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Abstract—It is well known that the wavelet transform
provides a very effective framework for analysis of multi-
scale edges. In this paper, we propose a novel approach
based on the shearlet transform: a multiscale directional
transform with a greater ability to localize distributed
discontinuities such as edges. Indeed, unlike traditional
wavelets, shearlets are theoretically optimal in represent-
ing images with edges and, in particular, have the ability
to fully capture directional and other geometrical fea-
tures. Numerical examples demonstrate that the shear-
let approach is highly effective at detecting both the loca-
tion and orientation of edges, and outperforms methods
based on wavelets as well as other standard methods.
Furthermore, the shearlet approach is useful to design
simple and effective algorithms for the detection of cor-
ners and junctions.

Index Terms—Curvelets, edge detection, feature ex-
traction, shearlets, singularities, wavelets.

I. INTRODUCTION

Edges are prominent features in images and their
analysis and detection are an essential goal in computer
vision and image processing. Indeed, identifying and
localizing edges are a low level task in a variety of ap-
plications such as 3D reconstruction, shape recognition,
image compression, enhancement and restoration.

In this paper, we apply a novel directional multiscale
mathematical framework which is especially adapted to
identification and analysis of distributed discontinuities
such as edges occurring in natural images. Multiscale
methods based on wavelets, have been successfully ap-
plied to the analysis and detection of edges [1], [2],
[3], [4], [5]. Despite their success, wavelets are how-
ever known to have a limited capability in dealing with
directional information. By contrast, the shearlet ap-
proach, which we propose here, is particularly designed
to deal with directional and anisotropic features typi-
cally present in natural images, and has the ability to
accurately and efficiently capture the geometric infor-
mation of edges. As a result, the shearlet framework
provides highly competitive algorithms, for detecting
both the location and orientation of edges, and for ex-
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tracting and classifying basic edge features such as cor-
ners and junctions.

Our shearlet approach has similarities with a num-
ber of other methods in applied mathematics and en-
gineering to overcome the limitations of traditional
wavelets. These methods include contourlets [6], [7]
complex wavelets [8], ridgelets [9] and curvelets [10].
In contrast to all these methods, the shearlet frame-
work provides a unique combination of mathematical
rigidness and computational efficiency when addressing
edges, optimal efficiency in dealing with edges, and com-
putational efficiency. In addition, its continuous formu-
lation is particularly well-suited for designing an imple-
mentation, presented in this work, for the purpose of
edge analysis and detection.

A. Edge detection using wavelets.

In the classic Canny edge detection algorithm [11], an
image u is smoothed by a convolution with a Gaussian
filter:

(L1)

where G,(z) = a=! G(a™'x), for a > 0, and G(z) is the
Gaussian function. Edges are then recognized as the
local maxima of the magnitude of the gradient of wu,.
The adjustable scaling factor a determines the amount
of smoothing: as a increases, the detector’s sensitivity
to noise decreases; however, as a increases, the local-
ization error in the detection of edges also increases.
As a result, the performance of the algorithm heavily
depends on the scaling factor a [12], [13].

It was observed by Mallat et al. [1], [2] that, at a
single scale, the Canny edge detector is equivalent to
the detection of the local maxima of the wavelet trans-
form of u, for some particular choices of the analyzing
wavelet. In fact, the function ¥ = VG is a wavelet
known as the first derivative Gaussian wavelet. Thus,
each image u € L?(R?) satisfies:

Ug = U * Gg,

u(z) = / Wou(a,y) ol — ) dy,

where ¢, (z) = a '¢(a"'x), and Wyu(a,z) is the
wavelet transform of u, defined by

W) = [ ) balo = y)dy = s vula),



The significance of this representation is that the
wavelet transform provides a space-scale decomposition

of the image u, where v € L?(R?) is mapped into
the coefficients Wyu(a,y) which depend on the loca-

tion 4 € R? and the scaling variable a > 0. Another
useful observation is that the wavelet transform of w is
proportional to the gradient of the smoothed image u,:

Vua(z) = u* VGa(z) = u* Ya(z) = Wyu(a, ). (1.2)

This shows that the maxima of the magnitude of the
gradient of the smoothed image u, correspond exactly
to the maxima of the magnitude of the wavelet trans-
form Wyu(a,x); this provides a natural mathematical
framework for the multiscale analysis of edges [1], [2].
In particular, utilizing multiscale wavelet representa-
tion avoids the problem of finding the appropriate scale
a which produces an improved detection of the clas-
sic Canny algorithm. Furthermore, there are very effi-
cient numerical implementations of the wavelet trans-
form [14].

The difficulty of edge detection is particularly promi-
nent in the presence of noise, and when several edges are
close together or cross each other, e.g., 2-dimensional
projections of 3—dimensional objects [15]. In such cases,
the following limitations of the wavelet approach (and
other traditional edge detectors) become evident:

e Difficulty in distinguishing close edges. The
isotropic Gaussian filtering causes edges running
close together to be blurred into a single curve.

e Poor angular accuracy. In the presence of sharp
changes in curvature or crossing curves, the
isotropic Gaussian filtering leads to an inaccurate
detection of edge orientation. This affects the de-
tection of corners and junctions.

To address these difficulties one has to account for the
anisotropic nature of edge lines and curves. For exam-
ple, in [16], [17], [18] it is proposed to replace the scal-
able collection of isotropic Gaussian filters G, (z1,x2),
a > 0 in (I.1) with a family of steerable and scalable
anisotropic Gaussian filters
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where a1,a2 > 0 and Ry is the rotation matrix by 6.
Unfortunately, the design and implementation of such
filters is computationally demanding. In addition, the
justification for this approach is essentially intuitive,
and there is no proper theoretical model to indicate
how to “optimize” such family of filters to best capture
edges.

B. The Shearlet Approach.

The approach proposed in this paper is based on a
new multiscale transform called the shearlet transform.

This transform, introduced by the authors and their col-
laborators in [19], [20], is a genuinely multidimensional
version of the traditional wavelet transform, and is es-
pecially designed to address anisotropic and directional
information at various scales. Indeed, the traditional
wavelet approach, which is based on isotropic dilations,
has a very limited capability to account for the geome-
try of multidimensional functions. In contrast, the an-
alyzing functions associated to the shearlet transform
are highly anisotropic, and, unlike traditional wavelets,
are defined at various scales, locations and orientations.
As a consequence, this transform provides an optimally
efficient representation of images with edges [21].

The shearlet transform has similarities to the curvelet
transform, first introduced by Candeés and Donoho [10],
[22]. Shearlets and curvelets, in fact, are the only two
systems which were mathematically known to provide
optimally sparse representations of images with edges.
The spatial-frequency tilings of the two representations
are completely different, yet the implementations of the
curvelet transform corresponds to essentially the same
tiling as that of the shearlet transform. In spite of this
similarity, it is not clear how the curvelet transform im-
plementations could be modified to do the applications
described in this paper. Yet an application of low-level
vision using curvelets has been suggested in [23].

Both systems are related to contourlets [6], [7] and
steerable filters [24], [25]. Contourlets, however, provide
a purely discrete approach which presents difficulties in
rigorously addressing the edge detection problem. We
refer to [19] for more details about the comparison of
shearlets and other orientable multiscale transforms.

In this paper, we combine the shearlet framework
with several well established ideas from the image pro-
cessing literature to obtain improved and computation-
ally efficient algorithms for edge analysis and detection.
Our approach may be viewed as a truly multidimen-
sional refinement of the approach of Mallat et al., where
the isotropic wavelet transform Wy, u(a, x) is replaced by
an anisotropic directional multiscale transform. Specif-
ically, for an image u, the shearlet transform is a map-
ping

u — SHyu(a, s, ),
depending on the scale a > 0, the orientation s and
the location x. This provides a directional scale-space
decomposition of u and, as shown below, a theoretical
justifiable framework for the identification and analy-
sis of the edges of u. The shearlet transform can be
expressed as

SHyu(a, 5,7) = / () Yas(@ — y) dy = u % s (@),

where the analyzing elements 1,5 are well localized



waveforms at various scales and orientations. As a re-
sult, the shearlet transform acts as a multiscale direc-
tional difference operator and provides a number of very
useful features:

o Improved accuracy in the detection of edge orienta-
tion. Using anisotropic dilations and multiple ori-
entations, the shearlet transform precisely captures
the geometry of edges.

o Well organized multiscale structure. It is a multi-
scale transform, based on the same affine mathe-
matical structure of traditional wavelets.

o Computational efficiency. The discretization of the
shearlet transform provides a stable and computa-
tionally efficient decomposition and reconstruction
algorithm for images.

The paper is organized as follows. Section II re-
calls the basic definitions and properties of the shearlet
transform. Section III presents a new numerical imple-
mentation of the shearlet transform consistent with the
theoretical requirements for the analysis of edges. Sec-
tion IV describes applications of the shearlet approach
to the estimation of edge orientation, feature classifica-
tion and edge detection.

II. SHEARLET TRANSFORM

Let G be a subgroup of the group of 2 x 2 invertible
matrices. The affine systems generated by 1 € L?(R?)
are the collections of functions:

Yare(@) = |det M|"2p(M~Y(z — 1)), t eERZ, M € G.  (IL3)

If any u € L?(R?) can be recovered via the reproducing

formula
u = / / <’U,,1/)M7t> 1/)M7t d)\(M) dt
n G

where A is a measure on G, then 1 is a continuous
wavelet [14]. In this case, the continuous wavelet trans-
form is the mapping

u— Wyu(M,t) = (u, ¥are),

for (M,t) € G x R% There are a variety of examples
of wavelet transforms. The simplest case is when the
matrices M have the form al, where a > 0 and I is
the identity matrix. In this situation, one obtains the
isotropic continuous wavelet transform:

=q ! u(x a tx — X
= [ @) @) de

(IL.4)

Wyu(a,t)

where the dilation factor is the same for all coordi-
nate directions. This is the “standard” wavelet trans-
form used in most wavelet applications (including the
wavelet-based edge detection by Mallat et al. described
in Section I).

It is known that the continuous wavelet transform has
the ability to identify the singularities of a signal. In
fact, if a function w is smooth apart from a discontinu-
ity at a point xg, then the continuous wavelet transform
Wyu(a,t) decays rapidly as a — 0, unless ¢ is near xg
[26]. This property is useful to identify the set of points
where u is not regular, and explains the ability of the
continuous wavelet transform to detect edges. However,
the isotropic continuous wavelet transform is unable to
provide additional information about the geometry of
the set of singularities of u. In many situations, includ-
ing edge detection, it is useful to not only identify the
location of edges, but also to capture their geometrical
properties, such as the edge orientation. As shown by
the authors and their collaborators in [27], [28], this can
be achieved by employing a non-isotropic version of the
continuous wavelet transform (II.4) called the continu-
ous shearlet transform. This is defined as the mapping

SHyu(a, s, t) = (U, Yast), (IL.5)

where thag () = | det M|~ 2(M ' (z—t)), and M,, =

@V for a > 0,5 € R,t € R?. Observe that
0 Va

a 0 _
M,s = Bs Ay, where A, = (0 ﬁ) and B, = ((1) ;).
Hence to each matrix M,, are associated two distinct
actions: an anisotropic dilation produced by the ma-
trix A, and a shearing produced by the non-expansive
matrix Bg.

Fig. 1.
vertical shearlets (right) for different values of a and s.

Frequency support of the horizontal shearlets (left) and

The generating function ¢ is a well localized function
satisfying appropriate admissibility conditions [27], [28],
so that each u € L?*(R?) has the representation

u = / / / <ua 1/}ast> 1Z)ast d_g dsdt.
R2 J—00 J0O a

In particular, for & = (£1,&) € R?, & # 0, we set
$(€) = $1(&1) Y2(8), where 1)y, ¢ are smooth func-



tions with supp 1 C -2, —%] U [%,2] and supp iy C

[—1,1]. In addition, to obtain the edge detection results
presented in the next section, 1&1 (respectively, 1/32) is as-
sumed to be odd (respectively, even). In the frequency
domain:

Vast(61,62) = at e 2T dr(a) 7/32(07%(% - 5)),
and, thus, each function @ast is supported in the set
{(51’52) : 51 = [_g’ _%] U [%a %]a |§_f - S| S \/E}

Thus each shearlet 1,4 has frequency support on a pair
of trapezoids, at various scales, symmetric with respect
to the origin and oriented along a line of slope s. As a
result, the shearlets form a collection of well-localized
waveforms at various scales a, orientations s and loca-
tions t.

Notice that the shearing variable s corresponds to
the slope of the line of orientation of the shearlet z/;ast,
rather than its angle with respect to the & axis'. It
follows that the shearlets provide a nonuniform angular
covering of the frequency plane when the variable s is
discretized, and this can be a disadvantage for the nu-
merical implementation of the shearlet transform. To
avoid this problem, the continuous shearlet transform
is modified as follows. In the definition of SH,, given
by (IL.5), the values of s will be restricted to the in-
terval [—1,1]. Under this restriction, in the frequency
plane, the collection of shearlets 45 will only cover
the horizontal cone {(&1,&2) : |§—f| < 1}. To compen-
sate for this, we add a similarly defined second shear-
let transform, whose analyzing elements are the “ver-

tical” shearlets 1/121535 In the frequency plane they are
obtained from the corresponding “horizontal” shearlets
Yast through a rotation by 7 /2. The frequency supports
of some representative horizontal and vertical shearlets
are illustrated in Figure 1. By combining the two shear-
let transforms, any u € L*(R?) can be reproduced with
respect to the combination of vertical and horizontal
shearlets. We refer to [27], [28] for additional details
about this construction. In the following, when it will
be needed to distinguish the two transforms we will use
the notation S)—lff) (respectively, SHS)) for the continu-
ous shearlet transform associated to the horizontal cone
(respectively, the vertical cone).

A. Edge resolution using the shearlet transform

The continuous shearlet transform is able to precisely
capture the geometry of edges. Indeed, the asymp-

1 The curvelets are indexed by scale, angle and location, where
the angle is the angle of orientation in polar coordinates. The
drawback of this representation, however, is that curvelets do not
form an affine system, as in (IL.3), and are not obtained from a
single generating function.

.
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Fig. 2. Analysis of the edge response. The magnitudes of the
shearlet (respectively, wavelet) transform of an edge point on the
star-shaped figure (a) are plotted on a logarithmic scale as a black
(respectively, gray) line. Figure (b) shows the response of the
shearlet transform when its orientation variable is tangent to the
edge. Figure (c) shows the response when the orientation variable
is normal to the edge.

totic decay rate of the continuous shearlet transform
SHyu(a, s,t), for a — 0 (fine scales), can be used to ob-
tain both location and orientation of edges in an image
u. This is a significant refinement with respect to tra-
ditional wavelets, which only detect the location. We
now present a brief summary of the most relevant re-
sults which are useful for our analysis. We refer to [27],
[28] for more details.

To model an image, let Q = [0, 1]? and consider the

partition Q = Uﬁ:l Q,, UT, where:

1. each “object” ,, forn=1,..., L, is a connected
open set (domain);

2. the set of edges of €2 be given by I' = Uﬁzl 00y,
where each boundary 9qf2, is a smooth curve of
finite length.

Consider the space of images I(2) defined as the collec-
tion of functions which have the form

L
u(z) = Z un(x) xq, (z) for € Q\I'
n=1

where, for each n = 1,..., L, u, € C}(2) has bounded
partial derivatives, and the sets €2,, are pairwise disjoint
in measure. For u € I(§2), we have the following results.
Theorem I1.1: If t ¢ T', then
3

lin}J a” 1 SHyu(a, s, t) =0. (IL.6)
If ¢t € T and, in a neighborhood of t = (t1,t2),
the boundary curve is parametrized as (E(t2),t2), and

s # —E'(t2), then also (II.6) holds. Otherwise, if
s = —FE'(t2), there is a constant C' > 0 such that

3
HI% a” 1 SHyu(a, s,t) = C'[ul4,

where [u]¢ is the jump of u at ¢, occurring in the normal
direction to the edge.

This shows that asymptotic decay of the continuous
shearlet transform of w is the slowest for ¢ on the bound-
ary of €2, and s corresponding to the normal orientation



to Q at ¢ (see Figure 2). Other useful results from [27],
[28] are the following:

o If u € I() and t is away from the edges, then
SHyu(a, s,t) decays rapidly as a — 0, and the de-
cay rate depends on the local regularity of u. In
particular, if u is Lipschitz—a near ¢y € R?, then
the following estimates hold: for a > 0,

|SHpu(a, s, to)| < Caz®t3) asa— 0;
while for o < 0,
|SHpu(a, s, to)| < Ca®tD), asa— 0.

We refer to [14] for the definition of Lipschitz reg-

ularity. Classification of points by their Lipschitz

regularity is important as it can be used to distin-
guish true edge points from points corresponding

to noise [1], [2].

o If u contains a corner point, then locally, as a — 0,
SHyu(a, s,t) decays as a®/* when s is the direction
normal to the edges. It decays as a®/* otherwise.

o Spike-type singularities produce a different behav-
ior for the decay of the shearlet transform. Con-
sider, for example, the Dirac delta centered at tg.
Then

|SH 04, (a, 5,t0)| < a™3/%, as a — 0,
so that the transform actually grows at fine scales.
The decay is rapid for ¢ # tg.

These observations show that the geometric informa-
tion about the edges of u can be completely resolved by
looking at the values of its continuous shearlet trans-
form SHyu(a,s,t) at fine scales. Additionally, similar
to the wavelet case, the behavior of the decay rate across
scales provides useful information about the regularity
of u. In the following sections, we will take advantage
of these properties to design improved numerical algo-
rithms for the analysis and detection of edges.

III. A DISCRETE SHEARLET TRANSFORM FOR EDGE
DETECTION

A numerically efficient implementation of the shear-
let transform was previously introduced in [19]. It was
based on the use of a Laplacian pyramid combined with
appropriate shearing filters. That particular implemen-
tation, however, was specially designed for image de-
noising. Since its direct application to edge detection
suffers from large sidelobes around prominent edges
(which is the same problem with the curvelet implemen-
tations), a different implementation will be presented
here. This new implementation is based on separately
calculating the vertical and horizontal shearlets and is

amenable to a continuous (non-dyadic) scaling. For its
development, consistent with the theoretical analysis in
[28], special properties on the shearlet generating func-
tion 9 (see Sec. II) are utilized.

We start by reformulating the operations associated
with the shearlet transform in a way which is suitable
to its numerical implementation. For & = (£1, &) € R?,
a<1,and |s] <1, let

0T ga(a” (& = 9)) X, (6)

o a(a (2~ 5)) x, (0).

where Dy = {(&1,&) € R?: |21 <1}, D1 ={(&.6) €

R2 : |§—;| <1}. Fora<1,|s|<1,t€R?d=0,1, the

Fourier transform of the shearlets can be expressed as
01D () = aVID(ag) @il (g) e,

where V(O (€1, &) = 41 (&1), VD (&1,&) = ¥1(&). The
continuous shearlet transform of u € L?(R?) is:

S ula,s.t) = a [ a(©) VOO alle) e de, i)

where d = 0, 1 correspond to the horizontal and vertical
transforms, respectively. Hence, from (II1.7) we have
that

SHq(pd)u(a, s,t) = v\ Du * wg‘fg(t) (I11.8)

where
v\Dy(t) = /R o a(&) VD (ag) 2™ de.

To obtain a transform with the ability to detect edges
effectively, we choose the functions 1&1 to be odd and 1/32
to be even.

We are now ready to derive an algorithmic procedure
to compute a discrete version of (IIL.8). For N € N,
an N x N image can be considered as a finite sequence
{u[ni,na] : n1,n2 = 0,..., N — 1}. Thus, identifying
the domain with Z%;, we view ¢*(Z%) as the discrete
analog of L?(R?). Consistently with this notation, the
inner product of the images u; and s is defined as

N N-1

(ug,u) = > Z_ u1[ny, noj uzln, nof,

1=0n

—

and, for —N/2 < k1, ke < N/2, its 2D Discrete Fourier
Transform (DFT) 4k, ko] is given by:

N-1
ni

1 _omi ny
Z ulny, ny) e 2N TN k)

ﬁ[kl, kQ] == N

ni,n2 =0



We adopt the convention that brackets [-,-] de-
note arrays of indices, and parentheses (-,-) de-
note function evaluations. We shall interpret the
numbers [k, ko] as samples af[ki, ko] = a(ky,k2)
from the trigonometric polynomial @(&1,&) =
2712/'11—;2:0 u[nh n2] e—2ﬂi(%51+nﬁl52)'

To implement the directional localization associated
with the shearlet decomposition described by the win-
dow functions w,(f,lg, we will compute the DFT on a grid
consisting of lines across the origin at various slopes
called the pseudo-polar g¢rid, and then apply a one-
dimensional band-pass filter to the components of the
signal with respect to this grid. To do this, let us define
the pseudo-polar coordinates ((1,(2) € R? by:

(G G2) = (&, 8) if (&1,&) € Dy;
(G1:Go) = (2, 8) if (&1,&) € D1

Using this change of coordinates, we obtain

0 F(¢LG) = oD (6, &),

WD (a2 —s) = D&, &)
This expression shows that the different directional
components are obtained by simply translating the win-

dow function w(4). For an illustration of the mapping
from the Cartesian grid to the pseudo-polar grid, see
Figure 3.

G2 <2

&

Fig. 3. The mapping ¢p from a Cartesian grid to a

pseudo-polar grid. The shaded regions illustrate the mapping
05" (Splk1, ka) WD a1/ 2ky — £]), for fixed a, £.

At the scale a = 27%,

(d)

by v,

U;Cf)gju(xl, x2), whose Fourier transform is agd)u(&, &2).

—_—

7 > 0, we will denote
u[ni,ng] the discrete samples of a function

Also, the discrete samples ﬁj(-d)u[kl, ko] = ﬁéiju(lﬁ, k)
are the values of the DFT of U((ld)u[nl, ns] on the pseudo-
polar grid. One may obtain the discrete Frequency val-
ues of vt(ld)u on the pseudo-polar grid by direct extrac-
tion using the Fast Fourier Transform (FFT) with com-
plexity O(N?log N) or by using the Pseudo-polar DFT

(PDFT) with the same complexity.

Fig. 4.
sponds to £ = 5 using a support window of size 16. Figure (b)
corresponds to £ = 2 using a support window of size 8.

Examples of spline based shearlets. Figure (a) corre-

To discretize the window function, consider a function

w@ such that 24 S22 7L @(@[2iky — €] = 1. That
is, the shearing variable s is discretized as sj, = 279¢.
Letting ¢p be the mapping function from the Carte-
sian grid to the pseudo-polar grid, the discrete shear-
let transform can thus be expressed in the discrete fre-
quency domain as

o7 (0 ulky k) 3" (3plka, ko) 0D 27k — 1)

where & p is the discrete Fourier transform of the Dirac
delta function dp in the pseudo-polar grid. Thus, the
discrete shearlet transform can be expressed as the dis-
crete convolution
. d d
SHDu[j, 0, k] = 0! Dy « w;é) [k],

J

where &% [k1, ko] = @5 ( Splki, ko] 90D [20ky — 1] ) .

The discrete shearlet transform will be computed as
follows. Let H; and G; be the low-pass and high-pass
filters of a wavelet transform with 2/ — 1 zeros inserted
between consecutive coefficients of the filters H and G,
respectively. Given 1-dimensional filters H and G, de-
fine u % (H,G) to be the separable convolution of the
rows and the columns of v with H and G, respectively.
Notice that G is the wavelet filter corresponding to
where 1&1 must be an odd function and H is the fil-
ter corresponding to the coarse scale. Finally as indi-
cated above, the filters @(9 are related to the function
1/32, which must be an even function and can be imple-
mented using a Meyer-type filter. Hence, we have:

Discrete Shearlet Cascade Algorithm.
Let u € (*(Z%). Define
Sou = u

Sju = ijlu* (vaHj)a .]Z L.

For d=0,1, the discrete shearlet transform is given by

. d d
SH Dulj, 0, k] = 0!y« wg(',e) (%],

J



where 7 > 0, =29 < ¢ <29 -1,k € Z? and ’U;O)U =
Sjux (Gy,8), viu = Sjux (6,G;).
For simplicity of notation, it will be convenient to

combine the vertical and horizontal transforms (d =
0,1) by re-labeling the orientation index ¢ as follows:

SHOulj, 0 —1 -2, k],
SHMulj,3(27) — £, k],

1< <20t

SHulj, ¢, k] = { 201 < ¢ < 9it2,

Using the new notation, at the scale a = 274 (j = 2),
the index £ of the discrete shearlet transform SHu[2, ¢, k]
ranges over £ = 1,...,16. Here the first (respectively,
last) eight indices correspond to the orientations asso-
ciated with the horizontal (resp. vertical) transform
SH®) (resp. SHM).

In our implementation, we use the finite impulse re-
sponse filters H and G that correspond to a quadratic
spline wavelet. A reflexive boundary condition on the
borders of the image is assumed for the convolution op-
eration. For an N x N image, the numerical complexity
of the shearlet transform is O(N?1og(N)). In some ex-
periments, non-dyadic scaling will be used, i.e. no zeros
will be inserted in the filters H; and Gj.

Figure 4 displays examples of shearlets associated
with the discrete shearlet transform. Figure 5 shows the
shearlet coefficients SHulj, ¢, k], where u is the charac-
teristic function of a disk, at multiple scales, for several
values of the orientation index £.

Fig. 5. A representation of shearlet coefficients of the character-
istic function of a disk (shown above), at multiple scales (ordered
by rows), for several values of the orientation index ¢ (ordered by
columns).

The directionally oriented shearing filters have the
special feature that ) 0 wﬁ) xf = f. As a consequence,
a unified map of directionally-captured edge elements
can be assembled through a simple summation. Other
directionally oriented filters such as steerable Gaussian
filters do not typically share this property [29, Ch.2].

IV. ANALYSIS AND DETECTION OF EDGES

As explained above, a main feature of the shearlet
transform is its superior directional selectivity with re-

spect to traditional edge detectors. For example, Fig-
ure 2 compares the behavior of the discrete shearlet
transform of an image at the edge points with that
of the traditional wavelet transform. The figure dis-
plays the magnitudes of the discrete shearlet transform
SHulj, ¢, k] at the edge points of a star-like image u, as
a function of the scaling index j, for two different values
of the directional variable ¢. The test shows that the
values |SHul[j, ¢, k]| are much larger when ¢ corresponds
to the normal direction to the edge, in accordance with
the theoretical predictions from Section II. Since the
wavelet transform has no variable associated with the
orientation, its magnitudes do not depend on the orien-
tation.

A. Shearlet-based Orientation Estimation

The discrete shearlet transform can be applied to pro-
vide a very accurate description of the edge orientations.
We will show that this approach has several advantages
with respect to traditional edge orientation extraction
methods.

0 0 -
. 4 ,. N 1 ER
(=1 (j=0)
Fig. 6. The directional response of the shearlet transform
DR(6,4,7) is plotted as a greyscale value, for j = 1,0. The

orientations 0 of the half-planes range over the interval [45, 225]
(degrees), ¢ ranges over 1,...,16 .

Recall that, in the continuous model where the edges
of u are identified as local maxima of its gradient, the
edge orientation is associated with the orientation of the
gradient of u, an idea used, for instance, in the Canny
edge detector. Similarly, using the continuous wavelet
transform Wy u(a,t), the orientation of the edges of an
image u can be obtained by looking at the horizontal
and vertical components of Wyu(a,t). In fact, letting
Ve = VG, and Y7 = 8{%‘1 RUEES aac;a, the edge orienta-
tion of w at 7 is given

arctan <7u * Ya (T)> .
ux g (7)
According to (I1.2), the expression (IV.9) measures the
direction of the gradient Vu, at 7.

Unfortunately, the gradient model is not very accu-
rate in the presence of noise or when the edge curve is
not regular. Furthermore, in the usual numerical im-
plementations, the operator % is approximated by a
finite difference and this becomes a significant source of
inaccuracies in edge orientation estimation.

(IV.9)
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Fig. 7. Comparison of the average error in the estimation of edge orientation (expression (IV.11)), for the disk image shown on the
left, using the wavelet method (dashed line) versus the shearlet method (solid line), as a function of the scale a, for various SNRs

(additive white Gaussian noise).

The advantage of the orientation estimation based
on the shearlet transform is that, by decomposing an
image with respect to scale, location and orientation
variables, the orientation information at each scale is
directly available. In addition, we can identify not only
the ‘dominant’ orientation at a certain point, but a
vector of all orientation ‘components’ present at that
point. This provides a general orientation representa-
tion which will be further exploited in Section IV.B to
analyze corner points and junctions.

Other useful ideas to estimate edge orientation have
appeared in the literature. For example, the method
used by Perona in [30] to estimate edge orientations,
which is based on anisotropic diffusion, is very robust
in the presence of noise. In contrast to the shearlet
approach, however, this method only yields a single ori-
entation estimation and is unable to handle the situ-
ation where multiple orientations are present, such in
the presence of corner points or junctions. Other re-
searchers view orientation estimation as a local fitting
problem [31], [32] which, under least square criterion,
is equivalent to PCA analysis. This method is numer-
ically stable and efficient but loses the scaling nature
of orientation and, again, only estimates a single orien-
tation (which could be an average of many orientation
components at the same point).

As a first experiment, we demonstrate the directional
sensitivity of the discrete shearlet transform by measur-
ing its ability to detect edge orientations for a class of
test images. Namely, consider the collection of images
ug, representing half-planes at various orientations:

ug(2,y) = xp,(2,y), Do = {(2,y) : § < tan(6)}.

Let E be the set of edge points of up and |E| be the
number of elements in the set E. We define the direc-
tional response of shearlet transform at the edge points
as the function:

1

DRO..5) = 135

> [SHuglj. €, K|

keE

Due to its directional sensitivity, at a fixed scale 2727,
most of the energy of the discrete shearlet transform
will be concentrated at a few values of the orientation
index £. This is illustrated in Figure 6 for two different
values of j (in both cases, 16 values of the directional
index ¢ have been considered).

The above experiment confirms the theoretical prop-
erties described in Section IT and shows that the discrete
shearlet transform is very effective in indicating the ori-
entation of the edges of a digital image. Thus, following
Theorem II.1, we propose to estimate the edge orienta-
tion of an image u, at fine scales (¢ = 2727 “small”), by
measuring the index ¢ which maximizes the magnitude
of the SHul[j, ¢, k]:

0(j, k) = arg max |SHu(j, £, k]| (IV.10)
Once this is found, we can compute 6g(j, k), the angle
of orientation associated with the index / (4, k).

Notice that, since we are working with a discrete
transform, this procedure only yields a discrete set of
possible orientations since £ ranges over a finite set. For
example, ¢ ranges over 1,...,16 for j = 2. To improve
the accuracy of the orientation estimation and reduce
the quantization error, we will interpolate the values of
the angle orientation as follows. We will assume that,
at an edge point ¢, the continuous shearlet transform
SHyu(a, s, t) is essentially a parabolic function with
respect of the s variable, and its maximum occurs for
Smax corresponding to the edge normal orientation.
Hence, for j and k fixed, we will estimate the angle
Omax associated at spax using the following algorithm.

Shearlet Orientation Detection Algorithm.

o Compute {1 = € using (IV.10); let o = €1 — 1,
by = 01+ 1 (here the sums are meant to be modulus
N, where N is the size of the set of indices £).

e For i =0,1,2, let 0; be the angles of orientation
associated with the indices ;.

o Let S(0) = c10% + c20 + c3, where S(0;) is identified
with SHul[j, ¢;, k], i = 0,1,2. Then ¢1,ca,c3 is the



solution of linear system S(0;) = c102+c20;+c3. So
Omax = —2% (this is the value where the parabolic
function S(0) achieves its mazimum,).

Notice that, by construction, the function S(6) is al-
ways concave down, and its maximum is close to the
orientation associated with ¢ (4, k).

Extensive numerical experiments demonstrate the
ability of this approach to provide a very accurate mea-
sure of the edge orientation. An example of application
of this algorithm is illustrated in Figure 7, using as a
test image a smooth function with an edge along the
boundary of a disk. The figure displays the average an-
gular error in the estimate of the edges orientation, as a
function of the scale a = 2727, where the average angle
error is defined by

ﬁ ST - 0,

tell

(IV.11)

E is the set of edge points, 6 is the exact angle and
0 the estimated angle. The average angle error us-
ing shearlets is compared to that obtained using the
wavelet approach, where the edge orientation is esti-
mated using (IV.9). Recall that this approach, for a
single scale, is equivalent to the estimation obtained
from Canny’s algorithm. Tests reported in Figure 7
show that the shearlet approach significantly outper-
forms the wavelet method, especially at finer scales, and
is extremely robust in the presence of noise. Note the
experiments shown in Figure 7 are a base line compar-
ison between the wavelet and shearlet multiscale repre-
sentations. Additional filtering or additional feature ex-
tractions could be used to improve their noise response.

If a pixel k correspond to a junction or a corner point,
then the orientation index £(j, k), given by (IV.10), will
identify the orientation of the ‘strongest’ edge. A more
precise analysis of this situation is discussed in the next
section.

B. Feature classification

Consider a simple image u containing edges and
smooth regions, like the one illustrated in Figure 8(a),
and examine the behavior of the discrete shearlet trans-
form SHul[j,l, k], at a fixed scale jy, for some typi-
cal locations k¢. As Figure 8 shows, we can recog-
nize four classes of points from the plot of s, (¢) =
|SHu[j0, ¢, ko]|. Namely, at the junction point kg = A,
Sk (£) exhibit three peaks corresponding to the orienta-
tions of the three edge segments converging into A; at
the point kg = B on a smooth edge, s, (¢) has a single
peak; at a point kK = D in a smooth region, sg,(¢) is
essentially flat; finally, at a point kg = C' “close” to an
edge, sk, (¢) exhibit two peaks (however they are much

smaller in amplitude than those for the points A and B).
The same behavior holds, essentially, for more general
images, even in the presence of additive white Gaus-
sian noise (provided, of course, that the SNR, is not too
small). In particular, at corner points, the behavior is
similar to that of point A, with the plot s4(¢) showing
two main peaks corresponding to the orientations of the
two segments converging to the corner point.

This suggests to devise a strategy for classifying
smooth regions, edges, corners and junctions based on
the plot patterns of Figure 8(b). We will proceed in
two steps. Let j = jo be a fixed (fine) scale. First,
since the magnitude of the discrete shearlet transform
coefficients at the points along the boundaries (includ-
ing smooth edges, corners and junctions) is significantly
larger than at the other points, they can be easily sep-
arated by looking at the energy function at k:

E(k) =) _|SHuljo, €, k]*.
L

We will refer to these points with large amplitude values
as boundary points.

Next, once the boundary points have been separated,
we will examine the “form” of the function si(¢) to dis-
tinguish edge points from corners and junction points.
That is, a point k is recognized as a regular edge point
if the corresponding function s (¢) has a single peak. If
more than one peak is present, k will be a corner or a
junction point.

Thus, for each boundary point k, let P, = {pp(¢) :
¢ =1,... N} where py(¢) is the normalized peak value
in the ¢ orientation and is given by

|SHu[jo.¢,K]|

Pk(f)z{ e, SHalio oo L€ Lis
0,

0 ¢ Ly,

and Ly is the set of orientations where local maxima of
the discrete shearlet transform occur, that is,

Ly = {¢:|SHuljo, ¥, k]| > |[SHuljo, ¢+ 1,k]|
and |SHuljo, ¢, k]| > |SHu[jo, £ — 1, ]|}

We present the following algorithm which uses the K-
mean clustering algorithm [33, Ch.10]:
Feature Classification Algorithm
o Using the Energy E(k) as the feature function, we
apply the K-Mean clustering algorithm, with Eu-
clidean metric, to cluster the image points into
three sets 11,12, Is. Namely, let Q) denote the set
of points I; where

max ?

1
lmaz = Arg Max T Z E(k).
! | l| kel



(a)

(a) Representative points on the test image. (b) Shearlet Transform pattern s(€), as a function of £ for the points indicated

Fig. 8.
n (a).

Q is identified as the set of boundary points. Let R
be the set I; where

min ’

1
imin = aTgmin 7l Z E(k).
‘ | l| kel;

R is the set of reqular points. The remaining set I;
contains the near edge points.

o Forapointk inl;,, . , sort the entries of the vector
Py as

[ﬁk(l)v e 71579(N)]7

where pp(1) = max{py(l) € Py}, Pr(2) =
max{pi(¢) € Py \ {pr(1)}}, and so on. Then using
again the K-Mean clustering algorithm on I; ..,
the set is further classified in two groups corre-
sponding to smooth edge points in one set, corner
and junction points in the other set.
It is clear that the algorithm described above can be fur-
ther refined to distinguish corner points from junction
points, and different classes of junction points having
different geometric features.

Figure 9 illustrates the application of the Feature
Classification Algorithm to three test images, at scale
7 =0, using N = 16 orientations. The results show the
separation of the image points into four classes: corners
and junctions (Figures b1-b3); smooth edges (Figures
c1-¢3); near-edge points (Figures d-d3); regular points
in smooth regions (Figures el-e3).

This shows that the shearlet approach provides a very
simple and computationally efficient framework for clas-
sifying several features of interest in an image. This has
some advantages with respect to wavelet-based methods
and other existing methods which do not have a specific
ability to capture the directional features of an image.
For example, using wavelets, in order to identify corner
points, one has to design a set of filters which is very
different from the one used to detect the smooth edges

coefficient pattern of A coefficient pattern of B

coefficient amplitude

0 5 10 15 20 0 s 10 15 20

coefficient pattern of C

coefficient amplitude

(b)

[29]. Furthermore, even in this case, the wavelet ap-
proach is unable to provide specific information about
the geometry of the corners or junctions because it is
based on isotropic filters (e.g., the 2D Mexican hat [29]).

C. Edge Detection Strategies

The shearlet transform provides a multiscale and
multi-directional framework which can be used to devise
several effective edge detection schemes. In the context
of edge detection, it was shown in several studies that
one can take advantage of the multiscale decomposition
of images to improve the robustness of an edge detector
in the presence of noise. In what follows, we will adapt
these ideas to propose several multiscale edge detection
schemes.

As in the wavelet approach, we will select the edge
point candidates of an image w by first identifying
the shearlet transform modulus mazima, that is, those
points (77, z) which, at fine scales j, are local maxima
of the function

Mju[nl, TL2]2 — Z(S)’lu[], f’ ni, 7’Lz])2.
¢

According to the results from Section II, we expect that,
if (77, mz2) is an edge point, the shearlet transform of u
will behave as

|SHulj, ¢, 77, Tiz)| ~ C 2759,

where 3 > 0.

If, however, 3 < 0 (in which case the size of |SHu| in-
creases at finer scales), then (77, Tz) will be recognized
as a delta-type singularity and the point will be classi-
fied as noise. Notice that a similar behavior holds for
the wavelet transform and it is similarly used for edge
detection. The sign of 3 can be estimated by computing
the best linear fit to the data

{lOg |‘S7—lu[.77 ga n_la TL_Q] |}3']:17



(b3)

(c3)

Fig. 9. (al-a3) Test images. ((b1-b3) Identification of corners and junctions. ((cl-c3) Identification of smooth edge points. ((d1-d3)
Identification of points near the edges. ((el-e3) Identification of regular points (smooth regions).

for the various values of ¢, where J is the last decom-
position level.

Using this procedure, edge point candidates for each
of the oriented components are found by identifying the
points for which 8 > 0. These components can then be
stitched together by simply adding them up, or using
additional constraints. Next, a non-mazimal suppres-
sion routine is applied to these points to trace along
the edge in the edge direction and suppress any pixel
value that is not considered to be an edge. The non-
maximal suppression routine is a standard routine in
the Canny edge detector [11]. Using this routine, at
each edge point candidate, the magnitude of the shear-
let transform is compared with the values of its neigh-
bors along the gradient direction (this is obtained from
the orientation map of the shearlet decomposition). If
the magnitude is smaller, the point is discarded; if it is
the largest, it is kept. This yields a set of possible edge
points denoted by eg. Finally, the set of edge points can
be further refined by

{[n1,n2] : eo[n1,m2] > T, ey * h|ni,na] > 0},

where h is a windowing filter and T" > 0 is an appropri-
ate threshold.

Numerical tests have shown that this procedure is
very effective at detecting edges. Its computational
complexity, however, is too high for practical use. For

this reason we suggest the following modification, which
follows essentially the same ideas, and uses the cascade
algorithm of the discrete shearlet transform to “rein-
force” the true edges and suppress the false ones.
Shearlet Edge Detection algorithm. Given a func-
tion u € (2(Z3;), let SH\Du[j, £, k] be the discrete shear-
let transform, given by

) ) (d

SH(d)u[],é, k] = v§ u * wj’g)[k]7
for j >0,-29 <0 <2 —1,kecZ%d=0,1, where
vgo)u = Sjux(G;,9), vlgl)u = Sjux(6,G;), and Sju =

ijlu * (Hj, HJ) Set

@y = [ 1SHOul CR)| > [SHOulj — 14,4,
Xe 0 otherwise,
and

Ry ulk] = 3 SHDulj, £, K] x" k).
£
Then vﬁd)u is modified as

d d . d d
@, _ {v(. ut B if o] < |RWl

otherwise.

o J
J R;-d)u

The edge candidates eju at level j are then given by

e2ulk] = <ZSHlu[j,€, k]) + (ZSHQUU,/@, k])
Vi 4

2
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Fig. 10. Results of edge detection methods.

From left to right: Original image, noisy image (PSNR=24.61 dB), Sobel result

(FOM=0.79), wavelet result (FOM=0.88), shearlet result (FOM=0.92).

Fig. 11. Results of edge detection methods.

From left to right: Original image,
(FOM=0.54), wavelet result (FOM=0.84), and shearlet result (FOM=0.94)

Fig. 12. Results of edge detection methods.

Note that vj(-d)u is modified to keep the scales small
for locations with positive Lipschitz regularity and in-
crease the scales for locations with negative Lipschitz
regularity.

The edge candidates for the J—th level are finally
filtered through the application of a non-maximal sup-
pression routine using the shearlet-based orientation
map followed by the application of hysteresis thresh-
olding. The hysteresis thresholding, which was also in-
cluded in the original Canny edge detector [11] (see also
[34, Ch.7]) is used as a means of eliminating streaking.
Streaking is the breaking up of an edge contour caused
by the edge detector operator output fluctuating above
and below a fixed threshold. Indeed, if a single thresh-
old T3 is applied to an image, then, due to noise, there
will be instances where the edge dips below the thresh-

From left to right: Original image, noisy image (PSNR=24.61 dB), Sobel result
(FOM=0.32), wavelet result (FOM=0.60), and shearlet result (FOM=0.89)

old. To avoid this, hysteresis uses 2 thresholds, a high
Ty and a low T,. Any pixel in the image that has a
value greater than Tj is presumed to be an edge pixel,
and is marked as such immediately. Then, any pixels
that are connected to this edge pixel and that have a
value greater than 75 are also selected as edge pixels.
We have tested several images using the Shearlet
Edge Detection algorithm described above, and com-
pared its performance to other well established edge de-
tectors. For the tests reported in Figures 10-12, each of
the images had an additive white Gaussian noise with
a standard deviation of 20. The shearlet decomposi-
tion tested consisted of 4 decomposition levels using
16 directional components. We compared the shearlet-
based routine against a similar wavelet-based routine
that was derived by removing the shearlet aspect of the
algorithm given above. Throughout all experiments the



wavelet and shearlet routines had the same fixed param-
eters. The comparison against this particular wavelet
routine highlights how the anisotropic aspect of shear-
lets can improve performance in detection. For a base-
line comparison against standard routines, we also used
the Sobel method using its default parameters [34]. The
standard Canny method was not used for comparisons
because we found that the default parameters provided
very poor results. By adjusting the variance used in
the default parameter for each test, better results can
be achieved. The issue of how to choose an appropriate
variance is exactly why multiscale methods, such as the
wavelet-based routine tested, have been suggested.

Several attempts have been made in the literature
to propose an objective measure for the performance
of an edge detector. While there is no consensus and
each of these measures has their limitations, one of the
most recognized measure is the Pratt’s Figure of Merit
(FOM) [35], whose definition is based on the combina-
tion of three factors: non detection of true edges, detec-
tion of false edges and edge delocalization error, which
is defined as

1 Na 1
F:
max(Ne, Ny) ; 14 ad(k)?’

where N, is the number of actual edge points, Ny is
the number of detected edge points, d(k) is the dis-
tance from the k-th actual edge point to the detected
edge point and « is a scaling constant typically set to
1/9. Hence, the output from Pratt’s Figure of Merit
is a fidelity function ranging from 0 to 1, where 1 is a
perfect edge detector. We computed the Pratt’ Figure
of Merit using the image shown in Figure 10 based on
the actual edge map that is known analytically. The
results reported in the following table confirm the vi-
sual impression that the shearlet approach outperforms
the other edge detectors considered in our tests. The
Pratt’ Figure of Merit was also computed for the im-
ages in Figures 11-12 and the results are reported in
the captions of those figures. Since in these cases the
exact edge maps were not known, they were computed
using the Canny algorithm on the image without noise.
The shearlet approach is shown to yield higher values
for the Figure of Merit.

Pratt’s FOM for the image of Figure 10

PSNR Shearlet Wavelet Sobel Prewitt
34.16 dB 0.94 0.93 0.88 0.87
28.14 dB 0.94 0.91 0.84 0.84
24.61 dB 0.92 0.88 0.79 0.78
22.10 dB 0.76 0.67 0.67 0.69

V. CONCLUSION AND FUTURE DIRECTION

Several concepts based on the shearlet framework
presented in this work have a great potential for de-
vising alternative improved edge analysis and detection
schemes. Since the notion of analyzing edges by looking
at the maxima of the wavelet transform has appeared,
a multitude of edge detection algorithms based on this
concept have been developed. In this work we have only
explored a few of these techniques by using the shear-
let transform. Several concepts, such as those in [36],
[15], could be further explored and adapted for their
use with the shearlet transform. This study shows that
the shearlet transform provides a multiscale directional
framework which is very competitive for the purpose of
edge analysis and detection. This approach is based on
a simple and rigorous mathematical theory which ac-
counts for the geometrical properties of edges. In par-
ticular, it provides an accurate method for extracting
the information about edges and their orientations even
in presence of noise. This opens the door to a number
of further applications including feature extraction and
shape recognition.
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