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ABSTRACT
The automated reconstruction of neuronal morphology is a fundamental task for investigating several problems associ-
ated with the nervous system. Revealing the mechanisms of synaptic plasticity, signal transmission, network connectivity
and circuit dynamics requires accurate quantitative analyses of digital three-dimensional reconstructions. Yet, while many
commercial and non-commercial software packages for neuronal reconstruction are available, these packages typically
provide limited quantitative information and require a significant manual intervention. Recent advances in applied har-
monic analysis, especially in the area of multiscale representations, offer a variery of techniques and ideas which have the
potential to dramatically impact this very active field of scientific investigation. In this paper, we apply such ideas for (i)
the derivation of a multiscale directional representation from isotropic filters aimed at detecting tubular structures and (ii)
the development of a multiscale quantitative measure capable of distingushing isotropic from anisotropic structures. We
showcase the application of these methods for the extraction of geometric features used for the detection of somas and
dendritic branches of neurons.

1. INTRODUCTION
The automated morphological reconstruction of neurons imaged by optical or fluorescent microscopy is a challenging
problem for which many algorithms and software packages have been proposed over many years.6 However, even the
most sophisticated of such packages have serious limitations, due to the difficulty of processing accurately complex three-
dimensional data sets which are affected by many sources of noise and signal degradation. The main task of a typical
algorithm for the automated reconstruction of neuronal morphology consists of segmenting the somas and the axonal and
dendritic branches of neurons in a way which is suitable for quantitative analysis and computational modeling. A variety
of methods have been employed to carry out this task. The purpose of this paper is to illustrate the application of some
powerful and innovative methods emerged in the area of multiscale representations during the last decade and whose impact
in the applied science has not been fully exploited yet. Such methods include directional multiscale representations such as
curvelets,2 shearlets10 and wavelets with composite dilations,5 which are designed to encode data containing anisotropic
features with higher efficiency than traditional multiscale systems; they also include isotropic wavelets11, 12 which provide
special rotation covariance properties. Thanks to their ability to capture the geometry of high-dimensional data with high
efficiency, this new generation of multiscale methods can be especially useful for the extraction of the intrinsic geometric
features of neurons. In particular, we will illustrate two specific applications of this ideas to (i) the detection of tubular
structures and (ii) the characterization of local isotropy.

The detection of tubular structure, in particular, is motivated by the to task of segmenting the axonal and dendritic
branches of neurons. To facilitate this problem, we introduce a novel directional representation derived from isotropic
filters which acts as a two dimensional Laplacian at the direction of the gradient of the intensity level of the image. This
representation is applicable to images which contain tubular structures along with more isotropic ones. A similar ideas was
used by one of the authors in a face recognition application to identify face components4 such as eyes, nose and mouth. In
this case, the singularity curves are used to model the edge boundaries associated with those face components. Since our
representation acts locally, it is able to pick derivatives at the direction of the image intensity gradient which is the direction
of the singularity curves.

Note that our new directional representation (Theorem 2.2, item 3, below) differs from other directional representations
appeared in the literature such as shearlets and curvelets since it does not have predetermined directional subbands. In
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reality, this representation is implemented by isotropic filters which act as directional filters by automatically aligning
perpendicularly to the direction of the singularity curves. As a result, this representation does not exhibit the sparsity
properties of shearlets and curvelets but it is computationally less intensive which is a significant advantage to deal with
large-size data. On the other hand, numerical experiments have shown the benefits of a combined application of the
proposed directional representation together with the shearlet representation, especially when the boundaries of the tubular
structure are faint or blurred.

The second problem considered in this paper is the development of an automated method to distinguish tubular from
non-tubular structures, and is motivated by the need to automatically identify the somas in images containing several
neurons. We introduce a new concept of multiscale local isotropy which is inspired by the theory of directional multiscale
representations (e.g., shearlets) and which allows us to define a quantitative measure of local isotropy. Our numerical
experiment show that the application of this method is very competitive in segmenting somas, even in the situation of
confocal images of cultured neurons where there are several colluded somas and their intensities are far from being uniform.

2. DIRECTIONAL REPRESENTATIONS FROM OMNIDIRECTIONAL CYLINDRICAL
SINGULARITY DETECTORS IN 3D FROM ISOTROPIC FILTERS

We begin by introducing a generic model for tubular structures such as dendrites and axons. Clearly, a similar model is
also applicable to other tubular structures such as blood vessels and branches of the bronchial tree.

2.1. Modeling tubular structures
We denote by e1 = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1). A plain cylinder in R3 can be modelled using the tensor
product of a compactly supported function gl1,l2(x) and of a Gaussian gr(y,z) = e−(y2+z2)/r2

:

fl1,l2,r(x,y,z) = gl1,l2(x)gr(y,z) x,y,z,∈ R r > 0.

The first of the two is even, non-increasing on the positive half axis and satisfies

gl1,l2(x) = 1 if 0 ≤ x ≤ l1
gl1,l2(x)> 0 if l1 < x < l2
gl1,l2(x) = 0 if l2 ≤ x.

Assumptions: Factor gl1,l2 controls the length of this generic tube, while the second factor controls the decay of the
image intensity values in a cross-section of this structure. We assume that gl1,l2 and its first-order derivative are both
absolutely continuous, so g′l1,l2 and g′′l1,l2 are both absolutely integrable. In the prototype model the x-axis is the centerline
of fl1,l2,r.

Needless to mention that a generic tube in 2D has a similar structure and our analysis below applies verbatim to 2D
as well. Henceforth, we fix the dimension of the underlying Euclidean domain to three. Any prototype cylinder can be
reoriented by applying a 3D rotation R on the argument of fl1,l2,r so that its centerline points to the desired direction. In this
paper, we assume that acquisition is isotropic and the bandwidth is sufficiently large to not generate aliasing artifacts due to
the spatial orientation of the cylinder. The former assumption is used to simplify of our arguments. In practice, anisotropic
sampling grids are used to reduce quantum light artifacts such as photo bleaching. The action, in this more general case,
of the isotropic Laplacian filters h and ϕ defined below is studied in.8 Now, let R be a 3D rotation matrix, that is, take
R ∈ SO(3), and denote R f (x,y,z) := f (R(x,y,z)). A dendritic arbor I of a neuron can then be modelled as finite sum of
simple tubular structures, that is:

I =
n

∑
i=1

K

∑
k=1

J

∑
j=1

ai,k, j TxiRk fl j ,L j ,r j , Rk ∈ SO(3), ai,k, j > 0,

where R1,R2, . . . ,RK are the 3D rotations corresponding to R1,R2, . . . ,RK and Txi f (x) := f (x−xi), x ∈R3. Here, ai,k, j > 0
is a constant representing the maximum image intensity along the centerline of the tubular segment TxiRk fl j ,L j ,r j . At this
point we assume that the intensity along the centerline of any component TxiRk fl j ,L j ,r j of the tubular structure is constant.
Specializing to dendrites and axons, this assumption is practically equivalent to accepting that the concentration of the



fluorescent dye along a dendritic branch is constant. To make this assumption more realistic we point that our model also
accounts for the case where tubular segments are taken short enough allowing thus, the fluorescent agent concentration to
be considered as constant in each one of these short segments, but, overall, the concentration can vary within the dendritic
arbor.

2.2. Detection of tubular structures
Now, let ϕ ∈ L2(R3) be a radial function such that ξ 7→ ||ξ ||2ϕ̂(ξ ) is also absolutely integrable and bounded. Now define
h by ĥ(ξ ) := ||ξ ||2ϕ̂(ξ ), ξ ∈ R3. In addition, we assume that ϕ and all of its derivatives up second order are absolutely
integrable.

Before proceeding to the rest of this section, we need to introduce a local Cartesian coordinate system adopted for each
contributing part TxiRk fl j ,L j ,r j of the tubular structure. The axes of this local Cartesian system are the original x,y,z axes
of the R3 reoriented by the action of the rotation Rk and the origin (0,0,0) is shifted to xi.

By changing variables and by using the radiality of h, we infer

(TxiRk fl1,l2,r ∗h)(x) =
∫
R3

fl1,l2,r (Rk(x−xi)− s)h(RT
k s)ds = fl1,l2,r ∗h(Rk(x−xi)) . (1)

Apparently the same equality is also valid with ϕ instead of h:

(TxiRk fl1,l2,r ∗ϕ)(x) = fl1,l2,r ∗ϕ (Rk(x−xi)) . (2)

The continuity of fl1,l2,r and the integrability of ĥ imply

fl1,l2,r ∗h(Rk(x−xi)) =
∫
R3

f̂l1,l2,r(ξ )ϕ̂(ξ )||ξ ||
2e2πiξ ·(Rk(x−xi))dξ = ∆( fl1,l2,r ∗ϕ)(Rk(x−xi)) .

Therefore, we conclude

(TxiRk fl1,l2,r ∗h)(x) = ∆( fl1,l2,r ∗ϕ)(Rk(x−xi)) =
∂ 2

∂x2 ( fl1,l2,r ∗ϕ)(x0)+

(
∂ 2

∂y2 +
∂ 2

∂ z2

)
( fl1,l2,r ∗ϕ)(x0) , (3)

where x0 = Rk(x− xi). Eq. (3) is the key observation that leads to Theorem 1. That is, the 3D-isotropic Laplacian of
the filtered output of the tubular structure has two components, the axial and the cross-sectional 2D Laplacian; the former
is negligible but the latter practically equals the 3D Laplacian. This observation will help us to show that the action on
the tubular structure of the 3D-isotropic Laplacian filters is essentially equivalent to the action of cylindrically symmetric
directional 2D Laplacian filters filters. A similar statement holds true for ϕ as well. All these facts are articulated in
Theorem 1.

Now, pick an accuracy threshold ε > 0. We make the simplifying assumption that x0 is sufficiently away from both
ends of the tubular structure fl1,l2,r. In fact, under this assumption we practically imply that the spatial extend of filter ϕ is
relatively smaller than that of the tubular structure of the dendritic branch. More precisely, we assume |x0 · e1|+ r0 < l1.
Therefore, with no loss of generality we can shift the axial center of the tubular structure from the origin to another point
on the x-axis so that x0 = (0,y0,1,z0,1). Now, the integrability of ξ 7→ ||ξ ||2ϕ̂(ξ ) and the well-known Riemann-Lebesgue
lemma imply that we can select r0 > 0 such that |Dα ϕ(y)|<min{ε/2l2,ε}, if ||y|| ≥ r0 and |α| ≤ 2. These two observations
are summarized in the following lemma:

LEMMA 2.1. Let ε > 0 and ϕ ∈ L1(R3) be a radial function such that ξ 7→ ||ξ ||2ϕ̂(ξ ) is also absolutely integrable and
Dα ϕ ∈ L1(R3) for all |α| ≤ 2. Then, there exists 0 < r0 such that:

1. |Dα ϕ(y)|< min{ε/2l2,ε} if ||y|| ≥ r0 and |α| ≤ 2.

2.
∫
|x|>r0

|Dα ϕ |< ε .



Figure 1. Volume rendering of the directional filter ω derived from ϕ which automatically aligns itself locally with the axis of the tubular
structure

Figure 2. The cross section at the center of its symmetry of ω shown in Fig. 1. This cross section is equal to a specific example of ω .



In other words, we choose filters ϕ with a sufficient smoothness and spatial localization. One way to achieve this is
to choose r0 < l1/4. In practice, we don’t work with a single filter ϕ but with an ensemble of filters living at different
scales, from fine to coarse provided that we maintain the requirement |x0 · e1|+r0 < l1. These mathematical considerations
reaffirm what we have seen in practice: Filters with bigger r0 are be suitable for thicker and longer tubular structures while
the ones with a smaller r0 are fit to capture short and thin tubular structures.

THEOREM 2.2. Let ε > 0 and ϕ ∈ L1(R3) be a radial function such that ξ 7→ ||ξ ||2ϕ̂(ξ ) is also absolutely integrable and
Dα ϕ ∈ L1(R3) for all |α| ≤ 2 and r0 > 0 be as in Lemma 2.1. Then, the following are true:

1. For every point x that is sufficiently far from the endpoints of the tubular structure TxiRk fl1,l2,r, in the sense∣∣(x−xi) · (RT
k e1)

∣∣+ r0 < l1, we have∣∣(TxiRk fl1,l2,r ∗ϕ)(x)−gr ∗ω (y(x0),z(x0))
∣∣≤ ||gr||1ε ,

where y(x0) and z(x0) are the second and third components of x0 respectively and

ω(y,z) :=
∫
R

ϕ(x,y,z)dx . (4)

2. Filtering the tubular structure with the 3D Isotropic Laplacian filter h practically amounts to applying the 2D Lapla-
cian on the cross-section of the tubular structure TxiRk fl1,l2,r: Specifically, for every x as in the previous item we
have ∣∣(TxiRk fl1,l2,r ∗h)(x)−gr ∗∆y,zω (y(x0),z(x0))

∣∣< 3||gr||1ε

where, ∆y,z =
∂ 2

∂y2 +
∂ 2

∂ z2 . Hence, for all practical purposes, the outcome of the filtering process of the tubular structure
with both ϕ and h depends only on the relative position of the point x with respect to the cross-section of the tubular
structure derived by the plane containing x and by the properties of this cross-section.

3. Moreover, the filtering with the 3D isotropic filters ϕ and h is equivalent to filtering with directional filters that auto-
matically align themselves with the axis of the tubular structure. More precisely, if 0< r0 < r1, where

∣∣(x−xi) · (RT
k e1)

∣∣+
r1 < l1 and C =

∫
R gr0,r1(x)dx, then the following are true:∣∣∣∣(TxiRk fl1,l2,r ∗ϕ)(x)− 1

C
TxiRk fl1,l2,r ∗Rk(ωgr0,r1)(x)

∣∣∣∣≤ ||gr||1ε, (5)

and ∣∣∣∣(TxiRk fl1,l2,r ∗h)(x)− 1
C

TxiRk fl1,l2,r ∗Rk
(
(∆y,zω)gr0,r1

)
(x)

∣∣∣∣< 3||gr||1ε (6)

The proof of Theorem 2.2 is given in8 and for more general cross-sections gr’s.

Theorem 2.2 will next be used to derive a method to detect the boundary surface of the tubular structure. Since Gaussian
functions are supported over the entire real line we must now incorporate in our model the location of the boundary of the
tubular structure. This has not been done so far and to the best of our knowledge we are the first to propose this addition to
the model. Taking into account

∆y,zgr(ρ) =
1
ρ

∂
∂ρ

ρ
∂
(

e−
ρ2

r2

)
∂ρ

=
2e−

ρ2

r2

r2

(
2ρ2

r2 −1
)

ρ > 0 ,

we postulate that the boundary of the tubular structure is located at radial distance r/
√

2 from the centerline. This radius
coincides with the inflection point of the cross-section gr. We choose to model the tubular structure boundary at this
radius, since it is the rate of decay of the values gr gradually slows down for radial distances greater than r/

√
2. This

theoretical model naturally associates with the observed gradual decay of the fluorescent intensity expressed by counts
of photons originating from the boundary region of the tubular structure. According to this theoretical model for the



Figure 3. Color representation of the Laplacian where ϕ is a 2D Gaussian.

tubular structure, the change in the sign of the second order derivative of the Gaussian cross-section can characterize
the boundary of the structure better than the values of the Gaussian function itself, especially, when the fluorescent dye
has weak concentrations, e.g. in distal dendritic branches, and thus intensity values do not decay fast enough to allow a
threshold-based discrimination of the structure from the background with sufficient confidence. This change in the sign
of ∆y,zgr is what we use as one of the features in order to segment the volume of the dendritic arbor and of axons. This
segmentation9 also gives us the somas in the same volume with dendritic arbors. The next step is to find how filtering with
ϕ can capture accurately the change in the sign of ∆y,zgr.

PROPOSITION 2.3. Assume that the hypotheses of Theorem 2.2 hold true and
∣∣1− ϕ̂(ξ )

∣∣ < ε for a.e. ||ξ || < r0. Let also
K > 0 be such that r0 of Lemma 2.1 satisfies r0 >

K
r where K is determined by∫

||(ξ2,ξ3)||>K
r

ĝr(ξ2,ξ3)(ξ 2
2 +ξ 2

3 )dξ2dξ3 <
ε

1+ ||ϕ ||1
. (7)

Then, for every xi and rotation Rk we have∣∣(TxiRk fl1,l2,r ∗h)(x)−∆y,zgr (y(x0),z(x0))
∣∣≤ (3||gr||1 +1)ε

for every x that is sufficiently far from the endpoints of the tubular structure TxiRk fl1,l2,r, in the sense
∣∣(x−xi) · (RT

k e1)
∣∣+

r0 < l1.

Proof: We begin by noting ∣∣(TxiRk fl1,l2,r ∗h)(x)−∆y,zgr (y(x0),z(x0))
∣∣

=
∣∣(TxiRk fl1,l2,r ∗h)(x)−gr ∗∆y,zω (y(x0),z(x0))−∆y,zgr (y(x0),z(x0))+gr ∗∆y,zω (y(x0),z(x0))

∣∣
≤
∣∣(TxiRk fl1,l2,r ∗h)(x)−gr ∗∆y,zω (y(x0),z(x0))

∣∣+ ∣∣gr ∗∆y,zω (y(x0),z(x0))−∆y,zgr (y(x0),z(x0))
∣∣;

From item 2 of Theorem2.2 we know that the first term of the previous sum does not exceed 3||gr||1ε . Now, we need to
show the second term is bounded above by 3ε . If we take the Fourier transform of second term, we get

(gr ∗∆y,zω −∆y,zgr)
∧(ξ2,ξ3) = ĝr(ξ2,ξ3)(ξ 2

2 +ξ 2
3 )ω̂(ξ2,ξ3)− ĝr(ξ2,ξ3)(ξ 2

2 +ξ 2
3 ) . (8)

Now, we will show the norm of the right-hand side of Equation (8) is less than 3ε ,∫
R2

∣∣ĝr(ξ2,ξ3)(ξ 2
2 +ξ 2

3 )ω̂(ξ2,ξ3)− ĝr(ξ2,ξ3)(ξ 2
2 +ξ 2

3 )
∣∣dξ2dξ3 =

∫
R2

ĝr(ξ2,ξ3)(ξ 2
2 +ξ 2

3 )|ω̂(ξ2,ξ3)−1|dξ2dξ3



≤
∫
||(ξ2,ξ3)||≤K

r

ĝr(ξ2,ξ3)(ξ 2
2 +ξ 2

3 )|ω̂(ξ2,ξ3)−1|dξ2dξ3 +
∫
||(ξ2,ξ3)||≥K

r

ĝr(ξ2,ξ3)(ξ 2
2 +ξ 2

3 )(|ω̂(ξ2,ξ3)|+1)dξ2dξ3

Taking into account the assumptions
∣∣1− ϕ̂(ξ )

∣∣< ε for a.e. ||ξ ||< r0, (7) and the fact ω̂(ξ2,ξ3) = ϕ̂(0,ξ2,ξ3) a.e. we
conclude ∣∣(TxiRk fl1,l2,r ∗h)(x)−∆y,zgr (y(x0),z(x0))

∣∣≤ (3||gr||1 +1)ε (9)

This completes the proof of Proposition 2.3.

An example of a filter ϕ satisfying the assumptions of Proposition 2.3 is given by

ϕ̂(ξ ) = Pn
(
Cn,σ∥ξ∥2)e−Cn,σ ∥ξ∥2

, ξ ∈ R3

where Pn is the Taylor polynomial of degree n associated with the exponential function ex and Cn,σ = (n+1)/(2πσ)2. The
functions ϕ of this type are called Hermite Distributed Approximating Functionals and were first proposed in.7 Their main
property is that their inflection point of ϕ̂ is at radial distance 2πσ from the origin. As it has been shown1, 3 the inflection
point of ϕ̂ stays at this distance for every n. However, as n increases one can achieve ϕ̂(ξ ) ≈ 1 for a ball of radius 2πσ .
Specifically, for a given ε > 0 and 1 ≤ b < 2 we can determine n big enough so that

∣∣1− ϕ̂(ξ )
∣∣< ε for a.e. ||ξ ||< bπσ .

To apply Proposition 2.3 we pick r0 as prescribed by Proposition 2.3 and we need to take n big enough to secure

bπσ < r0 .

3. A MULTISCALE MEASURE OF LOCAL ISOTROPY
Let A ⊂ R3. If x ∈ A we say that A is locally isotropic at x and at scale s > 0 if B(x,s/2) ⊆ A. Obviously the scale at
which the isotropy is observed is not uniquely. For example, let A be a ball of radius S > 0. Then, the ball at its center
is locally isotropic at any radius up to scale 2S. However, as the point of interest moves closer to the boundary the scale
of isotropy is being reduced, as expected. On the antipodal end let fl1,l2,r be a tubular structure as defined in the previous
section. Then, at any point of its centerline the tubular structure has local isotropy of scale up to 2r. So , at a small scale
and in every structure with non-empty interior, an interior point can be regarded as a point of local isotropy. So, in order
to distinguish structures which are highly directional such as a tube from other less directional structures, we propose to
use the concept of local isotropy but the selection of the scale for this determination is critical. To accomplish this task we
propose to use a family of very simple filters which are inspired by Radon transform:

Let, 0 < r < s. Define
χs,r := χ[− s

2 ,
s
2 ]×[− r

2 ,
r
2 ]

(d−1)

and take the family of all of its rotations Rχs,r. In practice, we consider only a finite set of rotations. The next result gives
some rise to a quantity we call Directional Ratio at scale s (DRs) defined by

DRs(x) = sup
0<r<s

min{⟨χA,TxRχs,r⟩ : R ∈ SO(d)}
max{⟨χA,TxRχs,r⟩ : R ∈ SO(d)}

,

where d = 2,3 and x is an interior point of A (see Fig. 4). Note, that when x is an interior point of A the quantity DRs(x)
is well defined for every scale s > 0. In any image, since even the finest structures have non-empty interior of width of at
least one pixel/voxel, every point in the image is interior to some structure. So the function DRs can be computed for every
pixel/voxel.

PROPOSITION 3.1. Suppose that A is a closed subset of R3 and that x is point of local isotropy of A at scale S. Then,
DRs(x) = 1 for every 0 < s ≤ S. Moreover, DRs is locally rotationally invariant and scale and it also obeys a simple
covariance rule under the action of rigid motions:

For any rigid motion Q, the directional ratio of Q(A) at Qx at any scale is equal to directional ratio of A at x at the
same scale.



Last, DRs obeys a simple scale covariance rule: For every closed subset A and scale s, the directional ratio for aA at
ax, DRas(ax) is equal to the directional ratio for A at x DRs(x)

Proof If x is point of local isotropy of A at scale S then the ball B(x,S/2) is contained in A. Then, for a fixed s ≤ S and
any rotation R we have

lim
r→0

⟨
χA\B(x, S/2), TxRχs,r

⟩
= 0 . (10)

Moreover, the radial symmetry of B(0,S/2) implies that for every 0< r < s we have
⟨
χB(x,S/2), TxRχs,r

⟩
=
⟨
χB(0,S/2), Rχs,r

⟩
=⟨

χB(0,S/2), χs,r
⟩
. The right-hand side of the previous equation depends only on r. Since, the representation R → R is con-

tinuous on SO(d) and the topology of pointwise convergence (Strong Operator Topology)in the space of bounded operators
defined on L2(Rd) and SO(d) is compact there exist rotations R1,r and R2,r such that

min{⟨χA,TxRχs,r⟩ : R ∈ SO(d)}= ⟨χA,TxR2,rχs,r⟩

and
max{⟨χA,TxRχs,r⟩ : R ∈ SO(d)}= ⟨χA,TxR1,rχs,r⟩ .

So,
min{⟨χA,TxRχs,r⟩ : R ∈ SO(d)}
max{⟨χA,TxRχs,r⟩ : R ∈ SO(d)}

=
⟨χA,TxR2,rχs,r⟩
⟨χA,TxR1,rχs,r⟩

=

⟨
χB(0,S/2), χs,r

⟩
+
⟨
χA\B(x, S/2), TxR2,rχs,r

⟩⟨
χB(0,S/2), χs,r

⟩
+
⟨
χA\B(x, S/2), TxR1,rχs,r

⟩
which due to Eq. (10) implies

lim
r→0

min{⟨χA,TxRχs,r⟩ : R ∈ SO(d)}
max{⟨χA,TxRχs,r⟩ : R ∈ SO(d)}

= 1 .

Now, we turn our attention to proof of the second statement of Proposition 3.1. By local rotational invariance we mean
invariance to a rotation centered at x. Such a rotation is the composition of, first, of a shift by −x moving the origin to x,
then of a rotation and finally of a shift by x. Thus, the action of a local rotation centered at x on A is expressed by the action
of the corresponding operators on χA. Therefore, the characteristic function of the set A transformed under the action of
the local rotation centered at x is equal to TxQT−xχA, where Q is the rotation matrix inducing Q. Thus, for all s,r we have

⟨TxQT−xχA,TxRχs,r⟩= ⟨T−xχA,Q
∗Rχs,r⟩= ⟨χA, Tx(Q

∗R)χs,r⟩ .

Since, QT (SO(d)) = SO(d), we infer that DRs(x) of A and of A transformed under the action of the local rotation are equal.
In a similar, fashion we derive the rotational covariance rule: For any Q ∈ SO(d), the directional ratio of Q(A) at Qx at any
scale is equal to directional ratio of A at x at the same scale. The rule follows easily after observing QTQx = TxQ and

⟨Q∗χA,TQxRχs,r⟩= ⟨χA,Tx(QR)χs,r⟩ ,

for all s,r > 0. The covariance rule for shifts is derived by adopting the previous steps for rotations. Finally, to prove scale
covariance first take a > 0, a scaling factor. Define a dilation operator Da f (y) = f ( y

a ), y ∈ Rd . Observe, D∗
aTax = TxD∗

a.
Next, for r < s

⟨χaA,TaxRχas,ar⟩= ⟨DaχA,TaxRχas,ar⟩= ⟨χA,TxRD∗
aχas,ar⟩= ⟨χA,TxRχs,r⟩ .

The previous equations imply that for every scale s, the directional ratio for aA at ax, DRas(ax) is equal to the directional
ratio for A at x DRs(x) for every A. This completes the proof Proposition 3.1.

Next, we discuss if the converse statement of Proposition 3.1 is true. In particular, let us assume that if x is an interior
point of A the measure of B(x,S/2)∩Ac is non-zero. If A is the ball B(x,S/4) obviously λ (B(x,S/2)∩Ac) > 0, but still,
due to the rotational invariance of B(x,S/4) the directional ratio at x and at scale S is still equal to 1, but x is not a point
of isotropy for B(x,S/4) at this scale. This example suggests that directional ratio alone is not sufficient to characterize
points of isotropy of closed sets in 2D or 3D. However, with a bit of additional information it is feasible to obtain a partial
converse of the first assertion of Proposition 3.1.

PROPOSITION 3.2. Assume that A is a closed set with non-empty interior and x is an interior point of A. Moreover, assume
that there exists S > 0 and a rotation R such that x+RT ([− s

2 ,
s
2 ]× [− r

2 ,
r
2 ]

(d−1)) ⊆ A for some 0 < r ≤ S. If DRS(x) = 1,
then x is a point of isotropy of A at scale S.



Proof: Let Q be an arbitrary rotation and 0 < p < r, then we observe⟨
χA,TxQχS,p

⟩
= ||χA∩(x+QT ([− S

2 ,
S
2 ]×[− p

2 ,
p
2 ]

(d−1)))|| ≤ Spd−1 (11)

Hence,
min{

⟨
χA,TxQχS,p

⟩
: Q ∈ SO(d)} ≤ Spd−1

for all Q ∈ SO(d) and p > 0. On the other hand, the assumption x+RT ([− S
2 ,

S
2 ]× [− r

2 ,
r
2 ]

(d−1)) ⊆ A for some 0 < r ≤ S
and some rotation R implies, due to (11),

max{
⟨
χA,TxQχS,p

⟩
: Q ∈ SO(d)}= Spd−1 .

To complete the proof we need to establish B(x,S/2)⊆ A. Assume, that the contrary is true. Let y ∈ B(x,S/2)∩Ac. Since
A is closed, there exists 0 < p0 < r such that B(y, p0) ⊂ B(x,S/2)∩Ac. Since DRS(x) = 1, for any given ε > 0 and every
0 < p < p′, where p′ < min{r, p0/2} and is determined by ε , we have

min{
⟨
χA,TxQχS,p

⟩
: Q ∈ SO(d)}

max{
⟨
χA,TxQχS,p

⟩
: Q ∈ SO(d)}

≥ 1− ε .

The previous inequality is also valid for an orientation Q0 ∈ SO(d) which moves the axis of the slab x+RT ([− S
2 ,

S
2 ]×

[− r
2 ,

r
2 ]

(d−1)) to the line segment connecting x and y. Then, inside the ball B(y, p0) we can find a smaller slab

y+QT
0

([
− p0

2
,

p0

2

]
×
[
− p

2
,

p
2

](d−1)
)

.

This slab resides inside the bigger slab x+QT
0 ([−

S
2 ,

S
2 ]× [− p

2 ,
p
2 ]

(d−1)). However, the smaller slab is not contained in A but
it is contained in Ac. Therefore,

Spd−1 − p0 pd−1

Spd−1 ≥
⟨
χA,TxQχS,p

⟩
Spd−1 =

min{
⟨
χA,TxQχS,p

⟩
: Q ∈ SO(d)}

max{
⟨
χA,TxQχS,p

⟩
: Q ∈ SO(d)}

≥ 1− ε .

Consequently, if we select ε < p0/S, then we arrive at a contradiction. This argument completes the proof of this proposi-
tion.

Directional ratios at various scales are used for the segmentation of somas in fluorescent images of cultured neurons.
After segmenting the volume of neuronal cells from the background will have a binary image were somas, dendrites and
even axons are present. Axons and dendritic arbors have tubular structure therefore there directional ratio is small. On the
other hand, somas are more isotopic therefore in their interior the directional ratio for relatively big scales S is high, as
anticipated due to Proposition 3.1. The difference between the values of the directional ratio inside somas and in the more
tubular parts of the images we analyze at the same scale S allows us to distinguish somas from dendrites. To identify the
boundaries of somas are we use a level set approach where, in principle, evolutions are initialized is given by the boundary
of the set DR−1

S ({1}). The vector field for these evolutions is given by the gradient of DRS. Typically, we use multiple
scales S to drive these evolutions.
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Figure 4. Illustration of the main idea of the definition of the function DRs and of the proof of Proposition 3.1. As r → 0 the parallilepiped
[− s

2 ,
s
2 ]× [− r

2 ,
r
2 ]

(d−1) is almost contained in B(x,s/2) if x is a point of isotropy of A at scale s, forcing DRs(x) = 1.
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