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Abstract—It is now widely acknowledged that traditional has a simple mathematical construction, extends naturally to
wavelets are not very effective in dealing with multidimensional higher dimensions and can be associated to a multiresolution
signals containing distributed discontinuities. This paper presents analysis [12]. In addition, as we will show in this paper, this

a new discrete multiscale directional representation called the . . . .
Discrete Shearlet Transform. This approach, which is based on approach is amenable to a fast algorithmic implementation and

the shearlet transform previously developed by the authors and IS vVery competitive for image denoising.

their colaborators, combines the power of multiscale methods  The paper is organized as follows. In Section Il we introduce
with a unique ability to capture the geometry of multidimensional g two-dimensional continuous transform called the Continuous
data and is optimally efficient in representing images containing gnearlet Trasform, which is well suited to locate discontinu-

edges. Numerical experiments demonstrate that the Discrete iti | d In Secti i h that the Di t
Shearlet Transform is very competitive in denoising applications ltes along edges. In section we show that the Discrete

both in terms of performance and computational efficiency. Shearlet Transform, obtained by discretizing the corresponding
continuous transform, provides optimal representation for a
|. INTRODUCTION large class of two-dimensional signals. In Section 1V, we de-

The most useful feature of the wavelet transform is treeribe the algorithmic implementation of the Discrete Shearlet
ability to deal with signals containing isolated point sinransform and in Section V we describe some applications for
gularities. This fact, together with the availability of fasimage denoising.
discrete implementations, explains the spectacular success of
wavelets in a variety of signal processing applications. Indeed, ] ) ) )
if a one-dimensional signaé(t), smooth away from point An. affine family generated by € L?(R) is a collection of
discontinuities, is approximated using the bksterm wavelet functions of the form:
expansion, then the rate of decay of the approximation error,  y, () = ¢~ /24¢(a 'z —t) 1 a > 0,¢ € R}.
as a function of?/, is optimal. In fact, it is significantly better '
than the corresponding Fourier approximation error [1], [2].¢ is called acontinuous wavele, for all f € L*(R)

However, despite their optimal approximation properties for i o0 oo da
one-dimensional signals, traditional wavelet methods do not f(x) :/ / (£ ¥a.t) Yar(x) dt;'
perform as well with multidimensional data. Indeed, wavelets ) 0 e i
are very efficient in dealing with isolated point singularitieg—he continuous wavelet transforf f is:
only. In higher dimensions_, other types of singularities are usu- WH(a,t) = (f, Vi),
ally present or even dominant. Images, for example, typically ) i i o
contain sharp transitions such as edges. Since edges inte?& the discrete wavelgt transform is obtained by dicretizing
extensively with the elements of the wavelet basis, “many®/(a,t) on an appropriate set [2]. _
wavelet coefficients are needed to accurately represent thes&€ natural way of extending the theory of the continuous
objects. A number of recent results have shown that a muwﬁvelet transform to higher dimensions is by considering the
more efficient representation of multidimensional data is oBffiN€ system
tained by better exploiting their geometric regularities. Thes§¢M7t(I) =|det M|"Y2 (M~ 'z —t): M € G,t € R"},
various methods includeontourletq3], [4], complex wavelets ]

[5] brushlets[6], ridgelets[7], curvelets[8], bandeletd9] and Wherey € L*(R") andG is a subset of+L,(R), the group
other schemes of “directional wavelets” [10]. of invertible n x n matrices. Similarly to the one-dimensional

The authors and their collaborators have recently intr§@S€:¢ is called acontinuous wavelet, for all f < L*(R")
duced theshearlet representatiofll], [12], which applies B
the framework of affine systems to capture very efficiently flz) = /G/"<f’ Yare) Yare(w) dt dAM),
the geometry .of multl_dlmensmnall S|gnals. As a result, th{/%/hereA(M) is a measure off, and
approach provides optimal approximation properties for a large

class of two-dimensional images. The shearlet representation WE (M, t) = (f,Ymz)

Il. THE CONTINUOUS SHEARLET TRANSFORM



is the continuous wavelet transforf f [13]. with 1,92 € C*(R), suppdy C [—3, —%] U [, 3] and
The traditional way of discretizing the continuous wavel&uppy, C [—1,1]. In addition, we assume that

transform of f € L2(R") replacesM € G,t € R" K 1

with a discrete setd?,j € Z,k € Z". However, starting Y @ Pw)P =1 for |w| > -, (4)

from the continuous wavelet transform other types of discrete §>0 8

transforms can be deduced. Indeed, the shearlet transfogﬁd’ for eachj > 0,

which will be described in the next section, is a obtained by

discretizing the 2-dimensional continuous wavelet transform 27-1 ,
in a ‘non-traditional’ way. D e@w-0P =1 forlw <1 (5)
For ¢ € L?(IR?), consider the 2-dimensional affine system (=—27

{thast(x) = | det Mys| "2 (M e —t) : t € R?, M,, € '}, From these assumptions it follows that the functio&}gg)"k
(1) (with j >0, =27 < ¢ <2/ —1, k € Z*) form a tiling of

whereTl is the 2—parameter dilation group Do = {(&1,6) ¢ |&] > &, |8] < 1}. This is illustrated in
Figure 1(a). In very similar way, we construct a second set

L ={M, = <g ‘f/&;) . (a,5) € RT x R}. of discrete shearlet&é}e),k(x) such that the sefy), : j >

0,-27 <¢<2 —1,keZ% isatiling of D; = {(£,&) :

We choosey) such that &2 > £, |§—;\ < 1} (see Figure 1(a)). Finally, let € L?(R?)
. R R L& be such that the setoy(z) = o(z — k) : k € Z?} is a tight
P(€) = ¥(&1,&2) = 1&1(51)#)2(?), (2) frame for L*([— %, 15]*)". We deduce the following result.

! Theorem 3.1 ([12]): The collection:

where v); is a continuous wavelet for whickh; € C°(R d ) ; ;
with sud;)p&l C [-2,1/2] U[1/2,2] and s is ::phosen scf tr)1at {on Wiox 720,-2 <L <Y —1LkeZd=0,1}

Vg € C*°(R), suppy C [—1,1], with ¢»2 > 0 on (-1,1), and s a tight frame forL2(R?).

[[4h2]| = 1. Under these assumptionsjs a continuous wavelet  Thjs indicates that the decomposition is invertible and the
[14] and fora € R, s € R, andt € R? transformation is numerically well-conditioned.

Sf(a,s,t) = <f> ’(/Jast> 52

will be called thecontinuous shearlet transforof f € L?(R).
The elements of the affine system, which we shall caii-
tinuous shearletsare oriented waveforms whose orientation is
controlled by the shear parameteiThey become increasingly
elongated at fine scales (as— 0). We refer to [14] for more

details.

IIl. DISCRETESHEARLET TRANSFORM

By sampling the Continuous Shearlet Transfd¥ifya, s, t) (a) ()
on an appropriate discrete set we obtain a discrete transform
which is able to better deal with distributed discontinuities. Fig. 1. (a) The tiling of the frequency plane induced by the shearlets. The

Observe that the matri/,, can be factored as tiling of Dy is illustrated in solid line, the tiling oD; is in dashed line. (b)
N The frequency support of a shearlg , ;. satisfies parabolic scaling.
(a ﬁs)_(l s> (a O>
0 Va 0 1/\0 Va/’ Details about this construction can be found in [12] and

[15]. Let us summarize here the main mathematical properties

Thus, it will be “discretized” as\/;, = B*A7, where
of shearlets:

B (1 1> A— (4 0) « Shearlets arawvell localized They are compactly sup-
0 1)’ 0 2 ported in the frequency domain and have fast decay in
are the shear matrixand the anisotropic dilation matrix the spatial domain. _ .
respectively. Hence, thdiscrete shearletare the functions ¢ Shearlets satisfparabolic scalingEach element; /. is
of the form supported on a pair of trapezoids, each one contained in a
3 _ box of size approximatelg’ x 2%/ (see Figure 1(b)). In
¢§?27k(x) =22 (BAlx — k), 3) the spatial domain, eactt; (; is essentially supported

on a box of size2™7 x 272/, Their supports become
increasingly thin ag — co.
©) /ey — 7(0) s » (& « Shearlets exhibitighly directional sensitivityThe ele-
V() = (61, 62) = ¥a(&r) ¥ <€1> ’ mentsy; » 1, are oriented along lines with slope given by

where



—£277. As a consequence, the corresponding elemertsd thus, fd [n1,n9] are the discrete samples of a function

Yjer are oriented along lines with slopé2=7. The fd(g;l,@) whose Fourier transform |ﬁd(§1,§2)

number of orientations doubles at each finer scale In order to obtain the directional localization illustrated
« Shearlets arspatially localized For any fixed scale and in Figure 1, we will compute the DFT on the pseudo-polar

orientation, the shearlets are obtained by translations grid, and then apply a one-dimensional band-pass filter to

the latticeZ?. the components of the signal with respect to this grid. More
o Shearlets areptimally sparse: precisely, let us define the pseudo-polar coordinétes) €

Theorem ([11, Thm. 1.1]): Letf be C? away from R2 as follows:

piecewiseC? curves, and letfy, be the approximation ]

to f using the N largest coefficients in the shearlet (w,0) = (61, 8) if (&1,6) € Do

expansionThen (u,v) = (&, %) if (&1,&) €Dy

If = f¥3 < C N2 (log N)?.
Let us summarize the procedure illustrated by the scheme
Thus the shearlets form a tight frame of well-localized waves Figure 2.

forms, at various scales and directions, and are optimally
sparse in representing images with edges.

General Algorithm
IV. ALGORITHMIC IMPLEMENTATION

It will be convenient to describe the collection of shearlets

described above in a way which is more suitable to derive

its numerical implementation. We introduce a collection off 1. Apply the Laplacian Pyramid scheme to decompose

smooth window funcUonsW( (¢) localized on a pair of | fi~linto a Iow-pasij_l/él x N;_1/4 imagef] and &

Define f0 be the givenN x N image and sefV, = N.
Forj=1,...,L, do the following:

trapezoids, as illustrated in Flgure 1(a), satisfying high- passV;_1 x N. j—1image f7.
1 2i_q 2. Computefd ona pseudo polar grid and apply filtering
Z Z |W;,i)(§1,§2)|2 =1 »(€) along the angular direction to obtaﬁ)l
d=0 ¢=-27 3. Invert to obtainf?.
The discrete shearlet transforrof f The algorithm runs ifO(N?log N) operations.

SF(G LK) = (£ 05D
can be computed by

1.0 = [ HOVE WP(E emeinitiag 13

. . (6)

whereV (&1, &) = d1(61) o, (61, &) + 1 (€2) X, (61, &2). ]
A. A Frequency-Domain Implementation

Consider anV x N image given by{ f[n,ns]}
Its 2D Discrete Fourier Transform (DFT) is

N—l,N—l}
ni,ne=0 *

f[kth Z fnlynQ 2ﬂi(%kl+%k2)7 |:|

ni,ng= =0 f2
where —& < ki, ko < & E—)‘

First, to compute

— —
f(fl’fz) V(2 76,2 ]62) (7) Fig. 2. The figure illustrates the succession of Laplacian pyramid and
in the discrete domain, at the resolution leyelwe apply directional filtering.
the Laplacian pyramid algorithm [16]. This gives rise to the
multiscale partition illustrated in Figure 1 by decomposin
27 n1,na), 0 < ny,ma2 < Nj_q, into a low pass filtered
image f4[n1,ns), a quarter of the size of?~![ny,n,], and a
high pass filtered imagég;[ni,ns]. Observe that the matrix
fZ[n1,n2] has sizeN; x N;, where N; = 272N, and
fny,na) = f[n1,n2] has sizelV x N. In particular, we have

Observe that, in this implementation, we have a large
ﬁeX|b|I|ty in the choice of the frequency window functidi.
In addition, there is a fast time-domain implementation of the
windowing process. For more details about these issues, we
refer to [15].

Figure 3 illustrates the two-level shearlet decomposition of
N the “Cameraman” image. The first-level decomposition gener-
f1(&1,&) = f({l,gg) V(2729&,2720&,) ates 4 subbands, and the second-level decomposition generates




TABLE |

Noisy  Curvelet NSCT Shear

Peppers PSNR (dB)
c=10| 2811 32.25 33.75 33.79

' oc=15| 2458 31.36 32.43 3254
7 Iy & c=20| 2209 3060 3143 3157
Iy g % Elaine PSNR (dB)

f%, a,?% : oc=10] 2811 30.72 31.69 31.85
P eiEaE s oc=15| 2458 29.98 30.52 30.59

— c=20| 22.09 29.34 29.79 29.81

values of the noise (see Figures 4 and 5). For more competitive
comparisons, we tested the scheme against the Curvelet based
denoising scheme of [8] and the Nonsubsampled Contourlet
Transform (NSCT) denoising scheme of [4] using 16, 16, 8,
and 8 directions from finer to coarser scales.
Fig. 3. The top image is the original Cameraman image. The image bel The perfqrmance Qf the shearlet approach relative to other
the.to.p image contains the approximate shearlet coefficients. Images ofﬂ?ér]s‘corms_Is shown in Table I. It shows that the Shearlet_ algo-
detail shearlet coefficients are shown below this with an inverted grayscéithm consistently matches or outperforms all the algorithms
for better presentation. mentioned above. It is noticeable that the shearlet transform
results exhibit less Gibbs-type residual artifacts than the other
) ) o denoising methods.
S subbands, correspondm_g to_ the different directional bandsgrther examples showing the good performance of the
illustrated by the scheme in Figure 2. methods outlined in this work can be found in [15].
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Fig. 4. Image denoising results of a piece of the “Peppers” with a standard diviati@f. dfrom top left, clockwise: Original image, noisy image
(PSNR= 22.09 dB), Shearlet transform (PSNRB%.57 dB), and NSCT (PSNR 31.43 dB)

Fig. 5. Image denoising results of a piece of the “Elaine” with a standard diviati®f. &from top left, clockwise: Original image, noisy image (PSNR2.09
dB), Shearlet transform (PSNR.81 dB), and NSCT (PSNR 29.79 dB)



