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Abstract— It is now widely acknowledged that traditional
wavelets are not very effective in dealing with multidimensional
signals containing distributed discontinuities. This paper presents
a new discrete multiscale directional representation called the
Discrete Shearlet Transform. This approach, which is based on
the shearlet transform previously developed by the authors and
their colaborators, combines the power of multiscale methods
with a unique ability to capture the geometry of multidimensional
data and is optimally efficient in representing images containing
edges. Numerical experiments demonstrate that the Discrete
Shearlet Transform is very competitive in denoising applications
both in terms of performance and computational efficiency.

I. I NTRODUCTION

The most useful feature of the wavelet transform is the
ability to deal with signals containing isolated point sin-
gularities. This fact, together with the availability of fast
discrete implementations, explains the spectacular success of
wavelets in a variety of signal processing applications. Indeed,
if a one-dimensional signals(t), smooth away from point
discontinuities, is approximated using the bestM -term wavelet
expansion, then the rate of decay of the approximation error,
as a function ofM , is optimal. In fact, it is significantly better
than the corresponding Fourier approximation error [1], [2].

However, despite their optimal approximation properties for
one-dimensional signals, traditional wavelet methods do not
perform as well with multidimensional data. Indeed, wavelets
are very efficient in dealing with isolated point singularities
only. In higher dimensions, other types of singularities are usu-
ally present or even dominant. Images, for example, typically
contain sharp transitions such as edges. Since edges interact
extensively with the elements of the wavelet basis, “many”
wavelet coefficients are needed to accurately represent these
objects. A number of recent results have shown that a much
more efficient representation of multidimensional data is ob-
tained by better exploiting their geometric regularities. These
various methods includecontourlets[3], [4], complex wavelets
[5] brushlets[6], ridgelets[7], curvelets[8], bandelets[9] and
other schemes of “directional wavelets” [10].

The authors and their collaborators have recently intro-
duced theshearlet representation[11], [12], which applies
the framework of affine systems to capture very efficiently
the geometry of multidimensional signals. As a result, this
approach provides optimal approximation properties for a large
class of two-dimensional images. The shearlet representation

has a simple mathematical construction, extends naturally to
higher dimensions and can be associated to a multiresolution
analysis [12]. In addition, as we will show in this paper, this
approach is amenable to a fast algorithmic implementation and
is very competitive for image denoising.

The paper is organized as follows. In Section II we introduce
a two-dimensional continuous transform called the Continuous
Shearlet Trasform, which is well suited to locate discontinu-
ities along edges. In Section III we show that the Discrete
Shearlet Transform, obtained by discretizing the corresponding
continuous transform, provides optimal representation for a
large class of two-dimensional signals. In Section IV, we de-
scribe the algorithmic implementation of the Discrete Shearlet
Transform and in Section V we describe some applications for
image denoising.

II. T HE CONTINUOUS SHEARLET TRANSFORM

An affine family generated byψ ∈ L2(R) is a collection of
functions of the form:

{ψa,t(x) = a−1/2 ψ(a−1x− t) : a > 0, t ∈ R}.
ψ is called acontinuous waveletif, for all f ∈ L2(R)

f(x) =
∫ ∞

0

∫ ∞

−∞
〈f, ψa,t〉ψa,t(x) dt

da

a
.

The continuous wavelet transformof f is:

Wf(a, t) = 〈f, ψa,t〉,
and the discrete wavelet transform is obtained by dicretizing
Wf(a, t) on an appropriate set [2].

The natural way of extending the theory of the continuous
wavelet transform to higher dimensions is by considering the
affine system

{ψM,t(x) = |det M |−1/2 ψ(M−1x− t) : M ∈ G, t ∈ Rn},
whereψ ∈ L2(Rn) andG is a subset ofGLn(R), the group
of invertiblen×n matrices. Similarly to the one-dimensional
case,ψ is called acontinuous waveletif, for all f ∈ L2(Rn)

f(x) =
∫

G

∫

Rn

〈f, ψM,t〉ψM,t(x) dt dλ(M),

whereλ(M) is a measure onG, and

Wf(M, t) = 〈f, ψM,t〉



is thecontinuous wavelet transformof f [13].
The traditional way of discretizing the continuous wavelet

transform of f ∈ L2(Rn) replacesM ∈ G, t ∈ Rn

with a discrete setAj , j ∈ Z, k ∈ Zn. However, starting
from the continuous wavelet transform other types of discrete
transforms can be deduced. Indeed, the shearlet transform,
which will be described in the next section, is a obtained by
discretizing the 2-dimensional continuous wavelet transform
in a ‘non-traditional’ way.

For ψ ∈ L2(R2), consider the 2-dimensional affine system

{ψast(x) = | detMas|− 1
2 ψ(M−1

as x− t) : t ∈ R2, Mas ∈ Γ},
(1)

whereΓ is the 2–parameter dilation group

Γ = {Mas =
(

a
√

a s
0

√
a

)
: (a, s) ∈ R+ × R}.

We chooseψ such that

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2

ξ1
), (2)

where ψ1 is a continuous wavelet for whicĥψ1 ∈ C∞(R)
with suppψ̂1 ⊂ [−2, 1/2] ∪ [1/2, 2] andψ2 is chosen so that
ψ̂2 ∈ C∞(R), suppψ̂2 ⊂ [−1, 1], with ψ̂2 > 0 on (-1,1), and
‖ψ2‖ = 1. Under these assumptions,ψ is a continuous wavelet
[14] and fora ∈ R+, s ∈ R, andt ∈ R2

Sf(a, s, t) = 〈f, ψast〉
will be called thecontinuous shearlet transformof f ∈ L2(R).

The elements of the affine system, which we shall callcon-
tinuous shearlets, are oriented waveforms whose orientation is
controlled by the shear parameters. They become increasingly
elongated at fine scales (asa → 0). We refer to [14] for more
details.

III. D ISCRETESHEARLET TRANSFORM

By sampling the Continuous Shearlet TransformSf(a, s, t)
on an appropriate discrete set we obtain a discrete transform
which is able to better deal with distributed discontinuities.

Observe that the matrixMas can be factored as
(

a
√

a s
0

√
a

)
=

(
1 s
0 1

) (
a 0
0

√
a

)
.

Thus, it will be “discretized” asMj` = B`Aj , where

B =
(

1 1
0 1

)
, A =

(
4 0
0 2

)

are the shear matrix and the anisotropic dilation matrix,
respectively. Hence, thediscrete shearletsare the functions
of the form

ψ
(0)
j,`,k(x) = 2

3j
2 ψ(B`Ajx− k), (3)

where

ψ̂(0)(ξ) = ψ̂(0)(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2

(
ξ2

ξ1

)
,

with ψ̂1, ψ̂2 ∈ C∞(R̂), suppψ̂1 ⊂ [− 1
2 ,− 1

16 ] ∪ [ 1
16 , 1

2 ] and
suppψ̂2 ⊂ [−1, 1]. In addition, we assume that

∑

j≥0

|ψ̂1(2−2jω)|2 = 1 for |ω| ≥ 1
8
, (4)

and, for eachj ≥ 0,

2j−1∑

`=−2j

|ψ̂2(2j ω − `)|2 = 1 for |ω| ≤ 1. (5)

From these assumptions it follows that the functionsψ̂
(0)
j,`,k

(with j ≥ 0, −2j ≤ ` ≤ 2j − 1, k ∈ Z2) form a tiling of
D0 = {(ξ1, ξ2) : |ξ1| ≥ 1

8 , | ξ2
ξ1
| ≤ 1}. This is illustrated in

Figure 1(a). In very similar way, we construct a second set
of discrete shearletsψ(1)

j,`,k(x) such that the set{ψ̂(1)
j,`,k : j ≥

0,−2j ≤ ` ≤ 2j − 1, k ∈ Z2} is a tiling of D1 = {(ξ1, ξ2) :
|ξ2| ≥ 1

8 , | ξ1
ξ2
| ≤ 1} (see Figure 1(a)). Finally, letϕ ∈ L2(R2)

be such that the set{ϕk(x) = ϕ(x − k) : k ∈ Z2} is a tight
frame forL2([− 1

16 , 1
16 ]2)∨. We deduce the following result.

Theorem 3.1 ([12]):The collection:

{ϕk, ψ
(d)
j,`,k : j ≥ 0,−2j ≤ ` ≤ 2j − 1, k ∈ Z2, d = 0, 1}

is a tight frame forL2(R2).
This indicates that the decomposition is invertible and the

transformation is numerically well-conditioned.

(a)

ξ1

ξ2

(b)

-¾

∼ 22j

6
?
∼ 2j

Fig. 1. (a) The tiling of the frequency plane induced by the shearlets. The
tiling of D0 is illustrated in solid line, the tiling ofD1 is in dashed line. (b)
The frequency support of a shearletψj,`,k satisfies parabolic scaling.

Details about this construction can be found in [12] and
[15]. Let us summarize here the main mathematical properties
of shearlets:

• Shearlets arewell localized. They are compactly sup-
ported in the frequency domain and have fast decay in
the spatial domain.

• Shearlets satisfyparabolic scaling.Each element̂ψj,`,k is
supported on a pair of trapezoids, each one contained in a
box of size approximately2j × 22j (see Figure 1(b)). In
the spatial domain, eachψj,`,k is essentially supported
on a box of size2−j × 2−2j . Their supports become
increasingly thin asj →∞.

• Shearlets exhibithighly directional sensitivity.The ele-
mentsψ̂j,`,k are oriented along lines with slope given by



−` 2−j . As a consequence, the corresponding elements
ψj,`,k are oriented along lines with slopè2−j . The
number of orientations doubles at each finer scale.

• Shearlets arespatially localized.For any fixed scale and
orientation, the shearlets are obtained by translations on
the latticeZ2.

• Shearlets areoptimally sparse:
Theorem ([11, Thm. 1.1]): Letf be C2 away from
piecewiseC2 curves, and letfS

N be the approximation
to f using the N largest coefficients in the shearlet
expansion.Then

‖f − fS
N‖22 ≤ C N−2 (log N)3.

Thus the shearlets form a tight frame of well-localized wave-
forms, at various scales and directions, and are optimally
sparse in representing images with edges.

IV. A LGORITHMIC IMPLEMENTATION

It will be convenient to describe the collection of shearlets
described above in a way which is more suitable to derive
its numerical implementation. We introduce a collection of
smooth window functionsW (d)

j,` (ξ) localized on a pair of
trapezoids, as illustrated in Figure 1(a), satisfying

1∑

d=0

2j−1∑

`=−2j

|W (d)
j,` (ξ1, ξ2)|2 = 1.

The discrete shearlet transformof f

Sf(j, `, k) = 〈f, ψ
(d)
j,`,k〉

can be computed by

Sf(j, `, k) =
∫

R2
f̂(ξ) V (2−2j ξ)W

(d)
j,` (ξ) e2πiξA−j

d B−`
d k dξ,

(6)
whereV (ξ1, ξ2) = ψ̂1(ξ1)χD0(ξ1, ξ2) + ψ̂1(ξ2)χD1(ξ1, ξ2).

A. A Frequency-Domain Implementation

Consider anN ×N image given by{f [n1, n2]}N−1,N−1
n1,n2=0 }.

Its 2D Discrete Fourier Transform (DFT) is

f̂ [k1, k2] =
1
N

N−1∑
n1,n2=0

f [n1, n2] e−2πi(
n1
N k1+

n1
N k2),

where−N
2 ≤ k1, k2 < N

2 .
First, to compute

f̂(ξ1, ξ2)V (2−2jξ1, 2−2jξ2) (7)

in the discrete domain, at the resolution levelj, we apply
the Laplacian pyramid algorithm [16]. This gives rise to the
multiscale partition illustrated in Figure 1 by decomposing
f j−1

a [n1, n2], 0 ≤ n1, n2 < Nj−1, into a low pass filtered
imagef j

a [n1, n2], a quarter of the size off j−1
a [n1, n2], and a

high pass filtered imagef j
d [n1, n2]. Observe that the matrix

f j
a [n1, n2] has sizeNj × Nj , where Nj = 2−2jN , and

f0
a [n1, n2] = f [n1, n2] has sizeN ×N . In particular, we have

f̂ j
d(ξ1, ξ2) = f̂(ξ1, ξ2) V (2−2jξ1, 2−2jξ2)

and thus,f j
d [n1, n2] are the discrete samples of a function

f j
d(x1, x2), whose Fourier transform iŝf j

d(ξ1, ξ2).
In order to obtain the directional localization illustrated

in Figure 1, we will compute the DFT on the pseudo-polar
grid, and then apply a one-dimensional band-pass filter to
the components of the signal with respect to this grid. More
precisely, let us define the pseudo-polar coordinates(u, v) ∈
R2 as follows:

(u, v) = (ξ1,
ξ2
ξ1

) if (ξ1, ξ2) ∈ D0

(u, v) = (ξ2,
ξ1
ξ2

) if (ξ1, ξ2) ∈ D1

Let us summarize the procedure illustrated by the scheme
of Figure 2.

General Algorithm

Definef0
a be the givenN ×N image and setN0 = N .

For j = 1, . . . , L, do the following:

1. Apply the Laplacian Pyramid scheme to decompose
f j−1

a into a low-passNj−1/4×Nj−1/4 imagef j
a and a

high-passNj−1 ×Nj−1imagef j
d .

2. Computef̂ j
d on a pseudo-polar grid and apply filtering

ψ̂2(ξ) along the angular direction to obtaiñ̂f
j

d.
3. Invert to obtainf̃ j

d .

The algorithm runs inO(N2 log N) operations.

(4,4)

(4,4)

f

f1
a

f2
a

f1
d

f2
d

Fig. 2. The figure illustrates the succession of Laplacian pyramid and
directional filtering.

Observe that, in this implementation, we have a large
flexibility in the choice of the frequency window functionW .
In addition, there is a fast time-domain implementation of the
windowing process. For more details about these issues, we
refer to [15].

Figure 3 illustrates the two-level shearlet decomposition of
the “Cameraman” image. The first-level decomposition gener-
ates 4 subbands, and the second-level decomposition generates



Fig. 3. The top image is the original Cameraman image. The image below
the top image contains the approximate shearlet coefficients. Images of the
detail shearlet coefficients are shown below this with an inverted grayscale
for better presentation.

8 subbands, corresponding to the different directional bands
illustrated by the scheme in Figure 2.

V. SUMMARY AND EXPERIMENTAL RESULTS

The highly directional sensitivity of the shearlet transform
and its optimal approximation properties will lead to improve-
ments in many image processing applications.

To illustrate one of its potential uses, we have used the
shearlet transform to remove noise from images. Specifically,
suppose that for a given imagef , we haveu = f+ε, whereε is
Gaussian white noise with zero mean and standard deviationσ.
We recover the imagef from the noisy datau by computing an
approximationf̃ of f obtained by applying a soft thresholding
scheme in the subbands of the shearlet decomposition. We
choose the threshold parametersτi,j = σ2

εi,j
/σn

i,j as in [4],
whereσn

i,j denotes the variance of thenth coefficient at the
ith shearing direction subband in thejth scale, andσ2

εi,j
is the

noise variance at scalej and shearing directioni.
The particular form of the shearlet transform we tested was

the nonsubsampled Laplacian pyramid transform with several
different combinations of the shearing filters. In particular, we
implemented the shearing on4 scales of the Laplacian pyramid
transform decomposition. The shearing filters of sizes16×16,
16×16, 32× 32, and32×32 from finer to coarser were used
with the number of shearing directions chosen to be16, 16,
8, and 8. The shearing was done by using a Meyer wavelet
window. In addition to the shearlet reconstruction, a slight
post-filtering has been applied to the reconstructed estimate
by using a stationary wavelet transform with a very small
threshold parameter.

We tested the denoising schemes using the pieces of the
“Peppers” and “Elaine” images for various standard deviation

TABLE I

Noisy Curvelet NSCT Shear

Peppers PSNR (dB)
σ = 10 28.11 32.25 33.75 33.79
σ = 15 24.58 31.36 32.43 32.54
σ = 20 22.09 30.60 31.43 31.57
Elaine PSNR (dB)

σ = 10 28.11 30.72 31.69 31.85
σ = 15 24.58 29.98 30.52 30.59
σ = 20 22.09 29.34 29.79 29.81

values of the noise (see Figures 4 and 5). For more competitive
comparisons, we tested the scheme against the Curvelet based
denoising scheme of [8] and the Nonsubsampled Contourlet
Transform (NSCT) denoising scheme of [4] using 16, 16, 8,
and 8 directions from finer to coarser scales.

The performance of the shearlet approach relative to other
transforms is shown in Table I. It shows that the shearlet algo-
rithm consistently matches or outperforms all the algorithms
mentioned above. It is noticeable that the shearlet transform
results exhibit less Gibbs-type residual artifacts than the other
denoising methods.

Further examples showing the good performance of the
methods outlined in this work can be found in [15].
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Fig. 4. Image denoising results of a piece of the “Peppers” with a standard diviation of20. From top left, clockwise: Original image, noisy image
(PSNR= 22.09 dB), Shearlet transform (PSNR=31.57 dB), and NSCT (PSNR= 31.43 dB)

Fig. 5. Image denoising results of a piece of the “Elaine” with a standard diviation of20. From top left, clockwise: Original image, noisy image (PSNR= 22.09
dB), Shearlet transform (PSNR=29.81 dB), and NSCT (PSNR= 29.79 dB)


