1, ξ2) ∈ R̂2 : |ξ1| ≤ 2i},

i ∈ Z, and, as a consequence, the spaces Vi = L2(Si)
∨ are also invariant under

the action of the operators π(bj, k). The spaces {Vi}i∈Z also satisfy the basic
MRA properties: (1) Vi ⊂ Vi+1, i ∈ Z; (2) D−i

a V0 = Vi; (3)
⋂

Vi = {0}; and (4)
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Fig. 1. Example of ON AB–multiwavelet. The sets {I` bj : j ∈ Z, ` = 1, 2, 3} are a
disjoint partition of R0.
⋃

Vi = L2(Rn). The complete definition of an MRA includes the assumption
that V0 is generated by the integer translates of a φ ∈ V0, called the scaling
function, and that these translates {Tk φ : k ∈ Z2} are an orthonormal
basis of V0. In our situation, as we will discuss later on, there is an analogous
property that will replace the ‘scaling’ property.

Let A = {ai : i ∈ Z} and B = {bj : j ∈ Z}, and W0 be the orthogonal
complement of V0 in V1, that is, V1 = V0 ⊕ W0. We shall now show how to
construct an ON AB–multiwavelet generated by three mutually orthogonal
functions ψ1, ψ2, ψ3 ∈ W0 of norm 1. It will be convenient to work in the
Fourier domain. Thus, V̂1 = V̂0 ⊕ Ŵ0 and, consequently, Ŵ0 = L2(R0), where
R0 = S1 \ S0 = {ξ = (ξ1, ξ2) ∈ R̂2 : 1 < |ξ1| ≤ 2}. We begin by constructing
a particular orthonormal basis of W0 that it is mapped into itself by the
representation π. To do this, define the following subsets of R0 = S1 \ S0:

I1 = I+
1 ∪ I−1 , I2 = I+

2 ∪ I−2 , I3 = I+
3 ∪ I−3 ,

where

I+
1 = {ξ = (ξ1, ξ2) ∈ R̂2 : 1 < ξ1 ≤ 2, 0 ≤ ξ2 < 1/2},

I+
2 = {ξ = (ξ1, ξ2) ∈ R̂2 : 1 < ξ1 ≤ 2, 1/2 ≤ ξ2 < 1},

I+
3 = {ξ = (ξ1, ξ2) ∈ R̂2 : 1 < ξ1 ≤ 2, 1 ≤ ξ2 < ξ1},

and I−` = {ξ ∈ R̂2 : −ξ ∈ I+
` }, ` = 1, 2, 3. These sets are shown in Figure 1.

We then define ψ`, ` = 1, 2, 3 by setting ψ̂` = χI`
, ` = 1, 2, 3. Observe that

each set I` is a fundamental domain of Z2, that is, the functions {e2πiξk : k ∈
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Z2}, restricted to I`, form an orthonormal basis of L2(I`). It follows that the
collection

{e2πiξk ψ̂`(ξ) : k ∈ Z2}
is an orthonormal basis of L2(I`), ` = 1, 2, 3. A simple direct calculation shows
that the sets {I` bj : j ∈ Z, ` = 1, 2, 3} are a partition of R0, that is,

3⋃

`=1

⋃

j∈Z
I` bj = R0,

where the union is disjoint. It follows that the collection

{e2πiξk ψ̂`(ξbj) : k ∈ Z2, j ∈ Z, ` = 1, 2, 3} (4)

is an orthonormal basis of L2(R0) and, thus, by taking the inverse Fourier
transform of (4), we have that

{π(bj, k) ψ` : k ∈ Z2, j ∈ Z, ` = 1, 2, 3} (5)

is an orthonormal basis of W0 = L2(R0)
∨. Notice that, since, for each j ∈ Z

fixed, bj maps Z2 into itself, the collection {e2πiξbjk : k ∈ Z2} is equal to the
collection {e2πiξk : k ∈ Z2}.

Observe that the number of generators, three, of the orthonormal basis (5) of
W0 is independent of the choice of the functions ψ`. That is, if

{π(bj, k) φ` : k ∈ Z2, j ∈ Z, ` = 1, . . . , L},
for some functions φ` ∈ L2(R2), is an orthonormal basis of L2(R0), then `
must range through the set {1, 2, 3}. This is a consequence of the following
general result:

Proposition 1 Let G be a countable set and, for each u ∈ G, let Tu be a
unitary operator acting on a Hilbert space H. Assume that, for each Tu, there
is a unique u∗ ∈ G such that Tu∗ = T ∗

u . Suppose Φ = {φ1, . . . , φN}, Ψ =
{ψ1, . . . , ψM} ⊂ H, where N, M ∈ N⋃{∞}. If {Tu φk : u ∈ G, 1 ≤ k ≤ N}
and {Tu ψi : u ∈ G, 1 ≤ i ≤ M} are each orthonormal bases for H, then
N = M .

Proof. It follows from the assumptions that, for each 1 ≤ k ≤ N :

‖φk‖2 =
∑

u∈G

M∑

i=1

|〈φk, Tu ψi〉|2.

Thus, using the unitary property of Tu, we have:

N =
N∑

k=1

‖φk‖2 =
N∑

k=1

∑

u∈G

M∑

i=1

|〈φk, Tu ψi〉|2
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=
M∑

i=1

∑

u∗∈G

N∑

k=1

|〈Tu∗ φk, ψi〉|2

=
M∑

i=1

‖ψi‖2 = M. 2

In order to obtain the desired ON AB–affine system for L2(R2), we apply the
dilations Di

a, i ∈ Z to the orthonormal system (5). This is easily seen in the
Fourier domain, since the action of these dilations on the region R0 generates
the sets

Ri = R0 ai = {ξ = (ξ1, ξ2) ∈ R̂2 : 2i < |ξ1| ≤ 2i+1},
and we have that

⋃
i∈ZRi = R̂2, where the union is disjoint. Since the dilations

Di
a are unitary operators, they map an orthonormal basis into an orthonormal

basis and, thus, for each i ∈ Z, the set {Di
a π(bj, k) ψ` : k ∈ Z2, j ∈ Z, ` =

1, 2, 3} is an orthonormal basis of L2(Ri)
∨ = Wi. Since the spaces L2(Ri) (and

thus the spaces Wi) are mutually orthogonal, it follows that the system

{Di
a π(bj, k) ψ` : k ∈ Z2, i, j ∈ Z, ` = 1, 2, 3}

= {Di
a Dj

b Tk ψ` : k ∈ Z2, i, j ∈ Z, ` = 1, 2, 3} (6)

is an orthonormal basis of L2(R2) =
⊕

i∈ZWi, that is, Ψ = {ψ1, ψ2, ψ3} is an
ON AB–multiwavelet.

The number of generators of this ON AB–multiwavelet is fixed. Indeed, by
Proposition 1, if we could replace Ψ in (5) by a Φ = {φ1, . . . , φL}, then L = 3,
and this applies to (6) as well. As we will show later on, the Fourier transform
of the multiwavelets φ̂` need not be characteristic functions.

Recall that a countable family {ej : j ∈ J } of elements in a separable Hilbert
space H is a frame if there exist constants 0 < A ≤ B < ∞ satisfying

A ‖v‖2 ≤ ∑

j∈J
|〈v, ej〉|2 ≤ B ‖v‖2

for all v ∈ H. A frame is tight if A and B can be chosen so that A = B, and is
a Parseval frame (PF) (also called normalized tight frame) if A = B = 1.
Thus, if {ej : j ∈ J } is a Parseval frame in H, then

‖v‖2 =
∑

j∈J
|〈v, ej〉|2

for each v ∈ H. This is equivalent to the reproducing formula

v =
∑

j∈J
〈v, ej〉 ej (7)
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Fig. 2. Example of PF AB–wavelet. The sets {T bj : j ∈ Z} are a disjoint partition
of R.

for all v ∈ H, where the series in (7) converges in the norm of H. Equations (7)
shows that a Parseval frame provides a basis-like representation. In general,
however, a PF need not be a basis. We refer the reader to [9,14] for more
details about frames.

We will now show how to construct a PF of L2(R2) by modifying the construc-
tion that we described above. Let T = T+ ⋃

T−, where T+ is the trapezoid
with vertices (1/2, 0), (1/2, 1/2), (1, 0) and (1, 1), and T− = {ξ ∈ R̂2 : −ξ ∈
T+}; and let R = S0 \S−1 = {ξ = (ξ1, ξ2) ∈ R̂2 : 1/2 < |ξ1| ≤ 1}. This is illus-
trated in Figure 2. A direct computation shows that

⋃
j∈Z T bj = R, where the

union is disjoint. It follows from the Plancherel theorem (using the fact that
T is contained inside a fundamental domain) that the function χT (ξ) satisfies∑

k∈Z2 |〈f̂ , e2πi(·)k χT 〉|2 = ‖f̂‖2 for all f̂ ∈ L2(R), and thus the collection

{Dj
b e2πiξk χT (ξ) : k ∈ Z2, j ∈ Z}

is a Parseval frame of L2(T ). Similarly to the construction above, we have that⋃
i∈ZR ai = R̂2, where the union is disjoint, and so it follows that the set

{Di
a π(bj, k) ψ : k ∈ Z2, i, j ∈ Z} = {Di

a Dj
b Tk ψ : k ∈ Z2, i, j ∈ Z}

where ψ = (χT )∨ is a PF of L2(R2) =
⊕

i∈Z L2(R ai)∨, that is, ψ is a Parseval
frame AB–wavelet.

Observe that, unlike the case of ON AB multiwavelets that we constructed
above, this Parseval frame AB wavelet is singly generated (ψ = (χT )∨). It is
not hard to see, however, that, by modifying the function ψ, one can obtain
singly generated ON AB wavelets (cf. [11]). It is important to point out that,
as we will discuss in Sections 5 and 6, those singly generated ON AB wavelets
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are not of MRA type. These remarks make clear that the construction of AB
Parseval frames is simpler than the corresponding construction of ON AB mul-
tiwavelets. Because of this fact, and because Parseval frames are as effective
as ON bases in many applications, in the following we will concentrate mostly
on the construction of Parseval frames AB wavelets, that are not necessarily
orthonormal bases.

We end this section by stating some basic properties of the translation and
dilation operators, that will be used throughout the paper.

Proposition 2 Let

G = {U = Da Ty : (a, y) ∈ GLn(R)× Rn}.

G is a subgroup of the group of unitary operators on L2(Rn) which is preserved
by the action of the operator U 7→ Û , where Û f̂ = (Uf)∧. In particular, we
have:

(i) Da Ty = Tay Da;
(ii) Da1 Da2 = Da1a2, for each a1, a2 ∈ GLn(R);
(iii) for U = Da Ty, then Û = D̂aM−y, where D̂a f̂(ξ) = | det a|1/2 f̂(ξa);

(iv) for a measurable set S ⊂ R̂n and L2(S) = {f̂ ∈ L2(R̂n) : supp f̂ ⊆ S},
we have: D̂a L2(S) = L2(Sa−1).

3 The admissibility condition

In Section 2, we have examined some special cases of affine systems associ-
ated with the lattice Zn in Rn, a countable collection C ⊂ GLn(R) containing
the n × n identity matrix In, and a set Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn), having
the form

AC(Ψ) = {Dc Tk Ψ : c ∈ C, k ∈ Zn}. (1)

Our main concern here is to establish conditions on C that guarantee the
existence of a finite set of functions Ψ such that AC(Ψ), given by (1), is either
an orthonormal basis or a Parseval frame for L2(Rn). When this is the case, we
say that Ψ is an orthonormal (ON) C–multiwavelet or a Parseval frame
C–multiwavelet, respectively, for L2(Rn). More generally, when S ⊂ R̂n has
positive Lebesgue measure and S c = S, for each c ∈ C, we say that Ψ is an
ON or a Parseval frame C–multiwavelet for L2(S)∨, if AC(Ψ) is an ON basis
or a Parseval frame, respectively, for L2(S)∨. For example, in the construction
of Section 2, we consider affine systems on L2(Si)

∨, i ∈ Z, where the strip
domains Si ⊂ R̂2 are invariant with respect to the matrices b ∈ B.

It is an open problem to give necessary and sufficient conditions on C for
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which C multiwavelets for L2(S)∨ exist. In all known cases where they exist,
C satisfies a geometric condition that we call the tiling property. Namely, if
there exist measurable subsets R1, . . . , RL of S such that a.e. ξ ∈ S ⊂ R̂n

uniquely determines an index 1 ≤ i ≤ L, η ∈ Ri, and a c ∈ C, for which
ξ = η c−1, we say that the sets {R` : ` = 1, . . . , L} are S–tiling sets for the
dilation set C−1. Equivalently, we have that

S =
⋃

c∈C

⋃

1≤`≤L

R` c−1, (2)

where the union is disjoint in measure. If S = Rn, we simply say that the
sets {R` : ` = 1, . . . , L} are tiling sets for C−1. The property (2) ensures that
L2(S)∨ is the orthogonal direct sum

L2(S)∨ =
⊕

c∈C,1≤`≤L

L2(R` c−1)∨.

Therefore, for Ψ = {ψ1, . . . , ψL}, where ψ` = (χR`
)∨, the system AC(Ψ), given

by (1), is a Parseval frame for L2(S)∨ if and only if, for each 1 ≤ i ≤ L, the
collection

{(Tk ψi)∧ = e2πikξχRi
: k ∈ Zn}

is a Parseval frame for L2(Ri)
∨. By an elementary Fourier series argument,

this occurs precisely if the sets R1, . . . , RL satisfy

(R` + k)
⋂

R` = 0, for k ∈ Ẑn \ {0}, 1 ≤ ` ≤ L, up to sets of measure zero,
(3)

in which case we say that the sets {R` : ` = 1, . . . , L} are packing sets for
Zn translations. 3 Observe that this condition implies that the measure of
each set R` cannot be larger than one. Therefore we have the following:

Proposition 3 Let Ψ = {ψ1, . . . , ψL} ⊂ L2(S)∨, where ψ` = (χR`
)∨, for

1 ≤ ` ≤ L. Ψ is a Parseval frame C–multiwavelet for L2(S)∨ if and only if (2)
and (3) hold.

Whenever Ψ is of the form given by Proposition 3, we say that Ψ is a tiling
C–multiwavelet of L2(S)∨. In Section 5, we show how tiling C–multiwavelets
can be smoothed off to obtain more general C–multiwavelets. It is an open
problem whether any C–multiwavelet arises by modifying a tiling one.

Note that in the example of Parseval frame AB–wavelet from Section 2, we
construct a set T ⊂ R̂2 having the properties:

3 Recall that in Section 2 we introduced the notion of “fundamental domain”.
Observe that a packing set for Zn translations is a subset of a fundamental domain
for Zn.
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(i)
⋃

i,j

T (aibj)−1 = R̂2 \ {(0, ξ2) : ξ2 ∈ R}

(ii) (T + k) ∩ T = ∅ for all k ∈ Z2 \ {0}

This shows that equation (2) and (3) are satisfied, and so it follows that
ψ = (χT )∨ is a PF C–wavelet for L2(R2), where C = {ai bj : i, j ∈ Z}.

The set C is called S–admissible if tiling multiwavelets for L2(S)∨ exist. In
case S = R̂n, we will simply say admissible (rather than R̂n–admissible).
Observe that there are no known examples of dilations sets C for which C–
wavelets exist and that are not S–admissible.

In the following, we will briefly examine the relationship between the notion
of admissibility that we have just introduced, and the theory of continuous
wavelets (Section 3.1). Next, in Section 3.2 we will show that the admissibility
condition is closely related to a condition that we call local admissibility. In
Section 3.3 we examine the admissibility for dilation sets of the form C = AB,
and look at two types of examples unlike those in Section 2. In Section 3.4
we give a complete discussion of the theory that generalizes the examples in
Section 2.

3.1 Connection to the theory of continuous multiwavelets.

For C and S defined as in the previous section, we say that Ψ = {ψ1, . . . , ψL} ⊂
L2(S)∨ is a continuous C–multiwavelet if

‖f‖2 =
L∑

`=1

∑

c∈C

∫

Rn
|〈f, Dc Ty ψ`〉|2 dy (4)

for all f ∈ L2(S)∨. By a trivial extension of an argument in [16], one shows
that Ψ satisfies (4) if and only if it satisfies the Calderòn equation:

L∑

`=1

∑

c∈C
|ψ̂`(ξ c)|2 = 1 for a.e. ξ ∈ S. (5)

It is easy to see that every tiling C–multiwavelet is also a continuous C–
multiwavelet. In fact, if Ψ = {ψ1, . . . , ψL}, where ψ` = (χR`

)∨ and the sets
{R` : 1 ≤ ` ≤ L} satisfy equations (2) and (3), then (5) is immediately
satisfied. More generally, it is shown in [13] that, when C satisfies a technical
property called the local integrability condition (LIC), then the Calderòn equa-
tion is one of a family of equations characterizing C–multiwavelets for L2(Rn).
The LIC is satisfied, for example, when C is of the form C = {ai : i ∈ Z}
where a ∈ GLn(R) is an expanding matrix (that is, all the eigenvalues λ
of a satisfy |λ| > 1). Finally, observe that there are no known examples of
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C–multiwavelets which are not continuous C–multiwavelets, i.e., do not satisfy
the Calderòn equation.

3.2 The local admissibility condition.

As above, let C ⊂ GLn(R) be a countable set containing the identity matrix
I. We say that C is locally admissible if, for a.e. ξ ∈ R̂n, there is an open
neighborhood U of ξ such that, for c1, c2 ∈ C with c1 6= c2, we have that
U c−1

1 c2
⋂

U = ∅. In particular, this means that the set of points {ξ c−1 : c ∈ C}
is discrete in the topology of R̂n. Since any open neighborhood of ξ has the
same property, we can assume that U is contained in a cube of side 1 centered
at ξ. Then, for S = ∪c∈CU c−1, the set C is S–admissible and χ∨U is a tiling
wavelet for L2(S)∨.

Under certain assumptions on C, one can take S = R̂n. Consider for example
the situation where C = {ai : i ∈ Z} and a ∈ GLn(R) is an expanding
matrix. C is clearly locally admissible. Let U ⊂ [−1/2, 1/2]n ⊂ R̂n be an
open neighborhood of the origin (this implies that U is a packing set for Zn

translations). Since a is expanding, it follows that U a−1 ⊂ U . Therefore, if we
let T = U \(U a−1), then T is a tiling set for the set of dilations C (observe that
C is a group and so C = C−1). This shows that a tiling C–wavelet for L2(Rn)
exists. The following section elaborates this situation further, by showing an
example of a dilation set that is not locally admissible.

3.2.1 Example of a non-admissible dilation set.

Consider the set C = {2i 3j : i, j ∈ Z}. This set is not locally admissible in
view of the fact that ln 3/ ln 2 is irrational and so {ln(2i 3j) : i, j ∈ Z} is dense
in R. Using this fact, the following argument will show that no C–wavelets for
L2(R) exist.

In fact, if such a wavelet ψ exists, then it satisfies the Calderón condition

∑

i,j∈Z
|ψ̂(2i3jξ)|2 = 1 a.e. ξ ∈ R̂.

We claim that no such ψ exists. If it did, then we could find an n ∈ Z and
a measurable set R ⊂ [n, n + 1] of positive measure such that |ψ̂(ξ)| ≥ δ for
some δ > 0, for all ξ ∈ R. Fix such n and δ. Since ‖ψ‖ ≤ 1, it follows that∫ n+1
n |ψ̂(ξ)|2dξ ≥ δ2|R| and so

δ2 ≤ 1

|R| ≤
|n|+ 1

|R| . (6)

12



It is easy to see that there is a countably infinite set P of elements p of the
form p = 2j 3i, i, j ∈ Z such that

1 < p < 1 +
δ2|R|

2(|n|+ 1)
. (7)

From (6) and (7) we have that p < 1+ |R|/(2|R|) = 3/2, and, thus, 1/p > 1/2.
Using this observation, (7) and the fact that ‖ψ‖ ≤ 1, we have:

∫ n+1

n
|ψ̂(pξ)|2 dξ =

1

p

∫ p(n+1)

pn
|ψ̂(ξ)|2 dξ

≥ 1

2

(∫ n+1

n
|ψ̂(ξ)|2 dξ −

∫ pn

n
|ψ̂(ξ)|2 dξ

)

≥ 1

2

(
δ2|R| − n(p− 1)

)

≥ 1

2

(
δ2|R| − nδ2|R|/(2|n|+ 1)

)
≥ δ2|R|

4
. (8)

Thus, using (8) and the Calderón condition we have:

1 =
∫ n+1

n

∑

i,j∈Z
|ψ̂(2i3jξ)|2 dξ ≥

∫ n+1

n

∑

p∈P
|ψ̂(pξ)|2 dξ ≥ δ2|R|

4

∑

p∈P
1 = ∞.

This contradicts the Calderón condition . It is easy to see that the same
argument applies to any A = {aj bi : i, j ∈ Z}, with a, b ∈ Z \ {0, 1} relatively
prime. The same argument also applies if one replaces L2(R) by L2(S)∨, where
S ⊂ R̂ is a set of positive measure.

Consider, on the other hand, C ′ = {



2i 0

0 3j


 : i, j ∈ Z}. This set is locally

admissible, and an argument similar to the one described above, where C =
{ai : i ∈ Z} and a is an expanding matrix, shows that tiling C ′–wavelets for
L2(R2) exist.

3.3 Admissibility condition. The AB case.

If B ⊂ GLn(R) is S–admissible and c ∈ GLn(R), then cB is Sc−1–admissible
since the unitary operator Dc maps the PF AB(ψ) for L2(S)∨ onto the PF
AcB(ψ) for L2(Sc−1)∨, where ψ is a PF cB–wavelet for L2(S c−1)∨. In particu-
lar, this holds for c = b−1, where b ∈ B. In this case, b−1B is still S–adimissible,
since S b = S, and thus there is no loss of generality in assuming In ∈ B. We
will be especially interested in the situation where B is S–admissible and there

13



is a countable set A ⊂ GLn(R) for which S is a tiling set for A. Then

L2(Rn) =
⊕

a∈A

L2(S a−1)∨ =
⊕

a∈A

Da

(
L2(S)

)∨
, (9)

and it follows that the set C = AB = {a b : a ∈ A, b ∈ B} is admissible, and
ψ is a PF AB–wavelet whenever ψ is a B–wavelet for L2(S)∨. It is clear that
a similar approach holds for multiwavelets Ψ ⊂ L2(Rn). A particular instance
of this phenomenon was illustrated in Section 2, where A = {ai : i ∈ Z},

with a =




2 0

0 ε


, and B = {bj : j ∈ Z}, with b =




1 1

0 1


. Observe that in

these examples the right action of A doubles the first coordinate. On the other
hand, the action of A on the second coordinate is irrelevant, since the right
action of B leaves the first coordinate fixed and uses the first coordinate to
control the second one.

In the following sections, will show that there are many possible choices for
A and B, and that they do not have to be subgroups of GLn(R). Unifying all
these examples of admissible AB–multiwavelets that we are going to construct
is a not necessarily linear change of coordinates map φ(t, s) from R̂k × R̂n−k

onto a set of full measure in R̂n. Like in the 2–dimensional example above, the
action of A will be “upper triangular”, in the sense that, for a ∈ A, φ(t, s) a =
φ(t a′, s′), where a ∈ A′ and A′ is a set (or a group) of operators on R̂k that
admits tiling sets for the A′ dilations. The action of A on the coordinate s ∈
R̂n−k is irrelevant. On the other hand, the action of B will leave the coordinate
t ∈ R̂k invariant: for b ∈ B we have that φ(t, s) b = φ(t, σt(s, b)), for some
transformation σt(·, b) on R̂n−k. As t varies over a compact set K ∈ R̂k, we will
be able to construct a set R which is an S–tiling set for the B dilations, where
S is the strip domain K × R̂n−k. This general procedure will be illustrated in
Sections 3.3.1 and 3.3.2, for the case of spherical and hyperbolic coordinates,
respectively. Next, in Section 3.4, we consider the linear coordinate systems,
by generalizing the examples in Section 2.

3.3.1 Orthogonal AB–multiwavelets.

Perhaps the simplest class of admissible AB–multiwavelets is obtained when
B is a finite group. Since B is conjugate to a subgroup of the orthogonal group
On(R) (i.e., given any finite group B, there is a P ∈ GLn(R) and a subgroup
B̃ ⊆ On(R) such that PBP−1 = B̃), without loss of generality, we may assume
that B ⊂ On(R). Let S0 ⊂ R̂n be a compact region, starlike with respect to
the origin, with the property that B maps S0 into itself. In many situations,
one can find a lattice L ⊂ Rn and a region U0 ⊆ S0 such that U0 is both a
S0–tiling set for the B dilations and a packing set for the Λ translations (i.e.,
(U0 + λ)

⋂
U0 = 0, for λ ∈ Λ \ {0}), where Λ = {λ ∈ R̂n : λ l ∈ Z,∀ l ∈ L}
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is the lattice dual to L. Then

ΦB = {Db Tl (χU0)
∨ : b ∈ B, l ∈ L}

is a PF for L2(S0)
∨. Next suppose that A = {ai : i ∈ Z}, where a ∈ GLn(R)

is expanding, aB a−1 = B and S0 ⊆ S0 a = S1. These assumptions imply that
each region Si = S0 ai, i ∈ Z, is B-invariant and the family of disjoint regions
Si+1 \Si, i ∈ Z, tile R̂n. Thus, one can decompose L2(Rn) as in (9). Since B is
finite, there exist many choices of a measurable set R ⊂ S1 \S0 for which R is
a (S1 \ S0)–tiling set for the B dilations. Since a is expanding, we can always
take S0 to be contained in a small neighborhood of the origin, and thereby
ensuring that R is a packing set for the Λ translations. Then

ΨAB = {Di
a Db Tl (χR)∨ : b ∈ B, i ∈ Z, l ∈ L}

is a PF of L2(Rn). On the other hand, if U0 is a tiling region for the Λ trans-
lations, that is,

⋃
λ∈Λ(U0 + λ) = R̂n where the union is disjoint, every such

tiling set has the same measure as U0. If | det a| ∈ N, then |S1| = | det a| |S0| =
| det a| card (B) |U0| and it follows that no single subset R of S1\S0 can be both
a (S1 \S0)–tiling set for the B dilations and a tiling set for the Λ translations.
Instead, if R is a (S1 \ S0)–tiling set for the B dilations, then one can decom-
pose R into a disjoint union of subregions R1, . . . , RN (where N = | det a|−1)
each of which is a tiling set for the Λ translations. It follows that

Ψ̃AB = {Di
a Db Tl (χR`

)∨ : i ∈ Z, b ∈ B, l ∈ L, ` = 1, . . . N}

is a an ON AB–multiwavelet for L2(Rn). Moreover, in this case, the set ΦB

is a ON basis for L2(S0)
∨. Some special examples of this construction can be

found in [10] and [11, Sec.2.2].

3.3.2 Hyperbolic AB–wavelets.

By using a nonlinear system of coordinates, we can construct a variant of the
system described in Section 2, where B does not consist of shear matrices.

Fix λ > 1 and let

B = {bj =




λj o

0 λ−j


 : j ∈ Z}.

For k > 0, the set Hk = {(ξ1, ξ2) ∈ R̂2 : ξ1ξ2 = k} consists of four hy-
perbolas. Observe that, for any ξ = (ξ1, ξ2) ∈ Hk, every other point ξ′

on the same hyperbola has the unique representation ξ′ = (ξ1λ
t, ξ2λ

−t) for
some t ∈ R. We can parametrize any ξ = (ξ1, ξ2) in the first quadrant by
ξ(r, t) = (

√
r λt,

√
r λ−t), where r ≥ 0, t ∈ R. Then, for any k1 < k2, the set

T 1(k1, k2) = {ξ(r, t) : k1 ≤ r < k2, 0 ≤ t < 1} is an hyperbolic trapezoid.
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Also observe that, for any k 6= 0, the right action of B preserves the set Hk

since

ξ bj = (ξ1, ξ2)




λj o

0 λ−j


 = (ξ1λ

j, ξ2λ
−j) = (η1, η2),

and η1η2 = ξ1ξ2. Therefore, the set T 1(k1, k2) is an S1(k1, k2)–tiling set for
the B dilations, where S1(k1, k2) is the hyperbolic strip {ξ(r, t) : k1 ≤ r <
k2}. Proceeding similarly in the other quadrants, we obtain that the similarly
defined hyperbolic trapezoids T `(k1, k2), ` = 2, 3, 4, are S`(k1, k2)–tiling sets
for the B dilations. By taking unions, we have that T (k1, k2) =

⋃
`=14 T `(k1, k2)

is a S(k1, k2)–tiling set for the B dilations, where S(k1, k2) =
⋃

`=14 S`(k1, k2).

Now let A = {ai : i ∈ Z} ⊂ GL2(R), where a is diagonal with m = | det a| > 1.
Then, for each k > 0, Hk a = Hmk. Thus, for any k0 > 0, S(k0/m, k0) is a tiling
set for the A dilations. By choosing k0 small enough, the set T = T (k0/m, k0)
is contained in the fundamental domain [1/2, 1/2)2 and, thus, ψ = (χT )∨ is a
PF AB–wavelet, where AB = {ai b : i ∈ Z, b ∈ B}.

3.4 The shear group.

We would like to find a general setting in which the systems {Di
a Dj

b Tk ψ` :
i, j ∈ Z, k ∈ Z2, ` = 1, 2, 3} described in Section 2 are included. Observe that
the matrix b satisfies (b− I2)

2 = 0. Let us first characterize all such matrices
in the n–dimensional case. We say that a matrix b ∈ Rn×n is a shear matrix
if

(b− In)2 = 0.

Each such b has a Jordan form that consists of k blocks of the form




1 1

0 1


, with

k ≤ n/2, followed by an (n−2k)×(n−2k) identity matrix. That is, b = p J p−1,
where p ∈ GLn(R), J = In +

∑k
j=1 e2j−1ê2j, and {e1, . . . , ek}, {ê1, . . . , êk} are

the canonical bases vectors of Rn and R̂n, respectively. This implies that a
general shear matrix has the form

b = In +
k∑

j=1

y(j) η(j), (10)

where η(j) y(i) = 0, for each 1 ≤ i, j ≤ k, and y(j) = p e2j−1, η(j) = ê2j p−1

(observe that, for y ∈ Rn and η ∈ R̂n, yη is the n × n matrix with entries
(yiηj), 1 ≤ i, j ≤ n, and ηy is the scalar

∑n
i=1 ηiyi).

Let y ∈ Rn and η ∈ R̂n. If b = In+y η, where η y = 0, then (b−In)2 = y(ηy)η =
0, and, thus, b is a shear matrix. We will call an elementary shear matrix
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Fig. 3. Shearing transformation. Vector field induced by the right action of the shear
group B = {bj : j ∈ Z}, where bj is given by (11).

any matrix of this form. Observe that, if yη = 0 and b is an elementary shear
matrix, then the mapping ξ 7→ ξb = ξ + (ξy)η has the property that ξ ∈ R̂n

is fixed by b if and only if ξ lies in the hyperplane y⊥ = {z ∈ Rn : zy = 0},
otherwise ξ is translated in the direction η ∈ y⊥ (see Figure 3). In the examples

from Section 2, y =




1

0


, η = (0, 1) and so, for each j ∈ Z,

bj = In + jyη =




1 j

0 1


 . (11)

As we observed there, in this situation, ξ ∈ R̂2 is fixed under the right action
of bj if and only if ξ = (0, ξ2), otherwise ξ is translated in the vertical direction.

A direct computation shows that, when b1 = In+y(1) η(1) and b2 = In+y(2) η(2)

are elementary shear matrices, then b1b2 is a shear matrix if and only if b1b2 =
b2b1. This occurs precisely when η(1) y(2) = η(2) y(1) = 0, with b1b2 = In +∑2

i=1 y(i) η(i). Similarly, it follows that a general shear matrix b, given by (10),
is a shear matrix, where b = b1b2 . . . bk, and the matrices bi, 1 ≤ i ≤ k are
commuting elementary shear matrices.

We will say that a subgroup B of GLn(R) is an admissible shear group if B
is locally admissible and is generated by finitely many commuting elementary
shear matrices. In this case, B is maximal if B is not a proper subgroup of
any other shear group in GLn(R).
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3.4.1 Characterization of the maximal locally admissible shear groups.

As we will show below in Theorem 5, after a change of coordinates, the general
maximal locally admissible shear group B ⊂ GLn(R) has the form:



b(j1,...,jn−k) =




Ik j1e1 . . . jkek jk+1ck+1 . . . jn−kcn−k

0 In−k


 : j1, . . . , jn−k ∈ Z



,

(12)
where k ≤ n/2, {e1, . . . , ek} is the canonical basis of Rk and {ck+1, . . . , ck−n}
are general non-zero column vectors in Rk.

In the following we will illustrate some special cases of such B. Let {ê1, . . . , ên}
be the dual basis of R̂n, and, for i 6= j, let bi,j = In + ei êj.

(i) For k = 1, the simplest B of form (12) arises by choosing ci = e1, for
2 ≤ i ≤ n− 1. This yields the maximal admissible shear group

B =



b(j1,...,jn−1) =




1 j1 . . . jn−1

0 In−1


 : j1, . . . , jn−1 ∈ Z



,

generated by {b1,j : 2 ≤ j ≤ n}.

(ii) For k = n/2, then n − k = k and the expression of B given by (12)
simplifies since there are no vectors {ci} to be chosen. Then

B =



b(j1,...,jk) =




Ik




j1 . . . 0

0
. . . 0

0 0 jk




0 Ik




: j1, . . . , jk ∈ Z




is the admissible shear group generated by {bj,k+j : 1 ≤ j ≤ k}.

(iii) Suppose k ≥ 2, ` = `1+· · ·+`k, where `j ∈ N, and n = k+`1+· · ·+`k. For
1 ≤ i ≤ k, let Bi be the subgroup of GL(`i+1)(R) of the form (i). In GLn(R)
we can form the group

B =



b =




β1 . . . 0

0
. . . 0

0 0 βk




: βi ∈ Bi, 1 ≤ i ≤ k



,
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and regard B as the outer direct product of the groups B1, . . . , Bk. By rear-
ranging the order of the columns, we can recast B as the the set of all matrices
of the form (12) where `i−1 of the column vectors {ck+1, . . . , cn−k} are chosen
to be equal to ei, for 1 ≤ i ≤ k.

In the following, we describe some examples of groups of shear matrices that
are not locally admissible, but contain locally admissible subgroups or subsets.

(iv) For n = 2, the non-commuting elementary shear matrices b1,2 =




1 1

0 1




and b2,1 =




1 0

1 1


 generate SL2(Z). It is easy to verify that SL2(Z) is not

locally admissible, although subgroups of SL2(Z) not generated by elementary
shear matrices my be locally admissible. Consider, for example, the hyperbolic
shear group in Section 3.3.2 or the finite group of the isometries of the square
[−1, 1]2 (a special case of the finite groups in Section 3.3.1).

(v) For n = 3, the non-commuting elementary shear matrices b1,2 and b2,3

generate the integral Heisenberg group H3 =



b(i,j,k) =




1 i k

0 1 j

0 0 1




: i, j, k ∈ Z


.

For ξ = (ξ1, ξ2, ξ3) ∈ R̂3, we have ξ b(i,j,k) = (ξ1, ξ2 + iξ1, ξ3 + jξ2 + kξ1). If
ξ1/ξ2 /∈ Q, then {jξ2 + kξ1 : j, k ∈ Z} is dense in R and thus the H3 orbit
is not discrete in R̂3. Observe that H3 is not a shear group. However, the
subgroup {b(i,0,k) : i, k ∈ Z} of H3 is a maximal admissible shear group of the
form given by the example (i), and the subset {b(i,j,0) : i, j ∈ Z} is locally
admissible. More generally, for n ≥ 3, let Bi be the shear group generated by
bi,i+1, for 1 ≤ i ≤ n. Then the set product

Bn−1Bn−2 · · ·B1 =
{
b(j1,...,jn−1) =




1 j1 . . . 0 0

0 1
. . . 0 0

. . . . . . . . .

0 0 . . . 1 jn−1

0 0 . . . 0 1




: j1, . . . , jn−1 ∈ Z
}

is locally admissible. Indeed, the set product is locally admissible for any
ordering of the non-commuting groups B1, . . . Bn−1.

The following proposition elaborates the above observations further.
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Proposition 4 Let B̃ be a subset of GLn(R) containing the group B generated
by two non-commuting elementary shear matrices b1 = In + y(1) η(1) and b2 =
In + y(2) η(2). Then B̃ is not admissible.

Proof. Since b1 b2 6= b2 b1, then either η(1) y(2) or η(2) y(1) is nonzero. In the
case when η(1) y(2) = 0 and η(2) y(1) 6= 0, then B is isomorphic to the integral
Heisenberg group H3 and is not locally admissible for the same reason dis-
cussed in Example (iv). When both η(1) y(2) and η(2) y(1) are nonzero, we can
assume that their product is positive by replacing b1 with b−1

1 if needed. Using
the rescaling y η = (ky) (η/k) for k > 0, we may assume that η(1) y(2) = c−1

and η(2) y(1) = c, for some c > 0. Then B is isomorphic to SL2(Z) if c = 1
and, in general, B is conjugate to the subgroup Bc of GLn(R) generated by





1 c

0 1


 0

0 In−2




and







1 0

c−1 1


 0

0 In−2




. It is easy to see that Bc is not locally

admissible for any c. Thus, in all cases, the group B generated by b1 and b2

is not locally admissible and, so, any subset B̃ of GLn(R) containing B is not
locally admissible. 2

Observe that Proposition 4 does not apply to the locally admissible subgroups
mentioned in Example (iii) (that are not generated by elementary shear matri-
ces), and does not apply to the locally admissible sets of Example (v), obtained
as products of non-commuting elementary shear matrices.

We can now state the main result of this section.

Theorem 5 Let B ⊂ GLn(R) be a maximal locally admissible shear group.

(a) There is a unique index k ≤ n/2 and a change of basis matrix P such that
B̃ = P−1BP is of the form given by example (ii).

(b) If a ∈ GLn(R) is such that P−1aP =




c ∗
0 d


, where c ∈ GLk(R) is expanding

and d ∈ GLn−k(R), then AB = {aib : i ∈ Z, b ∈ B} is admissible.

Proof. (a) Let ` be the minimal numbers of elementary shear matrix gen-
erators for B and {bi = In + y(i)η(i) : 1 ≤ i ≤ `} a particular set of such
generators. For V = span {y(i) : 1 ≤ i ≤ `} and k = dim V , we will show
that ` = n− k and {η(1), . . . , η(`)} is a basis for the V ⊥, the annihilator of V ,
given by {ν ∈ R̂n : ν v = 0, ∀ v ∈ V }. Let W = span {η(i) : 1 ≤ i ≤ `}. Since
η(i)y(j) = 0 for 1 ≤ i, j ≤ `, then W ⊆ V ⊥. For any v ∈ V , η ∈ V ⊥ \W , the
elementary shear matrix B̃ = In + vη commutes with every member of B. Let
B̃ be the shear group generated by B and b̃. Since B is locally admissible and
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η /∈ W , then B̃ is locally admissible and this contradicts the maximality of B.
Hence V ⊥ = W and ` ≥ n− k.

In order to prove that ` = n− k, we argue by contradiction and assume that
η(1), . . . , η(`) are linearly dependent. Let m < ` be the largest index for which
η(1), . . . , η(m) are linearly independent, Bm+1 be the subgroup of B generated
by {bi : 1 ≤ i ≤ m + 1} and Wm be the m–dimensional subspace of V ⊥

spanned by {η(i) : 1 ≤ i ≤ m + 1}. By assumption, η(m+1) =
∑m

i=1 ci η
(i)

for some scalars c1, . . . , cm. Since B is locally admissible, so is Bm+1, that
is, the orbit Γξ = {ξ − ξb : b ∈ Bm+1} is discrete in R̂n for a.e. ξ ∈ R̂n.
Since Bm+1 = {In +

∑m+1
i=1 ji v

(i)η(i) : (j1, . . . , jm+1) ∈ Zm+1}, then Γξ is the
additive subgroup of Wm generated by the linear dependent vectors (ξy(i)) η(i),
1 ≤ i ≤ m + 1, and Γξ is discrete in Wm if and only if these vectors are

linearly dependent over the rational numbers Q. It follows that, for a.e. ξ ∈ R̂n,
ξy(i)) 6= 0 for 1 ≤ i ≤ m + 1, and ci ξy

(m=1)) is a rational multiple of ξy(i))
for 1 ≤ i ≤ m. By suppressing all indices for which ci = 0 and renaming the
remaining indices, we can assume that ci 6= 0 for each i. Since the quotient
q(ξ) of two linear functions over R̂n can take values in Q for a.e. ξ ∈ R̂n if
and only if q is constant, it follows that y(m+1) and y(i) are linearly dependent
for each 1 ≤ i ≤ m. By re-scaling y η = (ky) (η

y
), we may then assume that

y(1) = y(2) = · · · = y(m+1) = y for some y ∈ V . Then, for all ξ ∈ R̂n, we
have Γξ = (ξy) Γ, where Γ = Z η(1) + · · · + Z η(m+1). Since Γ is a lattice
in W , we can replace η(1), . . . , η(m+1) by a lattice basis ν(1), . . . , ν(m+1). This
means that the elementary shear matrices b′i = In + yν(i) : 1 ≤ i ≤ m
are an alternative set of generators for Bm+1 and b′1, . . . , b

′
m, bm+2, . . . , b` is a

generating set for B with ` − 1 members. This contradicts the assumption
that ` is the minimal number of elementary shear matrix generators for B.
Thus we conclude that {η(i) : 1 ≤ i ≤ `} is a linearly independent set, hence
` = n− k and {η(i) : 1 ≤ i ≤ n− k} is a basis for W = V ⊥.

By reordering the {bi}, we may assume that {y(i) : 1 ≤ i ≤ k} is a ba-
sis for V and choose a set of vectors v(k+1), . . . , v(n) in R̂n for which B =
{y(1), . . . , y(k), v(k+1), . . . , v(n)} is a basis for R̂n with η(i)v(k+j) = δi,j, for 1 ≤
i, j ≤ n− k. Let P be the change of basis matrix mapping B to the standard
basis {e1, . . . , en} for R̂n. Then B̃ = P−1BP is of the form given by (12).

(b) By our proof of (a), there is no loss of generality in assuming B to be

of the form (12), and (using the hypotheses) in letting a =




c ∗
0 d


, where

c ∈ GLk(R) is expanding and d ∈ GLn−k(R). For notational convenience,
let ci = ei for 1 ≤ i ≤ k. We can regard R̂n as R̂k × R̂n−k and select a
small annular set K, about the origin in R̂k, so that R̂k =

⋃
i∈ZK c−i is a

disjoint union. For ξ = (ν, η) ∈ R̂k × R̂n−k, with ν ∈ R̂k \ {0}, there is
a unique index i ∈ Z for which ξ′ = ξai = (ν ′, η′), with ν ′ = νci ∈ K,
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Fig. 4. I is an AB tiling set of the cone H and ψ = (χI)∨ is a PF ÃB–wavelet for
L2(R̂2 \ [−1/2, 1/2]2)∨ (see Section 3.5).

η′ ∈ R̂n−k. For b = b(j1,...,jn−k) as in (12), we have that ξ′′ = ξ′b = (ν ′, η′′),
where, for each 1 ≤ i ≤ n − k, η′′i = ji(ν

′ci) + η′i is the i–component of
η′′, and, η′i is the the i–component of η′. Observe that, for each i, we have
ν ′ci 6= 0 on a set of full measure in K. Therefore there is a unique choice of
j1, . . . , jn−k for which 0 ≤ η′′/(ν ′ci) < 1, for each i. Finally, let Tν′ be the set
of all elements η′′ ∈ R̂n−k satisfying these inequalities. It follows that the set
R =

⋃
ν′∈K{ν ′}×Tν′ is a tiling set for the (AB)−1–dilations. By taking K small

enough, we can ensure that R is also a packing set for the Ẑn translations.
Thus {Daib Tk (χR)∨ : i ∈ Z, b ∈ B, k ∈ Zn} is a PF AB wavelet and the
dilation set AB is admissible.

3.5 The contourlets.

In this section, we describe a variation of the example given in Section 2,
that is similar to the contourlets have been recently introduced by Do and
Vetterli [7]. The contourlet construction, that is inspired by the curvelets,
uses a multiresolution analysis framework, with the decomposition:

L2(R2) = Vi0 ⊕
⊕

i<i0

Wj,

where Vi = L2(Si)
∨, Si = {ξ ∈ R̂2 : ‖ξ‖`1 ≤ 2−i}, Wi = Vi−1 ∩ V ⊥

i . In
addition, for each i < i0, each subspace Wi is subdivided into the ‘directional’
components:

Wi =
2li⊕

j=0

W
(li)
i,j .

22



We will obtain a very similar construction using the general setting of the
AB–wavelets.

Let a =




2 0

0 1


, b =




1 1

0 1


, and T (α, β) = T+(α, β)

⋃
T−(α, β), where

T+(α, β) is the trapezoid with vertices (α, 0), (α, α), (β, 0) and (β, β), and
T−(α, β) = {ξ ∈ R̂2 : −ξ ∈ T+(α, β)}. We denote by H the truncated cone

H =
{
(ξ1, ξ2) ∈ R̂2 : |ξ1| ≥ 1/2, 0 ≤ |ξ2/ξ1| ≤ 1

}
,

and let I = T (1/2, 1). These sets are illustrated in Figure 4. Then a simple
computation shows that the sets {I ai bj : i ≥ 0, −2i ≤ j ≤ 2i − 1}, form a
tiling for H. Thus, for

AB = {a−i b−j = (bj ai)−1 : i ≥ 0, −2i ≤ j < 2i − 1}, (13)

the function ψ = (χI)
∨ is a PF AB-wavelet for L2(H)∨, and the set AB is

H–admissible.

Next, let ρ =




0 1

−1 0


. Since this matrix produces a rotation by π/2, then

V = H ρ−1 = ρH is the truncated cone:

V =
{
(ξ1, ξ2) ∈ R̂2 : |ξ2| ≥ 1/2, 0 ≤ |ξ1/ξ2| ≤ 1

}
.

Observe that (Dρ ψ)∧(ξ) = ψ̂(ξρ) = χIρ−1(ξ) (the set Iρ−1 is illustrated in
Figure 4) and, thus, by the properties of T , the sets

I bj aiρ−1 = (Iρ−1) ρ bj aiρ−1, for i ≥ 0, −2i ≤ j ≤ 2i,

form a tiling for V . This shows that Dρ ψ is a PF (ρABρ−1)–wavelet for

L2(V )∨. Moreover, since H
⋃

V = R̂2 \ [−1/2, 1/2]2, it follows that ψ is a PF
ÃB–wavelet for L2(R̂2 \ [−1/2, 1/2]2)∨, where ÃB = AB ∪ ρABρ−1.

The expression (13) shows that when the scale index i is increased by 1, the
number of directions j is doubled. Observe that, in the contourlet construction
of Do and Vetterli, as well as in the case of curvelets, the number of directions
doubles every time i is increased by 2, and this ensures that the elements of
the systems satisfy a parabolic scaling, that is, the essential support of these
systems obeys approximately the relationship

length ≈ 2−i width ≈ 2−2i.

As shown in [4,7], this property is needed to obtain representations that are
optimally sparse for functions in a certain class. In the construction above,
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we made a different choice of the width-to length ration, in order use to same
matrices as in the example from Section 2. However, we can easily modify this

construction by choosing a =




4 0

0 2


, and letting I = T (1/4, 1). By doing so,

we obtain a Parseval frame of elements satisfying a parabolic scaling relation.

Finally, let us observe that the system we have obtained disregards the low-
frequency region [−1/2, 1/2]2 ⊂ R̂2, where standard (non-directional) wavelets
are used (this is similar to the curvelets and contourlets construction).

4 AB multiresolution analysis. Part I.

As we already observed in Section 2, there are examples of AB multiwavelets
that can be constructed within a framework very similar to the classical mul-
tiresolution analysis (MRA). In this section and in the following one we are
going to develop a generalization of this theory, that will be useful to construct
more examples of AB multiwavelets, as well as examples with properties that
are of great potential in applications.

Let B be a countable subset of S̃Ln(Z) = {b ∈ GLn(Z) : | det b| = 1} and
A = {ai : i ∈ Z}, where a ∈ GLn(Z) (notice that a is an integral matrix). Also
assume that a normalizes B, that is, a b a−1 ∈ B for every b ∈ B. We say that
a sequence {Vi}i∈Z of closed subspaces of L2(Rn) is an AB multiresolution
analysis (AB–MRA) if the following holds:

(i) Db Tk V0 = V0, for any b ∈ B, k ∈ Zn;
(ii) for each i ∈ Z, Vi ⊂ Vi+1,, where Vi = D−i

a V0;
(iii)

⋂
Vi = {0} and

⋃
Vi = L2(Rn);

(iv) there exists φ ∈ L2(Rn) such that ΦB = {Db Tk φ : b ∈ B, k ∈ Zn} is a
semi-orthogonal Parseval frame for V0; that is, ΦB is a Parseval frame
for V0 and, in addition, Db Tk φ⊥Db′ Tk′ φ for any b 6= b′, b, b′ ∈ B,
k, k′ ∈ Zn.

The space V0 is called an AB scaling space and the function φ is an AB
scaling function for V0. If, in addition, ΦB is an orthonormal basis, then we
say that φ is an ON AB scaling function.

Observe that one could consider a more general definition, where A is not
necessarily a group, but simply a countable collection, that is, A = {ai : i ∈
Z}. Furthermore, one could consider the situation where the set ΦB is simply a
Parseval frame for V0 (not necessarily semi-orthogonal). The assumptions that
we made in the above definition are the ‘simplest’, and they ensure that the

24



properties of the AB–MRA are very similar to those of the classical MRA.
Also observe that there is a basic difference in the definition of AB–MRA
that we just gave, from the definition of the classical MRA. In fact, in our
definition, the space V0 is invariant with respect to the integer translations
and with respect to the B–dilations. On the other hand, in the classical MRA,
the space V0 is only invariant with respect to the integer translation.

Therefore, in order to examine in detail the main features of the AB–MRA,
it will be useful to study the properties of the subspaces of L2(Rn) that are
invariant with respect to the integer translations and with respect to the B–
dilations. This will be done in Section 4.2. Before doing this, in Section 4.1, we
will briefly recall some basic results from the theory of shift–invariant spaces .

4.1 Shift–invariant spaces

A Zn–invariant space (or a shift–invariant space) of L2(Rn) is a closed
subspace V ⊂ L2(Rn) for which TkV = V for each k ∈ Zn. For φ ∈ L2(Rn) \
{0}, we denote by 〈φ〉 the shift–invariant space generated by φ, that is,

〈φ〉 = span {Tk φ : k ∈ Zn}.
Given φ1, φ2 ∈ L2(Rn), their bracket product is defined as

[φ1, φ2](x) =
∑

k∈Zn

φ1(x− k) φ2(x− k). (1)

Let Tn be the n–torus Rn/Zn ' [0, 1]n and regard L2(Tn) as the space of the
measurable Zn–periodic functions t for which ‖t‖L2(Tn) =

∫
[0,1]n |t(x)|2 dx < ∞.

As usual, T̂n denotes the corresponding space of row vectors. The following
properties of the bracket product are easy to verify, and they can be found,
for example, in [21, Sec. 3].

Proposition 6 Let φ, φ1, φ2 ∈ L2(Rn).

(i) The series (1) converges absolutely a.e. to a function in L1(Tn).
(ii) The spaces 〈φ1〉 and 〈φ2〉 are orthogonal if and only if [φ̂1, φ̂2](ξ) = 0 a.e.
(iii) Let V (φ) = {Tk φ : k ∈ Zn}. Then V (φ) is a orthonormal basis for 〈φ〉

if and only if [φ̂, φ̂](ξ) = 1 a.e., and V (φ) is a Parseval frame for 〈φ〉 if
and only if [φ̂, φ̂](ξ) = χΩφ

(ξ) a.e., where Ωφ = {ξ ∈ T̂n : φ̂(ξ + k̂) 6=
0 for some k̂ ∈ Ẑn}.

(iv) Let [φ̂, φ̂](ξ) = χΩφ
(ξ). Then f ∈ 〈φ〉 if and only if f̂ = m φ̂, for some

m ∈ L2(Ωφ) satisfying ‖f‖ = ‖m‖L2(Ωφ).

Let U ⊆ R̂n be measurable and ΩU = ΩχU
=

⋃
k̂∈Ẑn(U + k̂). If this is a disjoint

union (modulo a null set), then we say that U is a ΩU–tiling set for Ẑn

25



translations. It is clear that this is the case if and only if [χU , χU ](ξ) = χΩU
(ξ)

a.e., or, equivalently, if and only if V ((χU)∨) = {Tk (χU)∨ : k ∈ Zn} is a
Parseval frame for 〈(χU)∨〉. Observe that, for any Ω ⊆ R̂n, every Ω–tiling set
for Ẑn translations is contained in a R̂n–tiling set for Ẑn translations, and
all such tiling sets have measure one. Thus, when φ = (χU)∨ and V (φ) is a
Parseval frame for 〈φ〉, then |U | ≤ 1, with equality if and only if V (φ) is an
orthonormal basis for 〈φ〉. Also observe that when U is contained in a tiling
set for Ẑn translations, then 〈(χU)∨〉 = L2(U)∨ ⊆ L2(Rn) since any f̂ ∈ L2(U)
extends uniquely to m ∈ L2(ΩU) with f̂ = mχU .

Let V be a shift–invariant space of L2(Rn). Φ = {φ1, . . . , φN}, with N ∈ N ∪
{∞}, is a Zn–orthonormal set of generators for V if, for each 1 ≤ j ≤ N ,
the set {Tk φj : k ∈ Zn} is an orthonormal basis for 〈φj〉. Equivalently, we
have that [φ̂i, φ̂j] = δi,j a.e. In addition, if this is the case, we have that
V =

⊕N
j=1〈φj〉 and we can show that, for each f ∈ V ,

f̂ =
N∑

j=1

[f̂ , φ̂j] φ̂j, (2)

with pointwise a.e. convergence if N < ∞ and L2–convergence if N = ∞. In
fact, if f ∈ V , then

f =
N∑

j=1

∑

k∈Zn

cj,k Tk φj,

where cj,k = 〈f, Tk φj〉 with pointwise a.e. convergence if N < ∞ and L2–
convergence if N = ∞. Next, by taking the Fourier transform on both sides
and using a periodization argument, we obtain that

f̂ =
N∑

j=1

∑

k∈Zn

〈f̂ , M−k φ̂j〉M−k φ̂j

=
N∑

j=1

∑

k∈Zn

(∫

Tn
[f̂ , φ̂j](ξ) e2πikξ d ξ

)
M−k φ̂j

=
N∑

j=1

∑

k∈Zn

[f̂ , φ̂j] φj.

Observe that, by an application of Proposition 1 with G = Zn, any two Zn–
orthonormal sets of generators for the same shift–invariant spaces V must
have the same number of generators.

Also observe that, while not every shift–invariant space V admits a set of
generators that is Zn–orthonormal, one can always find a semi–orthogonal
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set of generators Φ = {φ1, . . . , φN} for V , in the sense that

V =
N⊕

i=1

〈φi〉,

with [φ̂i, φ̂i] = χΩi
, 1 ≤ i ≤ N , where Ωi = Ωφi . In this situation, N is

not uniquely determined by V . However, an extension of the argument in
Proposition 1 shows that the multiplicity function

mV =
N∑

i=1

χΩi
: Tn 7→ N ∪ {0,∞}

is independent (a.e.) of the choice of Φ.

4.2 B n Zn–invariant spaces

Let S̃Ln(Z) = {b ∈ GLn(Z) : | det b| = 1}. If B is a subgroup of S̃Ln(Z), then
BnZn is a subgroup of the integral affine group S̃Ln(Z)nZn (= the semidirect
product of S̃Ln(Z) and Zn). We define the BnZn invariant spaces as those
closed subspaces V ⊆ L2(Rn) for which Db Tk V = V , for each (b, k) ∈ BnZn.
We will show that these spaces share many properties with the classical shift–
invariant spaces.

For φ ∈ L2(Rn), denote by 〈〈φ〉〉 the B n Zn invariant spaces generated by φ,
that is

〈〈φ〉〉 = span {Db Tk φ : b ∈ B, k ∈ Zn}.
For b ∈ S̃Ln(Z), we have

{Db Tk : k ∈ Zn} = {Tk′ Db : k′ ∈ Zn},

and, as a consequence, Db 〈φ〉 = 〈Db φ〉 for each φ ∈ L2(Rn). We also have
that Zn b = Zn and, thus,

[D̂b φ̂1, φ̂2](ξ) = [φ̂1, D̂b−1 φ̂2](ξb), (3)

for each φ1, φ2 ∈ L2(Rn), ξ ∈ R̂n.

The following simple observations follow easily from Proposition 6.

Proposition 7 Let φ ∈ L2(Rn).

(i) The spaces 〈Db φ〉 and 〈φ〉 are orthogonal if and only if [D̂b φ̂, φ̂](ξ) = 0
a.e.
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(ii) Let VB(φ) = {Db Tk φ : b ∈ B, k ∈ Zn}. Then VB(φ) is an orthonormal
basis for 〈〈φ〉〉 if and only if [D̂b φ̂, φ̂](ξ) = 0 a.e. for each b ∈ B \ {I} and
[φ̂, φ̂](ξ) = 1 a.e.

(iii) If VB(φ) is an orthonormal basis for 〈〈φ〉〉, then the map f 7→
(
[f̂ , D̂b φ̂]

)
,

where b ∈ B, is an isometry from 〈〈φ〉〉 onto the Hilbert space `2(B, L2(Tn)) =
{m = (mb)b∈B : mb ∈ L2(Tn) and ‖m‖2 =

∑
b∈B ‖mb‖2

L2(Tn) < ∞}. In
particular,

f̂ =
∑

b∈B

[f̂ , D̂b φ̂] D̂b φ̂,

for each f ∈ 〈〈φ〉〉, with convergence in L2(R̂n).

The set VB(φ) = {Db Tk φ : b ∈ B, k ∈ Zn} is called a semi-orthogonal
Parseval frame for the B n Zn–invariant space 〈〈φ〉〉 if

〈〈φ〉〉 =
⊕

b∈B

Db 〈φ〉

and {Tk φ : k ∈ Zn} is a Parseval frame for 〈φ〉. A simple extension of Proposi-
tion 7(ii) gives that VB(φ) is a semi-orthogonal Parseval frame for 〈〈φ〉〉 if and
only if [D̂b φ̂, φ̂](ξ) = 0 for each b ∈ B \ {In} and [φ̂, φ̂](ξ) = χΩφ

a.e., where

Ωφ = {ξ ∈ R̂n : φ̂(ξ + k) 6= 0 for some k ∈ Ẑn}.

As a special case, consider φ ∈ L2(Rn) defined by φ̂ = χU where U ⊆ R̂n is
measurable and 0 < |U | < ∞. In this case, (Db φ)∧ = χUb−1 and we have that
[φ̂, D̂b φ̂] = 0 a.e. if and only if |U ∩Ub−1| = 0. Also, ΩU = Ωφ =

⋃
k̂∈Ẑn(U + k̂)

and, therefore, [φ̂, φ̂] = χΩU
a.e. if and only if U is a ΩU–tiling set for the

Ẑn translations. It follows that {Db φ : b ∈ B} is a semi-orthogonal Parseval
frame generator for 〈〈φ〉〉 if and only if U is both an S–tiling set for B dilations,
where S =

⋃
b∈B U b, and a ΩU -tiling set for Ẑn translations. In this case,

|U | ≤ 1 with equality if and only if [φ̂, φ̂] = 1 a.e., 〈φ〉 = (L2(U))∨ and
〈〈φ〉〉 = (L2(S))∨ =

⊕
b∈B(L2(U b−1))∨.

Let V be a BnZn–invariant space of L2(Rn). The set Φ = {φ1, . . . , φN}, with
N ∈ N ∪ {∞}, is a B n Zn–orthonormal set of generators for V if the
set {Db Tk φi : (b, k) ∈ B n Zn, 1 ≤ i ≤ N} is an orthonormal basis for V .
Equivalently, we have that [D̂bφ̂

i, φ̂j] = δi,j δb,In a.e. We make the following
observation.

Proposition 8 Let Φ = {φ1, . . . , φN} and Ψ = {ψ1, . . . , ψM} be two BnZn–
orthonormal sets of generators for the B n Zn–invariant spaces V and W ,
respectively. If W ⊆ V , then M ≤ N with M = N if and only if W = V .
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Proof. We first observe that

M =
M∑

i=1

‖ψi‖2 =
M∑

i=1

N∑

j=1

∑

b∈B

‖[ψ̂i, D̂b φ̂j]‖2
L2(Tn). (4)

On the other hand, for each 1 ≤ j ≤ N , the function
(∑M

i=1

∑
b∈B[φ̂i, D̂b ψ̂j] ψ̂i

)∨

is the orthogonal projection of φj into W . Thus,

1 = ‖φj‖2 ≥
M∑

i=1

∑

b∈B

‖[φ̂j, D̂b ψ̂i]‖2
L2(Tn). (5)

By (3) and the fact that b ∈ S̃Ln(Z) (this implies that the map ξ 7→ ξb on R̂n

is a measure preserving map from Tn onto Tn) it follows that

‖[D̂b ψ̂i, φ̂j]‖2
L2(Tn) = ‖[ψ̂i, D̂b−1 φ̂j]‖2

L2(Tn),

Using this observation, from (4) and (5) we obtain:

M =
M∑

i=1

N∑

j=1

∑

b∈B

‖[ψ̂i, D̂b φ̂j]‖2
L2(Tn)

=
M∑

i=1

N∑

j=1

∑

b∈B

‖[φ̂j, D̂b−1 ψ̂i]‖2
L2(Tn)

≤
N∑

j=1

‖φj‖2 = N,

with N = M if and only if φj ∈ W for each 1 ≤ j ≤ N (which is equivalent
to W = V ). 2

Recall that a ∈ GLn(Z) normalizes B if a b a−1 ∈ B for every b ∈ B. Since B
is a group, then a B a−1 is a subgroup of B. We have the following result.

Proposition 9 Suppose that a ∈ GLn(Z) normalizes B and that the quotient
space B/(aB a−1) has finite order N . If φ ∈ L2(Rn) satisfies the relation
[D̂b φ̂, φ̂] = δb,In a.e. for each b ∈ B, then there exists a B n Zn–orthonormal
set of generators Φ for the space D−1

a 〈〈φ〉〉 with cardinality N | det a|.

Before proving this Proposition, we need to make some observations. Recall
that, for a ∈ GLn(Z), aZn is a subgroup of Zn and the quotient group
Zn/(aZn) has order M = | det a|. Thus, we can choose a complete set of
representatives of Zn/(aZn), i.e., a set α0, . . . , αM−1 ∈ Zn/(aZn) so that each
element k ∈ Zn can be uniquely expressed in the form

k = a k′ + αi,

29



with k′ ∈ Zn and 0 ≤ i ≤ M − 1. This shows that, for each k ∈ Zn, we have

D−1
a Tk = Ta−1k D−1

a = Tk′ Ta−1αi
D−1

a = Tk′ D
−1
a Tαi

, (6)

with k′ ∈ Z and 0 ≤ i ≤ M − 1. For any φ ∈ L2(Rn) \ {0}, the space D−1
a 〈φ〉

is then the shift–invariant space generated by Φ = {φi = D−1
a Tαi

φ : 0 ≤ i ≤
M − 1}. Since D−1

a is unitary, then Φ is a Zn-orthonormal generating set for
D−1

a 〈φ〉 if and only if φ is a Zn-orthonormal generating set for 〈φ〉 and this
holds if and only if [φ̂, φ̂] = 1 a.e. Thus, if Φ is a Zn-orthonormal generating
set for D−1

a 〈φ〉, we have

D−1
a 〈φ〉 =

M−1⊕

i=0

〈φi〉, (7)

with [φ̂i, φ̂i] = 1 a.e. for 0 ≤ i ≤ M − 1.

We can now prove Proposition 9

Proof of Proposition 9. Take a complete collection of distinct represen-
tatives β0, . . . , βN−1 for B/(aB a−1). Thus, each b ∈ B uniquely determines
b′ ∈ B and j ∈ {0, . . . , N − 1} for which b = (a b′ a−1) βj. Then

D−1
a Db 〈φ〉 = Da−1b 〈φ〉 = Db′Da−1Dβj

〈φ〉 = Db′Da−1 〈Dβj
φ〉. (8)

Take a complete collection of distinct representatives α0, . . . , αM−1 for the
quotient space Zn/(aZn), where M = | det a|. By equation (7), we have:

Da−1 〈Dβj
φ〉 =

N−1⊕

i=0

〈φi,j〉,

where φi,j = D−1
a Dαi

Dβj
φ, with 0 ≤ i ≤ M −1, 0 ≤ j ≤ N −1. We also have:

D−1
a 〈〈φ〉〉 = D−1

a

(⊕

b∈B

Db 〈φ〉
)

=
⊕

b∈B

D−1
a Db 〈φ〉.

Thus, using (8), from the last expression we obtain:

D−1
a 〈〈φ〉〉 =

⊕

b′∈B

⊕

j

Db′Da−1〈Dβj
φ〉 =

⊕

b′∈B

Db′

(⊕

i,j

〈φi,j〉
)

=
⊕

i,j

〈〈φi,j〉〉.

Since the unitary operator D−1
a maps an orthonormal basis for 〈〈φ〉〉 to an

orthonormal basis for D−1
a 〈〈φ〉〉, it follows that the set Φ = {φi,j : 0 ≤ i ≤

M−1, 0 ≤ j ≤ N−1} is a BnZn–orthonormal set of generators for D−1
a 〈〈φ〉〉.

2

30



5 AB multiresolution Analysis. Part II.

In this section, we apply the techniques developed in Section 4 to obtain a
number of basic results about AB multiresolution analyses.

5.1 Basic results

Let {Vi}i∈Z be an AB–MRA, as defined in Section 4. As in the classical mul-
tiresolution analysis, let W0 be the orthogonal complement of V0 in V1, that
is, W0 = V1

⋂
(V0)

⊥. Then, V1 = V0
⊕

W0. We have the following elementary
result:

Proposition 10(i) Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) be such that {Db Tk ψ` :
b ∈ B, ` = 1, . . . L, k ∈ Zn} is a PF for W0. Then Ψ is a PF AB-
multiwavelet.

(ii) Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) be such that {Db Tk ψ` : b ∈ B, k ∈
Zn, ` = 1, . . . , L} is an orthonormal basis for W0. Then Ψ is an ON AB-
multiwavelet.

Proof. Define the spaces Wj as Wj = Vj+1
⋂

(Vj)
⊥, j ∈ Z. It follows from the

definition of AB-MRA that L2(Rn) =
⊕

j∈ZWj. Since {Db Tk ψ` : b ∈ B, ` =
1, . . . L, k ∈ Zn} is a PF for W0, then {Di

aDb Tk ψ` : b ∈ B, ` = 1, . . . L, k ∈ Zn}
is a PF for Wi. Thus {Da Db Tk ψ` : b ∈ B, a ∈ A, ` = 1, . . . L, k ∈ Zn} is a PF
for L2(Rn).

The proof for the orthonormal case is similar. 2

In the situation described by the hypotheses of Proposition 10 (where Ψ is not
only a PF for L2(Rn), but it is also derived from an AB-MRA), we say that
Ψ is a PF MRA AB-multiwavelet or an ON MRA AB-multiwavelet,
respectively.

We say that the PF MRA AB-wavelet ψ is of finite filter (FF) type if there
exists an AB scaling function φ for V0 and a finite set {b1, . . . , bk} ⊂ B such
that

φ̂(ξa) =
k∑

j=1

m
(j)
0 (ξ) φ̂(ξ bj), ψ̂(ξa) =

k∑

j=1

m
(j)
1 (ξ) φ̂(ξ bj),

where m
(j)
0 ,m

(j)
1 , 1 ≤ j ≤ k, are periodic functions. Similarly, the ON MRA

AB-multiwavelet Ψ is of finite filter (FF) type if there exists an AB scaling
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function φ for V0 and a finite set {b1, . . . , bk} ⊂ B such that

φ̂(ξa) =
k∑

j=1

m
(j)
0 (ξ) φ̂(ξ bj), ψ̂`(ξa) =

k∑

j=1

m
(j)
1,`(ξ) φ̂(ξ bj), ` = 1 . . . , L,

where m
(j)
0 ,m

(j)
1,`, 1 ≤ j ≤ k, are periodic functions. The reader can easily check

that the examples of AB multiwavelets presented in Section 2 are indeed MRA
AB multiwavelets of finite filter type.

It turns out that, while it is possible to construct a PF AB-wavelet using
a single generator, that is, Ψ = {ψ}, in the case of orthonormal MRA AB-
multiwavelets, multiple generators are needed, that is, Ψ = {ψ1, . . . , ψL},
where L > 1. This situation is similar to the classical MRA case (cf., for ex-
ample, [21]). The following result establishes the number of generators needed
to obtain an ON MRA AB–wavelet.

Theorem 11 Let Ψ = {ψ1, . . . , ψL} be an ON MRA AB-multiwavelet for
L2(Rn), and let N = |B/aBa−1| (= the order of the quotient group B/aBa−1).
Assume that | det a| ∈ N. Then L = N | det a| − 1.

Proof. Let V0 = 〈〈ψ0〉〉 be the AB scaling space for the AB–MRA, and ψ0

be the corresponding ON AB scaling function. Then V1 = D−1
a V0 = V0 ⊕W0,

where W0 = ⊕L
`=1〈〈ψ`〉〉. Hence {ψ0, ψ1, . . . , ψL} is an ON B n Zn generating

set for V1. By Proposition 9, 1+L = N | det a| and so L = N | det a|−1. 2.

In the case of the examples of ON AB multiwavelets given in Section 2, where

B = {bj : j ∈ Z}, with b =




1 1

0 1


 and A = {ai : i ∈ Z}, with a =




2 0

0 a2,2


 ∈

GL2(Z) (we need to assume a2,2 = 1 or 2 to apply Theorem 11), we have used 3
generators. This number is confirmed by the formula given by Theorem 11. In
fact, a calculation shows that |B/aBa−1| = 2|a2,2|−1 and, thus, by Theorem 11,
the number of generators must be L = 2|a2,2|−1 2|a2,2| − 1 = 3.

Observe that the condition on the number of generators described by this
theorem is not needed if the AB affine system does not come from an ON
AB–MRA. In Section 6 we present an example of an AB ON wavelet ψ (a
single generator) where A = {ai : i ∈ Z}, | det a| = 2 and N = |B/aBa−1| = 2.
It is clear, by Theorem 11, that this example of AB–wavelet is not of MRA
type.

The following theorem describes how to construct tiling ON AB multiwavelets
arising from an AB–MRA.

Theorem 12 Let B ⊂ S̃Ln(Z), a ∈ GLn(Z) with aBa−1 ⊆ B, and L =
N M − 1, where N = |B/aBa−1| and M = | det a| > 1. Suppose that U ⊂ Rn
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is a measurable set and φ = (χU)∨ ∈ L2(Rn) is an ON AB scaling function
for V0 = span {Db Tk φ : k ∈ Zn, b ∈ B}, with V0 ⊆ D−1

a V0. Then there are
sets T` ⊂ Rn, ` = 1, . . . , L, for which Ψ = {ψ` = (χT`

)∨ : ` = 1, . . . , L} is an
ON MRA AB–multiwavelet, and Ψ is of FF type.

Proof. By hypothesis, {Db Tk φ : b ∈ B, k ∈ Zn} is an ON basis of V0,
and, since φ̂ = χU , then V0 = L2(S0)

∨, where S0 =
⋃

b∈B U b and the union
is disjoint. For i ∈ Z, let Vi = D−i

a V0 = L2(Si)
∨. Then Vi ⊆ Vi+1, and

Si = S0 ai ⊂ Si+1. It follows easily that ∩i≤0Si and R̂n \ ∪i≥0Si are null sets.
Next let W0 = V1

⋂
(V0)

⊥ = L2(S1 \ S0)
∨. We will show that there are sets T`,

1 ≤ ` ≤ L, such that each T` is a tiling set for Ẑn translations and the disjoint
union ∪L

`=1T` is a (S1 \ S0)–tiling set for B dilations. In order to do that, let
β0, . . . , βN−1 be a complete collection of coset representatives of B/aBa−1,
with β0 = In, and let U1 = ∪N−1

j=0 U βj a. Since each b ∈ B uniquely determines
a b′ ∈ B and a j for which b = βj(ab′a−1), we have:

S1 = S0 a =
⋃

b∈B

U b a =
⋃

b′∈B

U1 b′.

Thus U1 is an S1–tiling set for B dilations and, as a consequence, Ũ = U1∩S0

is an S0–tiling set for B dilations and T = U1 \ Ũ is an (S1 \ S0)–tiling set for
B dilations. Note that |Ũ | = |U | = 1 since | det b| = 1 for each b ∈ B. Also,
|U1| = N | det a| = N M and so |T | = N M − 1 = L. By an easy calculation,
[χU1 , χU1 ] = N M a.e. Thus, for a.e. ξ ∈ R̂n, there are precisely N M points
in (ξ + Ẑn) ∩ T and exactly one of these points lies in Ũ . This implies that
[χT , χT ] = L a.e. Now one can decompose T into disjoint subsets T`, 1 ≤ ` ≤ L,
with [χT`

, χT`
] = 1 a.e, for each `. The sets T` have precisely the properties we

were looking for, and, as a consequence, Ψ = {ψ` = (χT`
)∨ : ` = 1, . . . , L} is

an ON MRA AB–multiwavelet.

In order to prove the final statement, observe that T` a−1 ⊆ U1 a−1 = ∪N−1
j=0 U βj

and U a−1 ⊆ U1 a−1. This implies that, for all 0 ≤ ` ≤ L, using the notation
ψ0 = φ and T0 = U , we have

ψ̂`(ξ a) = χT`
(ξ a) = χT` a−1(ξ)

=
N∑

j=0

χ(T` a−1∩Uβj)(ξ)

=
N∑

j=0

χ(T` a−1∩Uβj)(ξ) χ(Uβj)(ξ)

=
N∑

j=0

mj
`(ξ) φ̂(ξ β−1

j ),

where mj
`(ξ) is the Ẑn periodic extension of χ(T` a−1∩Uβj)(ξ). 2
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5.2 Well-localized AB wavelets

Up to this point, our construction of AB multiwavelets has been limited to
systems arising from compact tiling sets in the frequency domain R̂n. Such AB
multiwavelets are smooth in Rn but have slow decay. In this section, we will
give an explicit construction of smooth AB wavelets with fast decay both in
Rn and R̂n. Systems with these properties are very important for applications
since fast decay is essential for their numerical implementation. In the previous
section we have seen how filters arise naturally in AB MRA systems. As is the
case with classical MRA wavelets, the filters’ role will be even more prominent
in the constructions of this section.

5.2.1 Example 1.

Let ψ1 ∈ L2(R) be a (one-dimensional) dyadic band-limited wavelet with
supp ψ̂1 ⊂ [−Ω, Ω], Ω > 0, and ψ2 ∈ L2(R) be another band-limited function
with supp ψ̂2 ⊂ [−1, 1] and satisfying

∑

j∈Z
|ψ̂2(ξ + j)|2 = 1 a.e. ξ ∈ R. (1)

Recall that, since ψ1 is a dyadic wavelet, then it satisfies the Calderòn equation
(cf. Sec.3.1): ∑

j∈Z
|ψ̂1(2

jξ)|2 = 1 a.e. ξ ∈ R. (2)

As we will show later on, there are several choices of functions ψ1 and ψ2

satisfying these properties.

For any ω = (ω1, ω2) ∈ R2, ω1 6= 0, define ψ ∈ L2(R2) by

ψ̂(ω) = ψ̂1(2
s ω1) ψ̂2

(
ω2

ω1

)
, (3)

where s ∈ Z satisfies 2s ≥ 2 Ω. This assumption ensures that supp ψ̂ ⊂
[−1/2, 1/2]2. In fact, since supp ψ̂1 ⊂ [−Ω, Ω] and supp ψ̂2 ⊂ [−1, 1], it follows
from (3) that ψ̂(ω1, ω2) = 0 for |ω1| > 1/2 and |ω2| > 1/2. It is now simple to

show that ψ is a PF AB–wavelet, where A = {ak =




2k 0

0 1


 : k ∈ Z} and B =

{bj =




1 j

0 1


 : j ∈ Z}. Indeed, observing that ω ak bj = (2kω1, j 2kω1 + ω2),

and using (1), (2) and (3), we have that
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∑

j,k∈Z
|ψ̂(ω ak bj)|2 =

∑

j,k∈Z
|ψ̂1(2

s+k ω1)|2 |ψ̂2(2
−k ω2

ω1

+ j)|2

=
∑

k∈Z
|ψ̂1(2

s+k ω1)|2
∑

j∈Z
|ψ̂2(2

−k ω2

ω1

+ j)|2 = 1 a.e.

The fact that ψ is a PF AB–wavelet now follows from the following general
observation.

Proposition 13 Let ψ ∈ L2(Rn) be such that supp ψ̂ ⊂ Q = [−1/2, 1/2]n,
and ∑

j,k∈Z
|ψ̂(ω ak bj)|2 = 1 a.e. ω ∈ R̂n,

where a, b ∈ GLn(R). Then ψ is a PF AB–wavelet, where A = {ai : i ∈ Z}
and B = {bj : j ∈ Z}.

Proof. For, i, k ∈ Z, k ∈ Zn, let ψi,j,k = Di
a Dj

b Tk ψ. Using the hypotheses on
ψ, the change of variable η = ξ ai bj and Plancherel theorem, then, for each
f ∈ L2(Rn), we have that:

∑

i,j∈Z

∑

k∈Zn

∣∣∣∣〈f, ψi,j,k〉
∣∣∣∣
2

=
∑

i,j∈Z

∑

k∈Zn

∣∣∣∣
∫

R̂n
f̂(ω) ψ̂(ω ai bj) e2πiωaibjk| det a|i/2 | det b|j/2 dω

∣∣∣∣
2

=
∑

i,j∈Z

∑

k∈Zn

∣∣∣∣
∫

Q
f̂(η b−j a−i) ψ̂(η) e2πiηk| det a|−i/2 | det b|−j/2 dη

∣∣∣∣
2

=
∑

i,j∈Z

∫

Q
|f̂(η b−j a−i)|2 |ψ̂(η)|2 | det a|−i | det b|−j dη

=
∑

i,j∈Z

∫

R̂n
|f̂(ω)|2 |ψ̂(ω ai bj)|2 dω

= ‖f‖2. 2

As we mentioned before, there are many choices for the functions ψ1 and
ψ2 that satisfy the assumptions we have described above. For example, we
can choose ψ1 to be the Lemariè-Meyer wavelet (see [14, Sec.1.4]), defined by
ψ̂1(ξ) = eiπξ b(ξ), where

b(ξ) =





sin(π
2

(3|ξ| − 1)) 1
3
≤ |ξ| ≤ 2

3

sin(3π
4

(4
3
− |ξ|)) 2

3
< |ξ| ≤ 4

3

0 otherwise.

In order to construct ψ2, let φ be a compactly supported C∞ bump function,
with suppφ ⊂ [−1, 1] (examples can be found in [19, Sec. 3.3] or [15, Sec. 1.4]),
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and define ψ2 by

ψ̂2(ξ) =
φ(ξ)√∑

k∈Z |φ(ξ + k)|2
.

It is clear that ψ2 ∈ C∞(R) and satisfies (1). It follows that ψ̂, given by (3),
is in C∞(R2) and this implies that |ψ(x)| ≤ KN (1 + |x|)−N , KN > 0, for any
N ∈ N.

Finally, let us observe that it is easy to generalize this construction for n >
2. For example, let ψ1, ψ2 ∈ L2(R) be defined as above, and, for any ω =
(ω1, . . . , ωn) ∈ Rn, ω1 6= 0, define ψ ∈ L2(Rn) by

ψ̂(ω) = ψ̂1(2
s ω1) ψ̂2

(
ω2

ω1

)
. . . ψ̂2

(
ωn

ω1

)
, (4)

where s ∈ Z satisfies 2s ≥ 2 Ω. It turns out that ψ is a PF AB–wavelet, where

A = {ai =




2i 0

0 In−1


 : i ∈ Z} and B = {bj =




1 j

0 In−1


 : j ∈ Zn−1}, where

In−1 is the (n − 1) × (n − 1) identity matrix. The proof is exactly as in the
case n = 2, once is observed that, for j = (j1, . . . , jn−1), with j1, . . . , jn−1 ∈ Z,
we have:

ψ̂(ω ak bj) = ψ̂1(2
s+kω1) ψ̂2(2

−k ω2

ω1

+ j1) . . . ψ̂2(2
−k ωn

ω1

+ jn−1).

A similar idea can be applied to more general shear groups B.

The next example shows how to construct AB-wavelets for L2(R2) of MRA
type, that are well–localized both in Rn and R̂n.

5.2.2 Example 2.

Let ψ1 ∈ L2(R) be a (one-dimensional) dyadic band-limited MRA wavelet
with supp ψ̂1 ⊂ [−Ω, Ω], Ω > 0, and φ1 be its associated scaling function.
Let m0 and m1 be the low pass and high pass filters, respectively, associated
with φ1 and ψ1, that is, m0 and m1 are the periodic functions satisfying the
equations

φ̂1(ω1) = m0(
ω1

2
) φ̂1(

ω1

2
) and ψ̂1(ω1) = m1(

ω1

2
) φ̂1(

ω1

2
).

Let ψ2 ∈ L2(R) be defined by

ψ2(x) = ei(N+1)πx
(

sin πx

πx

)N+1

,
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where N ∈ N. That is, ψ̂2 is a basic spline of order N (cf. [14, Sec. 4.2]).
This implies that supp ψ̂2 ⊂ [0, N + 1] and ψ̂2 satisfies the so-called two scale
equation:

ψ̂2(ξ) =
N+1∑

k=0

d
(N)
k ψ̂2(2 ξ − k), (5)

where d
(N)
k = 2−N

(
N+1

k

)
.

For ω = (ω1, ω2) ∈ R2, ω1 6= 0, let φ ∈ L2(R2) be defined by

φ̂(ω) = φ̂1(2
s ω1)

ψ̂2(
ω2

ω1
)

√∑
m∈Z

∣∣∣ψ̂2(
ω2

ω1
+ m)

∣∣∣
2
,

where s ∈ Z satisfies 2s ≥ 4 Ω (N
2

+ 1). This assumption on s ensures that

supp φ̂ ⊂ {(ω1, ω2) ∈ R̂2 : |ω1| < 1

4
(N/2 + 1)−1, |ω2| < 1

4
}. (6)

Also, let ψ ∈ L2(R2) be defined by:

ψ̂(ω) =
N+1∑

k=0

d
(N)
k m1(2

s−1ω1) M0(a
−1ω) φ̂(ω a−1 b−k ),

where the matrices a and b are as in Section 5.2.1, the coefficients d
(N)
k are

those in (5), and M0(ω) is the Z2-periodic function which, restricted to the
fundamental region [−1

2
, 1

2
]2, is given by

M0(ω) =




∑
m∈Z

∣∣∣ψ̂2(
ω2

ω1
+ m)

∣∣∣
2

∑
m∈Z

∣∣∣ψ̂2(2−1 ω2

ω1
+ m)

∣∣∣
2




1/2

, ω ∈ [−1

2
,
1

2
]2.

Using (5), we have that:

N+1∑

k=0

d
(N)
k M0(ω a−1) φ̂(ω a−1b−k) =

= φ̂1(2
s−1 ω1)

N+1∑

k=0

d
(N)
k

√∑
m∈Z

∣∣∣ψ̂2(2
ω2

ω1
+ m)

∣∣∣
2

√∑
m∈Z

∣∣∣ψ̂2(
ω2

ω1
+ m)

∣∣∣
2

ψ̂2(2
ω2

ω1
− k)

√∑
m∈Z

∣∣∣ψ̂2(2
ω2

ω1
+ m)

∣∣∣
2

=

= φ̂1(2
s−1 ω1)

N+1∑

k=0

d
(N)
k

ψ̂2(2
ω2

ω1
− k)

√∑
m∈Z

∣∣∣ψ̂2(
ω2

ω1
+ m)

∣∣∣
2

=

= φ̂1(2
s−1 ω1)

ψ̂2(
ω2

ω1
)

√∑
m∈Z

∣∣∣ψ̂2(
ω2

ω1
+ m)

∣∣∣
2
.
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Applying this observation, the fact that ω ai bj = (2i ω1, j 2i ω1 + ω2), and the
observation that ψ1 satisfies Calderòn equation (2), we obtain that

∑

i,j∈Z
|ψ̂(ω ai bj)|2 =

∑

i,j∈Z
|ψ̂1(2

s+i ω1)|2
|ψ̂2(2

i ω2

ω1
+ j)|2

√∑
m∈Z

∣∣∣ψ̂2(2i ω2

ω1
+ m + j)

∣∣∣
2

=
∑

i∈Z
|ψ̂1(2

s+i ω1)|2
∑

j∈Z

|ψ̂2(2
i ω2

ω1
+ j)|2

√∑
m∈Z

∣∣∣ψ̂2(2i ω2

ω1
+ m + j)

∣∣∣
2

= 1,

for a.e. ω ∈ R̂2. By (6), it follows that supp ψ̂ ⊂ [−1/2, 1/2]2. Thus, using
Proposition 13 as in Section 5.2.1, it follows that that ψ is a PF AB wavelet
for L2(R2), where A = {ai : i ∈ Z} and B = {bj : j ∈ Z}. Furthermore, it
follows by the construction, that ψ̂ ∈ CN(R̂2), so |ψ(x)| ≤ KN (1 + |x|)1−N ,
for some KN > 0.

In addition, unlike the example in Section 5.2.1, we can show that ψ is a PF
MRA AB wavelet. In order to show this, let V0 = span {Db Tm φ : b ∈ B, m ∈
Z2} and Vj = D−j

a V0, j ∈ Z. Then, using the computation we made before,
the following observation shows that V0 ⊂ V1:

m0(2
s−1ω1)

N+1∑

k=0

d
(N)
k M0(ω a−1) φ̂(ω a−1b−k) =

= m0(2
s−1ω1) φ̂1(2

s−1 ω1)
ψ̂2(2

ω2

ω1
)

√∑
m∈Z

∣∣∣ψ̂2(
ω2

ω1
+ m)

∣∣∣
2

=

= φ̂1(2
s ω1)

ψ̂2(
ω2

ω1
)

√∑
m∈Z

∣∣∣ψ̂2(
ω2

ω1
+ m)

∣∣∣
2

= φ̂(ω).

By induction, we have that Vj ⊂ Vj+1, j ∈ Z. Observe, however, that this MRA
system is somewhat different from those defined in Section 4, since the spaces
V0 and W0 = span {Db Tm ψ : b ∈ B, m ∈ Z2} are not mutually orthogonal.

5.3 Characterization Equations

An application of Theorem 2.1 in [13] gives the following complete character-
ization of all functions Ψ = {ψ1, . . . , ψL} such that the system ΨAB, given by
(1), is a PF AB-multiwavelet.

Theorem 14 Let A = {ak : k ∈ Z} ⊂ GLn(Z), B ⊂ S̃Ln(Z) = {b ∈
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GLn(R) : | det b| = 1} and Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). Suppose that

L∑

`=1

∑

k∈Z

∑

b∈B

∑

m∈Zn

∫

supp f̂
|f̂(ξ + mb ak)|2 |ψ̂`(ξ a−k b−1)|2 dξ < ∞, (7)

for all f ∈ D where D is a dense subspace of L2(Rn) contained in the set
{
f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact

}
.

Then ΨAB, given by (1), is a PF for L2(Rn) if and only if

L∑

`=1

∑

k∈Z

∑

b∈B

|ψ̂`(ξ ak b)|2 = 1 (8)

L∑

`=1

∑

k≥0

∑

b∈B

ψ̂`(ξ ak b) ψ̂`((ξ + q) ak b) = 0 if q ∈ Ẑn \ (Ẑna) (9)

L∑

`=1

∑

k∈Z

∑

b∈B

ψ̂`(ξ ak b) ψ̂`((ξ + q) ak b) = 0 if q ∈ ⋂

k∈Z
(Ẑnak) \ {0}. (10)

The hypothesis (7) is the LIC referred to in Section 3.1. For all examples of AB
multiwavelets discussed in this paper, one can show by lengthy computations
that (7) is satisfied. Note that (8) is the Calderòn equation to which we have
often referred above. Equation (9) is the analogue of the so-called tq equation
for classic dyadic wavelets (cf.[14]). However, (10) has a different character.
The striking differences between equations (9)–(10) and characterization equa-
tions for the classical dyadic wavelets were part of the motivation that led us
to formulate our first examples of AB multiwavelets and subsequently develop
the theory presented in this paper.

6 AB–wavelet sets

In this section, we will show how to construct singly generated ON AB
wavelets. When A and B satisfy the hypotheses of Theorem 11, with L > 1,
then these singly generated ON AB wavelets cannot be of MRA type. Below,
we will carry out the demanding technical details for the example of Section 2,

where a =




2 0

0 1


 and b =




1 1

0 1.


 A much easier construction applies when

a is replaced by a =




2 0

0 2


, and is presented in [11]. In both cases, the AB
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wavelets are inverse Fourier transform of characteristic functions of fractal-like
sets. Our point of view is that such ON non–MRA AB wavelets are “patho-
logical” and far less useful than the Parseval frame wavelets such as those in
Section 5.

Let C ⊂ GLn(R) be an admissible dilation set (cf. Section 3). A C–wavelet
set is a measurable set W ⊂ R̂n such that ψ = (χW )∨ is an orthonormal
C–wavelet.

It is easy to verify (cf. [12]) that W is a wavelet set if and only if W is both
a tiling set for Zn translations and a tiling set for C−1 dilations. There are
several examples of C–wavelet sets in the literature for C = {ai : i ∈ Z},
where a ∈ GLn(R) [1,2,12,13,17,18]. Many such constructions use a technique
introduced in [6] that modifies a set T for which (χT )∨ is a Parseval frame
C–wavelet to produce a wavelet set W of the form W = (T \ P ) ∪ Q, where
the union is disjoint, P ⊂ T and Q ⊂ R̂n are measurable. For a general
C ∈ GLn(R), the conditions on P and Q are the following:

(i) Q =
⋃

ξ∈P Qξ is a disjoint union, where Qξ is chosen so that ξ C−1 =⋃
η∈Qξ

η C−1;

(ii) let π be the projection π(ξ) = ξ + Zn from R̂n into Tn; then π|Q, i.e., the

restriction of π to Q, is one-to-one with image π(P ) ∪
(
Tn \ π(T )

)
.

In fact, since (χT )∨ is a Parseval frame C–wavelet, then T is a tiling set for
C−1 dilations, and

R̂n =
⋃

ξ∈T

ξ C−1 =
( ⋃

ξ∈T\P
ξ C−1

) ⋃ ( ⋃

ξ∈P

ξ C−1
)
,

where the union is disjoint. By (i),
⋃

ξ∈P ξ C−1 =
⋃

η∈Qξ
η C−1. Thus (i) implies

that W is a tiling set for C−1 dilations. Next, since (χT )∨ is a Parseval frame
C–wavelet, then T is a packing set for Zn translations and so π|T is one-to one.
Also,

Tn = π(T )
⋃ (

Tn \ π(T )
)

= π(T \ P )
⋃

π(P )
⋃ (

Tn \ π(T )
)
,

where the union is disjoint. Thus, W is a tiling set for Zn translations iff π
maps Q one-to-one onto π(P )

⋃(
Tn \ π(T )

)
.

In [6], C is assumed to contain an expanding matrix a ∈ GLn(R) for which
a C−1 = C−1. Since a is expanding, then there is a tiling wavelet (χT )∨ where
T ⊂ R̂n is measurable and bounded (cf. Section 3), and a measurable set
U ⊂ R̂n such that T ⊆ U , U is a tiling set for Zn translations and U a∩U = ∅.
Since ξ C−1 = ξ a C−1, for all ξ, then for any P ⊆ T , condition (i) is satisfied
by Q = P a. Using the fact that | det a| > 1, one can obtain a set P ⊆ T
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for which (ii) is also satisfied, and so W = (T \ P ) ∪ P a is a wavelet set.
This construction applies, for example, to C = AB = {aib : i ∈ Z, b ∈ B},
where a ∈ GLn(R) is expanding, and B ⊂ GLn(R) satisfies aBa−1 = B. The
orthogonal and the hyperbolic AB–wavelets described in Sections 3.3.1 and
3.3.2, respectively, are in this class.

More generally, let us consider the case C = AB = {aib : i ∈ Z, b ∈
B}, where B is a subgroup of S̃Ln(Z), a ∈ GLn(R) is not necessarily ex-
panding, and aBa−1  B. These assumptions imply that a C−1 = aBA =
(aBa−1)(aA)  BA = C−1. Let N = card

(
B/(aBa−1)

)
and {b1, . . . , bN}

be a complete set of coset representatives of B/(aBa−1). Then we have that
BA =

⋃N
j=1 bjaBa−1A =

⋃N
j=1 bjaBA. Let U0 be a tiling set for Zn transla-

tions for which S0 =
⋃

b∈B U0 b is contained in S1 = S0a, and let T0 ⊂ U0

be a tiling set for (AB)−1 dilations. Thus, given P ⊂ T0, we can satisfy con-
dition (i) by setting Q =

⋃
ξ∈P Qξ, where Qξ = {ξbj(ξ)a : 1 ≤ j ≤ N}, and

{b1(ξ), . . . , bN(ξ)} is a complete set of coset representatives of B/(aBa−1). The
dependence of the coset representatives bj(ξ) on ξ will be clarified in the proof
of the following theorem, where we will show the details for this construction
for the example of Section 2. A similar construction holds for more general
shear group matrices B. In these constructions, the coset representatives bj(ξ)
are not bounded and, as a consequence, the wavelet set is unbounded.

Theorem 15 Let A = {ai : i ∈ Z}, B = {bj : j ∈ Z} where a =




2 0

0 1


 and

b =




1 1

0 1


. Then AB wavelets exist.

Proof. The set U0 = {ξ = (ξ1, ξ2) ∈ R̂2 : 0 < |ξ1| ≤ 1 and 0 ≤ ξ2/ξ1 ≤ 1} is
both a tiling set for Z2 translations and an S0-tiling set for B dilations, where
S0 = {ξ = (ξ1, ξ2) ∈ R̂2 : |ξ1| ≤ 1}. Let T0 = {ξ = (ξ1, ξ2) ∈ R̂2 : 1

2
≤ |ξ1| ≤

1} ⊂ U0. Then T0 is a tiling set for BA dilations and, thus, (χT0)
∨ is a PF AB

wavelet. Let T1 = T0 a, U1 = U0 a.

As in the general construction outlined before, we will construct a wavelet
set of the form W = (T0 \ P )

⋃
Q. As we did in Section 2, we shall denote

T0 = T−
0 ∪ T+

0 , where T−
0 and T+

0 denote the intersection of T with the half-
planes {(ξ1, ξ2) ∈ R̂2 : ξ1 ≥ 0} and {(ξ1, ξ2) ∈ R̂2 : ξ1 < 0}, respectively. We
will use a similar notation for any other set in R̂2. Since the construction is
symmetric with respect to reflection through the origin, it will be sufficient to
construct the set W+.

Let P+
0 = U+

0 \ T+
0 and, for each k ≥ 1, let P+

k = 2−kP+
0 + (rk, 0), where

rk =
∑k

i=1 2−i = 1− 2−k, and P+ = ∪k≥1P
+
k . The triangles P+

k are illustrated
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Fig. 5. (a) Construction of the sets P+
0 , P+

1 , P+
2 ⊂ U+

0 . (b) The triangle projection
π maps P+

k a into P+
k−1a

′ ⊂ P+
k−1.

in Figure 5(a). It is clear that P+ ⊂ T+
0 . For each k, the line segment from

(rk−1, 0) to (rk, 2
−(k+1)) subdivides Pk−1 into a lower triangle L+

k−1 and an
upper triangle M+

k−1 of equal area (see Figure 5(b)). Observe that rk+1− rk =
2−(k+1). It is then easy to see that Area(P+

k−1) = 4 Area(P+
k ) and Area(L+

k−1) =
Area(M+

k−1) = 2 Area(P+
k ).

Observe that abja−1 = b2j, and so a complete set of coset representatives of
the quotient group B/(aBa−1) has the form {bj1 , bj2}, where j1 is an even
integer and j2 is an odd integer. For simplicity, let j1 = 0, and j2 = 2j + 1,
for some j ∈ Z. Thus, for any ξ ∈ R̂2, we can choose any j(ξ) ∈ Z such that
ξBA = ξaBA

⋃
ξb2j(ξ)+1aBA. Define Q+ = P+a

⋃ {ξb2j(ξ)+1a : ξ ∈ P+} =⋃
k≥1 Q+

k , where Q+
k = P+

k a
⋃ {ξb2j(ξ)+1a : ξ ∈ P+

k }, and the integers j(ξ), for
ξ ∈ P+ will be specified later. This shows that condition (i) is satisfied.

Next we have to show that condition (ii) is also satisfied. We shall identify T̂2

with [0, 1]2 = U+
0 ∪

(
U−

0 + (1, 1)
)
. Then the projection mapping π : R̂2 7→ T̂2

is given by ξ 7→ [ξ], where [ξ] = ([ξ1], [ξ2]) and [ξj] is the fractional part of ξj.
In particular, if ξ ∈ U+

0 , then [ξ] = ξ. A simple computation shows that, for
k ≥ 1, ξ ∈ P+

k if and only if π(ξ a) ∈ L+
k−1. Indeed, for ξ = (ξ1, ξ2) ∈ P+

k ,
we have rk ≤ ξ1 ≤ rk+1 and 0 ≤ ξ2 ≤ (ξ1 − rk). Then π(ξ a) = (2ξ1 − 1, ξ2)
and, in view of rk−1 = 2rk − 1, we have that rk−1 ≤ 2ξ1 − 1 ≤ rk with
0 ≤ ξ2 ≤ ξ1 − rk = 1

2
((2ξ1 − 1)− rk−1).

We shall now construct a measurable map ξ 7→ j(ξ) from P+ to Z such that

π
(
ξb2j(ξ)+1a

)
maps P+

k onto M+
k−1, for each k ≥ 1, modulo null sets. Note

that, for each j ∈ Z and ξ = (ξ1, ξ2) ∈ P+
k , the map π

(
ξb2j(ξ)+1a

)
has the

form
(
2ξ1, ξ2 + (2j + 1)ξ1 − m

)
for some m ∈ Z. Once we construct such a

map, then it follows that π(Q+) = π(
⋃

k≥1 Q+
k ) = (U+

0 \ T+
0 ) ∪ P+, and, as a

consequence (ii) is satisfied. This fact, together with the previous part of the
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proof, implies that U0 = P0 ∪ T0 is a disjoint union and W = (T0 \ P ) ∪ Q is
an AB–wavelet set. Thus, it only remains to construct the measurable map
that we have described.

Fix k ≥ 1. For j, m ∈ Z, let πj,m(ξ1, ξ2) = (2ξ1 − 1, ξ2 + (2j + 1)ξ1 − m)
and let Tj,m = {ξ ∈ interior of P+

k : πj,m(ξ) ∈ interior of M+
k−1}. Let J =

{(j, m) ∈ Z2 : Tj,m 6= ∅}. For (j,m) ∈ J , the set Tj,m is an open triangle or
an open quadrilateral in P+

k and Sj,m = πj,m(Tj,m) is an open subset of similar
shape in M+

k−1, with Area(Sj,m) = 2 Area(Tj,m) since πj,k has Jacobian 2. For
ξ /∈ Q, the set {(2j + 1)ξ1 −m : j, m ∈ Z} is dense in R. It follows that the
open set ∪(j,m)∈JTj,m is dense in P+

K and similarly the set ∪(j,m)∈JSj,m is dense
in M+

k−1. It is clear that, for ξ ∈ Tj,m, we have that π(ξb2j(ξ)+1a) = πj,m(ξ).
Let {(ji,mi) : i ≥ 1} be an enumeration of the countable set J and let
T1 = Tj1,m1 , with j(ξ) = j1 on T1. Then let T2 = T1 ∪ {ξ ∈ Tj2,m2 \ T1 :
πj2,m2(ξ) /∈ πj1,m1(T1)} and j(ξ) = j2 on T2 \ T1. We proceed inductively, with

Tn constructed so that Tn = ∪n
i=1Tn ∩ Tji,mi

and Sn = ∪n
i=1πji,mi

(
Tn ∩ Tji,mi

)

have disjoint unions in P+
k and M+

k−1, respectively. Then we define Tn+1 =
Tn∪{ξ ∈ Tjn+1,mn+1 \Tn : πjn+1,mn+1(ξ) /∈ Sn} and let j(ξ) = ji on Tn+1∩Tji,mi

.
The sets Tn and Sn are unions of open polygons with Area(Sn) = 2Area(Tn).
For each c ∈ (rk, rk+1), each of the maps πj,m sends the vertical line ξ1 = c
to the vertical line η1 = 2c − 1. Hence for T = ∪∞n=1Tn = limn→∞ Tn and
S = ∪∞n=1Sn = limn→∞ Sn, the segment T ∩ {(ξ1, ξ2) : ξ1 = c} is a union
of open intervals whose total length `(c) coincides with the length of the
segment S ∩ {(ξ1, ξ2) : ξ1 = 2c − 1}. If `(c) = c − rk and thus is equal to the
length of the segment P+

k ∩ {(ξ1, ξ2) : ξ1 = c}, for a.e. c ∈ (rk, rk+1), then
clearly T has full measure in P+

k . Otherwise, arguing by contradiction, let us
suppose that `(c) < c − rk for some c /∈ Q. Then P+

k ∩ {(ξ1, ξ2) : ξ1 = c}
contains an open interval Ic of points (c, ξ2) not in T and, as a consequence,
M+

k−1∩{(ξ1, ξ2) : ξ1 = 2c−1} contains an open interval Jc of points (2c−1, ξ2)
not in S. By our comments before, it follows that πj,m(Ic) ⊂ Jc for some
(j, m) ∈ J . However this contradicts the definition of T since (j, m) = (ji,mi)
for some i, and Ic would have been included in Ti. It follows that T has full
measure in P+

k and necessarily S has full measure in M+
k−1. Observe that

the map ξ 7→ j(ξ) defined in the construction of T is constant on polygonal
sets and hence is measurable. This completes the proof that condition (ii) is
satisfied. 2
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