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Abstract

In this paper, we introduce a novel two-stage denoising method for the removal
of random-valued impulse noise (RVIN) in images. The first stage of our al-
gorithm applies an impulse-noise detection routine that is a refinement of the
HEIND algorithm and is very accurate in identifying the location of the noisy
pixels. The second stage is an image inpainting routine that is designed to
restore the missing information at those pixels that have been identified dur-
ing the first stage. One of the novelties of our approach is that our inpainting
routine takes advantage of the shearlet representation to efficiently recover the
geometry of the original image. This method is particularly effective to elimi-
nate jagged edges and other visual artifacts that frequently affect many RVIN
denoising algorithms, especially at higher noise levels. We present extensive
numerical demonstrations to show that our approach is very effective to remove
random-valued impulse noise without any significant loss of fine-scale detail.
Our algorithm compares very favourably against state-of-the-art methods in
terms of both visual quality and quantitative measurements.

Keywords: Image denoising; inpainting; morphological component analysis;
random-valued impulse noise; shearlets; wavelets.

1. Introduction

Random-valued impulse noise (RVIN) is a common cause of image degrada-
tion, frequently found in images acquired from digital cameras and is usually
due to malfunctioning camera sensors, faulty memory locations in hardware,
or transmission in a noisy channel. RVIN is characterized by the alteration of
specific pixels in an image with the result that their intensity values become
incompatible with the neighbouring pixels [1]. The presence of impulse noise
may severely corrupt the information embedded in the original data and it is
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critical to correct the image degradation before subsequent image processing
tasks such as edge detection, feature extraction or classification.

Non-linear filters such as median (MED) filters are popular techniques for
removing RVIN because of their simplicity and low computational cost [1, 2].
However, conventional median filters apply the median operation uncondition-
ally, that is, without discriminating between corrupted and uncorrupted pixels.
As a result they modify both noisy and noise-free pixels alike causing loss of
image detail that may be especially significant at higher noise levels.

To overcome these limitations, an effective strategy consists in applying first
an impulse-noise detection routine so that only the noisy pixels would undergo
a filtering process. Several two-stage denoising algorithms have been proposed
based on this processing strategy, most notably the directional weighted median
filer (DWM) [3], the switching median filter with boundary discriminative noise
detection (SM-BDND) [4], the direction-based adaptive weighted switching me-
dian filter (DAWSM) [1] and the homogeneous amount based (HAB) filter [5].
The efficiency of these two-stage denoising schemes clearly depends on the com-
bined efficiency of impulse detection and filtering routines used. The DWM,
in particular, uses a direction-based approach to detect noisy pixels that com-
putes the difference between a pixel and its neighbors within a window of size
5; the detected noisy pixels are then replaced by the output of a directional
weighted median filter [1]. The SM-BDND algorithm applies the boundary
discriminative noise detection method to detect noisy pixel positions; detected
noisy pixels are then replaced by the median value of the pixels in the filtering
window. The DAWSM algorithm uses a sophisticated impulse-noise detection
method, called Highly Effective Impulse Noise Detection algorithm (HEIND),
originally proposed by Duan et al. [6]. HEIND uses both boundary and direc-
tional information to detect noisy pixels; after the detection stage, the noisy
pixels are replaced by the weighted median value of uncorrupted pixels in a
directional filtering window. The Fuzzy Weighted Non-Local Means method
(FWNLM) proposed by Wu et al. [7] that uses a fuzzy weighting function with
the non-local means algorithm to selectively pick pixels when calculating the
pixel similarity. We also recall the multistage denoising method by two of the
authors in [8], which uses a simple directional filter similar to the method in [2]
to detect noisy pixels, followed by a total-variation inpainting routine1.

Although multistage RVIN denoising schemes perform consistently better
than conventional median filters, they frequently produce jagged edges and in-
troduce visual artifacts, such as block effects, in the processed images especially
at higher noise levels. This limitation is due to the fact that, even though
these algorithms can efficiently estimate the location of noisy pixels and enforce
compatibility among neighboring pixels, they are usually not very efficient in
recovering the geometry of the corrupted data. This is particularly evident at

1This algorithm is specifically designed to handle salt and pepper noise, and both its
noise-detection and inpainting routines are much less sophisticated than those that will be
considered in this paper.
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higher noise levels, where the problem of recovering the information at the lo-
cations of corrupted pixels is more challenging. This observation is indeed the
motivation for some recent work in [9], where the denoising algorithm includes
a routine designed to recover the edge information, and [5], where the task
to restore the corrupted information is handled by a total-variation inpainting
method.

In this paper, we propose a novel two-stage algorithm for restoring data af-
fected by RVIN which includes, as a first stage, a very efficient impulse-noise
detector that we obtain as a refinement of the HEIND algorithm and, as a sec-
ond stage, an innovative shearlet-based image inpainting routine to restore the
corrupted pixels. The main advantages of our approach are due to (1) the im-
proved method for impulse-noise detection and (2) the application of the image
inpainting routine, taking advantage of the properties of shearlets to efficiently
recover the geometry of the original image. The shearlet representation, intro-
duced by one of the authors and his collaborators, is an advanced multiscale
method providing optimal approximation properties for images with edges. It
was recently proven that shearlets have a superior ability to recover occluded
edges and their application to image inpainting can significantly outperform
other conventional inpainting algorithms [10].

As a part of this work, we numerically analyze the performance of our de-
noising algorithm and present extensive numerical demonstrations on images de-
graded by two classical types of random-valued impulse noise with a wide range
of noise levels varied from 10% to 80%. We compare our algorithm against
a range of conventional and state-of-the-art denoising schemes, including the
median filer (MED), the modified noise adaptive soft switching median filter
(MNASM) with HEIND detector [6] (H-MNASM), the SM-BDND method[4],
the FWNLM method [7] and the DAWSM method [1]. We have also included
the comparison with a version of our algorithm containing another more tra-
ditional inpainting method, based on total variation. The experimental results
reported in this paper show that our algorithm is extremely competitive for
RVIN denoising and outperforms current state-of-the-art algorithms in terms
of visual quality and objective measures. In particular, our approach virtually
eliminates jagged edges and other visual artifacts which are frequent in other
RVIN denoising algorithms, especially at higher noise levels.

The rest of the paper is organized as follows. In Section 2, we present
our new two-stage denoising algorithm, combining an improved method for the
detection of RVIN (Section 2.2) and a powerful image inpainting method (Sec-
tion 2.3). In Section 3, we provide extensive numerical experiments to validate
our algorithm even under very challenging noise conditions and compare our
results against several other state-of-the-art denoising methods. We conclude
with some remarks in Section 4.
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2. Proposed random-valued impulse noise detection method

As indicated above and illustrated in Figure 1, in this paper we adopt a two-
stage denoising strategy. The first stage of our algorithm is devoted to detect
the location of the pixels affected by impulse noise. Once the noisy pixels are
detected, they are handled as missing pixels that need to be restored. Hence,
the second stage of our algorithm is an image inpainting routine designed to
recover the information at the noisy pixel locations.

Before presenting the detailed description of the two stages of our algorithm,
we briefly review the noise models that are considered in this paper.

2.1. Impulse-noise models

Four impulse-noise models are usually described in the literature [1, 4].

1. Noise Model 1. The simplest impulse-noise model is the salt-and-pepper
noise where pixels are randomly corrupted by two fixed extreme values,
usually 0 and 255 (for 8-bit grayscale images), with the same probability.
That is, for each pixel location (i, j) in the image, with intensity value si,j ,
the corresponding pixel in the noisy image is xi,j where the probability
density function of xi,j is

f(x) =


p/2 for x = 0

1− p for x = si,j

p/2 for x = 255

and p is the noise density (0 < p < 1).

2. Noise Model 2. It is similar to Model 1, with the difference that the
probabilities of “salt” and “pepper” are unequal. That is, the probability
density function of xi,j is

f(x) =


p1 for x = 0

1− p for x = si,j

p2 for x = 255

where p = p1 + p2 with p1 6= p2 (and 0 < p < 1).

3. Noise Model 3. Instead of taking two fixed values, impulse-noise is modeled
by two fixed ranges of same length m, that appear at both ends of the
integer range. This definition provides a more realistic modeling of noise
found in practical applications, such as medical imaging [4, 11]. In this
setting, the probability density function of xi,j is

f(x) =


p/2 for 0 ≤ x < m

1− p for x = si,j

p/2 for (255−m) < x ≤ 255

where p is the noise density (0 < p < 1).
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4. Noise Model 4. It is similar to Model 3, with the difference that the
probabilities of low intensity impulse noise and high intensity impulse
noise are unequal. Hence the probability density function of xi,j is

f(x) =


p1 for 0 ≤ x < m

1− p for x = si,j

p2 for (255−m) < x ≤ 255

where p = p1 + p2 with p1 6= p2 (and 0 < p < 1).

Note that Models 1 and 2 are special cases of Models 3 and 4, corresponding
to m = 1. Since they are more general models, in the rest of the paper we will
consider Noise Models 3 and 4 for the discussion of our algorithms.

2.2. First Stage: Impulse-Noise Detection

The first stage of our algorithm is an impulse noise detector that we derive as
a refinement of the Highly Effective Impulse Noise Detection (HEIND) originally
introduced by Fei Duan et al. [6]. In our approach, which we call Improved
Impulse Noise Detection (IIND), we generates a first estimate of the locations
of the noisy pixels using the HEIND routine; based on this detection result, we
calculate an estimate of the denoised image using a simple filtering procedure;
next we use this estimate of the denoised image as a new input of the HEIND
routine and repeat the same procedure again. In the following, we describe
the main ideas of the HEIND algorithm and our modifications, including a
discussion of the performance of this procedure.

2.2.1. The HEIND algorithm

The HEIND algorithm uses a coarse-to-fine scale strategy that consists in
examining, for each pixel, the neighbouring pixels over two windows of different
sizes. During the coarse-scale analysis, each pixels is examined over a window of
size 21× 21; this analysis is similar to the detection method in BDND [4]. The
examination at the fine-scale level is performed using a window of size 7×7 and
this stage uses four directional convolution-type filters. Only those pixels that
are classified as ”corrupted” during the coarse-scale analysis are passed to the
fine-scale stage filter for examination and only those pixels that are classified
as ”corrupted” in both stages are considered be noisy pixels. The examination
of the pixels over windows of different sizes has the objective to avoid that
noise-free pixels could be misclassified as corrupted ones based on a single-scale
examination alone. We refer to [1, 4] for additional detail about the HEIND
algorithm.

2.2.2. Improved RVIN detection

Through extensive numerical experimentation, we have found that, after the
HEIND detection stage, there are still pixels corrupted by impulse noise that
have not been detected, especially for high noise levels. To address this issue,
in this paper, we introduce the following iterative procedure. After detecting
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the noisy pixels using the HEIND routine, we estimate the true value of the
noisy pixels using a two-window-based median filter that is described below;
next, we use this estimate of the denoised image as a new input of the HEIND
routine and repeat the same procedure again. In fact, it turns out that it is
sufficient to repeat this iterative procedure just two or three times (we have
used 3 iterations for all our tests) to obtain a highly improved detection of the
noisy pixels. Finally, the decision function at the pixel location (i, j) is given
by:

M(i, j) =

{
1 if u0(i, j) = u(i, j)

0, otherwise
(1)

where u is the image intensity and u0 is the estimate of the noise-free image
in the last iteration. The value M(i, j) = 0 indicates that the (i, j) pixel is
corrupted.

2.2.3. Pixel intensity estimation using a two-window-based median filter

As indicated above, our IIND algorithm includes a routine to estimate the
pixel intensity at the locations detected by the HEIND algorithm. This rou-
tine applies an adaptive two-window-based median filter based on the method
proposed by Hsieh et al. [12]. Hsieh observed that, for low levels of noise, it
is sufficient to select a “small” filtering window since noise-free pixels can be
easily found among neighbouring points; on the other hand, a “large” window
should be employed at high noise levels because neighbouring points are more
likely to be also corrupted. Moreover, if noisy points are sparse in the image,
it is sufficient to examine the neighboring points along horizontal and vertical
directions; on the other hand, for high noise level it is preferable to also examine
the neighboring points along the diagonal orientations. As a result, in this work,
similar to [12], we use two types of windows, that we call Type 1 and Type 2 and
are shown in Fig. 2. We use the Type 1 window if the noise density is less than
50%, otherwise we use the Type 2 window. That is, given a noisy pixel location
(i, j), the Type 1 and Type 2 windows, denoted by W1 and W2, respectively,
contain the pixels

W1 = {u(i, j1)| j1 = j ±m} ∪ {u(i1, j)| i1 = i±m}
W2 = {u(i1, j1)| i1 = i±m, j −m ≤ j1 ≤ j +m}

∪{u(i1, j1)| i−m ≤ i1 ≤ i+m, j1 = j ±m}

The filtering window is then iteratively dilated as long as the number of noise-
free pixels in the window, denoted by Nw, is no larger than 1. When the number
of noise-free pixels in the window is larger than 1, then the noisy pixel u(i, j)
is replaced by the median value of these noise-free pixels in the window. Thus,
our adaptive two-window-based median filter algorithm can be summarized as
follows: (1.) Evaluate the noise density p and initialize the window size pa-
rameter m = 1. (2.) If p < 50% then, for each noisy pixel location (i, j), do
the following steps: (i) build a Type-1 window W1; (ii) if W1 does not include
noise-free pixels then set m = m + 1 and go to step (2.)(i); else stop. (3.) If
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p ≥ 50% then, for each noisy pixel location (i, j), do the following steps: (i)
build a Type-2 window W2; (ii) if W2 does not include noise-free pixels then set
m = m+ 1 and go to step (3.)(i); else stop. (4.) Replace the noisy pixel u(i, j)
with the median value of these pixels in W1 or W2.

Table 1 reports the difference between the number of true noisy pixels and the
number of detected noisy pixels in different noisy images as they are computed
using the standard HEIND algorithm and our IIND method. The minus sign
means that the number of detected noisy pixels is larger than that of the true
noisy pixels, that is to say, in this case, there exists a small number of noise-
free pixels are detected as noisy pixels. The results in Table 1 show that a
large number of noisy pixels are misclassified by the HEIND method but are
correctly detected by our method. In fact, our method is remarkably effective
in identifying corrupted pixels and outperforms very significantly the HEIND
method. Notice that IIND shows some false detections for Model 4 noise, this
may because there exist a small number of impulse noise lie between [0,m) and
(255-m,255] in the original noise free image. However, a small number of false
detections is usually not harmful since these pixels are not significantly affected
during the filtering process.

2.3. Second stage: restoration of noisy pixels by image inpainting

As mentioned above, one drawback of many impulse-noise denoising schemes
is that, even when they are able to accurately detect the noisy pixel locations,
they are not very efficient to recover the underlying geometry of the data at
the location of the corrupted pixels. Our method to address this task is based
on the application of an inpainting strategy that is designed to be, in a precise
sense clarified below, as efficient as possible for the recovery of edges and other
fine-scale structural features possibly corrupted by noise.

Recall that variational methods have been successfully employed for inpaint-
ing [13, 14]. This approach is motivated by the intuitive idea that one can fill
the missing ‘holes’ in an image by propagating information from the boundaries
of the holes while guaranteeing smoothness of some sort. The variational ap-
proach has been shown to perform well on piecewise smooth images. However,
real images also contain textured regions and other fine-scale structures that
are not recovered efficiently using variational methods.

One powerful strategy to overcome this limitation is based on the principles
of morphological component analysis (MCA), whose central idea is to use multi-
ple dictionaries to break up an image into its elementary geometric constituents.
Suppose that we want to recover an image x, of size N2 from it’s noisy obser-
vation y, and assume that x is sparse in an overcomplete dictionary D, where
D ∈ RN2×K is the matrix form of the overcomplete dictionary. That is, writing

x = Dα =

K∑
k=1

αk dk,

where D = [di, . . . , dk], dk ∈ RN2

, we expect that “many” of the represen-
tations coefficients αk are negligible. If we want to minimize the number of
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non-negligible coefficients, we can set up the minimization problem [15, 16]

α̂ = min‖α‖1 subject to ‖y −Dα‖2 ≤ σ, (2)

and obtain x̂ = Dα̂. Note that, for an appropriate Lagrange multiplier λ,
the solution of (2) is exactly the solution of the unconstrained optimization
problem2

min
α

λ‖α‖1 +
1

2
‖y −Dα‖22. (3)

We are interested in the situation where the image is a superposition of several
components, each one having a sparse representation with respect to a certain
dictionary. Hence, we model the image x as x =

∑K
k=1 xk and use a dictionary

built by amalgamating several subdictionaries D1, . . . ,DK that are ‘incoherent’.
That is, each xk has a sparse representation in the subdictionary Dk but its
representation in the subdictionaries Dl, l 6= k, is not sparse. In particular, we
can assume that x is a superposition

x = xp + xt, (4)

where xp and xt are the piecewise smooth component and textured component
of the data, respectively. In this setting, for the subdictionary associated with
texture component of the data we can choose a local discrete cosine dictionary,
which is sparse for locally periodic patterns. For the piecewise smooth compo-
nent of the data, we can choose a shearlet or a curvelet dictionary, which are
known to be sparse for this type of data. The incoherence of the two dictionaries
has been verified heuristically in [17] (using DCT and curvelet dictionaries) and
more recently and rigorously in [18]. Then, to achieve the ‘geometric separation’
(4), we set up the minimization problem:

α̂t, α̂p = min
αt,αp

λ (‖αt‖1 + ‖αp‖1) +
1

2
‖y −Dt αt −Dp αp‖22, (5)

where Dt, Dp are the dictionary associated with the piecewise smooth compo-
nent and textured component of the data, respectively. The final estimate is
then found by adding together the two components obtained as x̂p = Dpα̂p and
x̂t = Dtα̂t. Note that, since the dictionaries are assumed to be tight frames,
then Dp is the Moore-Penrose pseudo inverse of the analysis operator Wp as-
sociated with piecewise smooth data, i.e. Dp = W†p and, similarly, Dt is the
Moore-Penrose pseudo inverse of the analysis operator Wt associated with tex-
ture data, i.e., Dt =W†t .

The inpainting problem can be addressed within the framework of MCA
as follows. Assume that the missing pixels are indicated by a diagonal mask
matrix M where the main diagonal of M encodes the pixel status, namely 1 for
an existing pixel and 0 for a missing one. Thus, in (5) we can incorporate this

2This last formulation is known in statistics as penalized least square estimation problem.
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mask by [19]

α̂t, α̂p = min
αt,αp

λ (‖αt‖1 + ‖αp‖1) + 1
2 ‖M(y −Dt αt −Dp αp)‖22. (6)

The advantage of this approach is that the fidelity of the representation is mea-
sured with respect to the existing measurements only, disregarding missing pix-
els. Once Dt αt and Dp αp are recovered, those represent entire images, where
holes are filled in by the two dictionaries’ basis functions.

In this paper, rather than using a sparsity-based synthesis model as in (5),
we prefer to use a sparsity-based analysis model leading to the minimization
problem

x̂p, x̂t = argmin
xp,xt

λ‖Wpxp‖1 + λ‖Wtxt‖1 + 1
2‖M(y − xp − xt)‖22 (7)

While in the synthesis formulation signals are modeled as sparse linear combina-
tions of dictionary atoms, the analysis formulation emphasizes the zeros in the
analysis side (rather than the non-zeros), leading to better performance. In par-
ticular, one of the major advantages of using the formulation (7) rather than (5)
is that it requires searching lower dimensional vectors rather than longer dimen-
sional representation coefficient vectors. To further improve the performance,
we have also included a total variation regularization term, which is effective at
reducing possible ringing artifacts near the edges. This idea appeared already
in [17, 20]. Thus, we finally have the optimization problem:

x̂p, x̂t = arg min
xp,xt

λ‖Wp xp‖1 + λ‖Wt xt‖1 + γ TV (xp)

+ 1
2‖M(y − xp − xt)‖22, (8)

where TV is the Total Variation. The algorithm we use to solve this optimization
problem is adapted from the algorithm of J. Starck et al [19, 21]. Once the
separate estimates x̂p and x̂t are obtained as a solution of (8), the final estimator
of x is x̂ = x̂p + x̂t.

2.3.1. Shearlet-based inpainting

The effectiveness of shearlets in the inpainting problem has been demon-
strated by some recent theoretical and numerical papers [10, 22]. In our im-
plementation of the inpainting scheme described above, we use a local discrete
cosine dictionary for the representation of the texture component of the image
(as dictionary Dt) and a Parseval frame of shearlets for the representation of
the piecewise smooth component of the image (as dictionary Dp). Here we use
the shearlet system constructed by one of the authors in [23], which combines
simplicity of construction and numerical efficiency. As will be further discussed
in Section 3, shearlets play a significant role in the overall performance of our
denoising algorithm.

We recall that the shearlets are functions in L2(R2) obtained by applying a
countable family of (anisotropic) dilations, translations and shear transforma-
tions to a finite set of generators. Hence, they form a collection of waveforms
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ranging not only at various scales and locations, like conventional wavelets, but
also at various orientations and with highly anisotropic shapes [24, 25]. Due
to these properties, it was proved that shearlets provide optimally sparse ap-
proximations for piecewise smooth images with edges [26], a property shared
by curvelets but not by traditional wavelets. The approximation properties of
shearlets stem in large part from their ability to represent very efficiently curvi-
linear edges and other types of distributed singularities [27, 28]. Thanks to these
properties, one can prove that, when shearlets are applied to the solution of the
inpainting problem according to the framework outlined above, then they are
especially efficient to restore partially occluded curvilinear edges, significantly
outperforming wavelets and other traditional methods [10]. In 4, we include a
brief mathematical description of such properties. In the next section, we specif-
ically illustrate the impact of the shearlet-based inpainting within our impulse
noise denoising algorithm with respect to other more conventional inpainting
methods.

3. Experimental results and discussion

In this section, we present extensive numerical experiments to illustrate
the performance of our new impulse noise denoising algorithm and compare
it against several state-of-the-art algorithms. We will denote our two-stage al-
gorithm as IIND+ST algorithm to recall that it consists of our IIND impulse de-
tection method followed by the shearlet-based inpainting described above. Note
that numerical codes for the discrete shearlet decomposition are available at
www.math.uh.edu/∼dlabate and www.shearlab.org (the latter website also
contains the implementation of an inpainting routine similar to the one used
here).

We have carried out our numerical experiments on the Lena, Boat and Bar-
bara images, with size 512 × 512 pixels. For our tests, we have only used the
Noise Models 3 and 4 described in the Section 2 to assess the performance of
the algorithms. For the Noise Model 3, images were corrupted using random-
valued impulse noise with different noise densities ranging from 10% to 80% and
m = 10 (so that low intensity values are in the range 0-10 and high intensity
values in the range 245-255); for Noise Model 4, we have also considered differ-
ent noise densities and m = 10. This range of values is frequently assumed in
the literature and is reasonable for a number of practical applications [1, 4]. As
it is reasonable to expect, different images are affected in different ways by the
noise and the restoration task is more challenging if the range of values of the
image is not well separated by the range of values of this noise. This explains
in large part the different denoising performance that we observed for different
images and reported in Tables 2 and 3.

As objective quantitative measures of performance we have used the peak
signal-to-noise ratio (PSNR) and the mean structural similarity (MSSIM) [29]
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between the original and restored images defined as

PSNR = 10 log10

(
2552∑

i

∑
j(ui,j − vi,j)2/MN

)
, (9)

SSIM(uk, vk) =
(2µuk

µvk + C1)(2σukvk + C2)

(µ2
uk

+ µ2
vk

+ C1)(σ2
uk

+ σ2
vk

+ C2)
, (10)

MSSIM(u, v) =

∑B
k=1 SSIM(uk, vk)

B
, (11)

where the symbols ui,j and vi,j denote the intensity values of the original image
and the restored image, respectively; uk and vk are the image intensities at the
k-th local window in the original and restored images; B is the total number of
local windows; µl and σl, for l = uk, vk, are the mean and the standard deviation
of uk and vk; σukvk is the covariance between uk and vk; C1 = (k1L)2 and
C2 = (k2L)2 are small constants selected to stabilize SSIM using the following
parameter settings: L is the dynamic range of the pixel values, k1 = 0.01 and
k2 = 0.03. For measuring MSSIM, we have used the SSIM index code by Wang
et al. [29].

We have compared the performance of our algorithm against the conven-
tional median filter (MED), the modified noise adaptive switching median filter
(MNASM) [4] with HEIND detector [6] (H-MNASM), the switching median fil-
ter with boundary discriminative noise detection (SM-BDND) method [4], the
fuzzy weighted non-local means (FWNLM) method [7] and the direction based
adaptive weighted switching median (DAWSM) method [1]. Furthermore, to
specifically illustrate the advantages of the shearlet-based inpainting within our
RVIN denoising algorithm, we have also implemented a variant of our two-stage
algorithm where the first stage is still our IIND impulse detection method, but
the second stage uses a different inpainting method based on total variation.
We will denote as IIND+TV algorithm this alternative two-stage denoising al-
gorithms.

More precisely, the inpainting method used in our IIND+TV algorithm
adopts the TV-H−1 method [30, 31], a successful and powerful restoration ap-
proach that aims to recover the missing pixels in an image by diffusing the infor-
mation from the surrounding through using an appropriate evolution equation.
That is, the inpainted image u is obtained from the damaged image f ∈ L2(Ω),
where Ω ∈ R2 is a bounded set, by evolution according to the equation

ut = −4p+ λ(f − u)χΩ\C , p ∈ ∂TV (u) (12)

where ∂TV (u) is the subdifferential of the total variation TV (u), λ is a constant
and C is the inpainting domain. We refer to [31] for additional details about
the TV-H−1 inpainting method.

Tables 2 and 3 show the in-line performance comparison of the various im-
age denoising methods considered. Note that the larger values the PSNR and
MSSIM correspond to better quality of the restored image. The results in the
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tables show that our algorithms are extremely competitive and provide higher
PSNR and MSSIM values than all other methods considered. In particular, the
IIND+ST algorithm is the overall best performing method among all methods
that we have considered, with improvements of several dBs. The performance of
IIND+ST is outstanding at high noise levels where competing algorithms per-
form rather poorly and IIND+ST is able to outperform competeing methods by
10 dBs or more (see Table 3 for noise density at 0.8). To further illustrate the
performance of our denoising approach we have also included some examples
to provide a visual quality comparison among the various methods considered.
Fig. 3 and Fig. 4 show the Lena and Boat images corrupted by RVIN of model 3
with 80% noise density; Fig. 5 and Fig. 6 show Lena and Boat images corrupted
by RVIN of model 4 with 15% of low intensity impulse noise and 45% of high
intensity impulse noise. The figures show that the methods MED, SM-BDND
and FWNLM perform poorly for images that are corrupted by this high-level
noise; the algorithms H-MNASM and DAWSM are somewhat more efficient to
remove RVIN but produce some jagged edges and block artifacts as can be seen
by inspecting Fig. 3(d, g), Fig. 4(d, g), Fig. 5(d, g) and Fig. 6(d, g). By
contrast, our IIND+TV algorithm achieves a better visual performance when
compared with the other five methods. The IIND+ST algorithm achieves the
best visual performance overall and it restores the images without any signif-
icant artifacts such as block effect and jagged edges. Thus, both subjective
and objective comparisons indicate that IIND+ST provides the best denoising
results among all the methods considered. The improvement with respect to
competing algorithms at high noise level is outstanding.

Fig. 7 shows the mean computation times of the various methods considered
in this paper. All computations have been performed in Matlab software on a
Centrino Duo personal computer, using a 2.00-GHz processor, running Windows
7. As it can be seen in Fig. 7, the mean computation time of IIND+ST is higher
than IIND+TV. Both methods have higher computational cost than MED, H-
MNASM, SM-BDND and DAWSM, but are less than FWNLM. Compared with
DAWSM, for example, IIND+TV requires about twice the computation time
and IIND+ST about 5 times the computation time. This shows that the im-
proved performance comes at a rather significant increase in computational cost.
The performance table indicates that this additional cost is certainly worth the
effort for higher noise levels. In fact, when noise density level is 0.8, IIND+ST
outperforms DAWSM by at least 5 dBs and up to 19 dBs (in the case of the
Lena image, for Noise Model 4). For lower noise levels the improvement is more
modest (between 2.5 and 6 dBs), and the user will have to evaluate the trade
off between computational cost and denoising performance.

On the other hand, it is possible to further speed up the implementation of
the IIND+ST algorithm by taking advantage of recent faster numerical imple-
mentations of the shearlet transform. Recent results by one of the authors and
collaborators show that the shearlet transform implementation can be paral-
lelized and, by taking advantage of GPUs, the computation time of the shearlet
transform can be reduced by up to 50 times [33]. Since this is the slowest part
of the IIND+ST code, this improvement would significantly reduce the overall

12



computational cost of the algorithm.

4. Conclusion

In this paper, we introduced a new, efficient two-stage denoising algorithm to
restore images corrupted by RVIN. Our approach includes an improved routine
for impulse noise detection that is a refinement of the Highly Effective Impulse
Noise Detection (HEIND) algorithm and an innovative image inpainting routine
that is designed to recover the corrupted pixel while efficiently preserving the
geometrical content of the original image. This inpainting routine takes advan-
tage of the principle of morphological component analysis and the power of the
shearlet representation.

We illustrated the performance of our approach using images corrupted by
two classical types of random-valued impulse noise with a wide range of noise
levels, ranging from 10% to 80%. To assess the performance of our approach,
we compared it against several state-of-the-art random-valued impulse noise
denoising methods. The experimental results reported in this paper show that
our method is extremely efficient in removing RVIN and recovering the lost
information even for high noise levels, where the improvement with respect to
competing methods is often outstanding. Our two-stage method is highly com-
petitive in terms of both objective measures and visual quality and outperforms
similar two-stage methods with a modest increase in computational cost.

Appendix A. Shearlet-based inpainting

We recall a few facts from the asymptotic analysis of inpainting using shear-
lets (cf. [10, 32].

Since we will focus on the problem of restoring images with edges, let us
consider the following distributional model. Let w ∈ C∞(R2) be a window
function such that 0 ≤ w ≤ 1 and supp w ⊂ [−R,R] for some R > 0. Hence we
define the (weighted) distributional edge Lw by

〈Lw, φ〉 =

∫ R

−R
w(x1)φ(x1, 0) dx1,

where φ ∈ SH(R2) is a Schwartz class function. This definition models an
horizontal edge with support in [−R,R]× {0}.

To model the data loss, we define the mask

Mh = {(x1, x2) ∈ R2 : |x1| ≤ h},

where h > 0 is the gap size. Hence we can break up the image space as
L2(R2) = L2(Mh)

⊕
L2(M c

h) where L2(Mh) is the space of functions in L2(R2)
with support in Mh and similarly for L2(M c

h). Thus, the inpainting problem
can be formulate as the problem of recovering the image Lw given the corrupted
image PMc

h
Lw, where PMc

h
denotes the orthogonal projection of L2(R2) into
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L2(M c
h). The interesting question is: what is the largest gap h that can be

recovered?
To tackle this problem, we start by decomposing Lw into multiple subbands

as
(Lw)j = Lw ∗ Fj , j ≥ 0

using appropriate filters Fj . More precisely, the filters are defined in the Fourier

domain as F̂j(ξ) = W (22jξ) where W (ξ) =

√
Φ̂2(2−2ξ)− Φ̂2(ξ) and Φ̂(ξ) =

Φ̂(ξ1, ξ2) = φ̂(ξ1) φ̂(ξ2) and φ is a C∞ univariate function such that 0 ≤ φ̂ ≤ 1,

φ̂ = 1 on [− 1
16 ,

1
16 ] and φ̂ = 0 outside the interval [− 1

8 ,
1
8 ]. Note that F̂j(ξ)

is a C∞ function with support inside the Cartesian corona [−22j−1, 22j−1]2 \
[−22j−4, 22j−4]2.

Now, we set the `1 minimization problem

Lj = arg min
L∈L2(R2)

‖WL‖`1 subject to PMc
h
L = PMc

h
Lw, (13)

whereW is the analysis operator associated with the shearlet decomposition (as
in Section 2.3). We have the following remarkable result from [10].

Theorem. For h = hj = o(2−j/2) and Lj the solution of (13), we have that

‖Lj − (Lw)j‖L2

‖(Lw)j‖L2

→ 0, j →∞.

In other words, we have asymptotically perfect inpainting if the size of the
gap shrinks faster than 2−j/2. This is, in a precise sense, the best result achiev-
able and follows from the properties of the shearlet representation. Wavelets,
by comparison, can only successfully inpaint gaps that are smaller than 2−j

(cf. [10] for more details).
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Figures and Tables

Fig. 1. Flowchart of the proposed two-stage RVIN denoising algorithm.

Fig. 2. Type 1 and Type 2 windows
used in the two-window based median

filter.
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Fig. 3. Restoration of Lena image corrupted by RVIN, Model 3, with 80% noise
density and m = 10.
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Fig. 4. Restoration of Boat image corrupted by RVIN, Model 3, with 80% noise
density and m = 10.
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Fig. 5. Restoration of Lena image corrupted by RVIN, Model 4, with 60% noise
density and m = 10, p1 = 15%, p2 = 45%.
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Fig. 6. Restoration of Boat image corrupted by RVIN, Model 4, with 60% noise
density and m = 10, p1 = 15%, p2 = 45%.
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Fig. 7. Mean computation times using different image restoration algorithms.
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Image Noise model Noise density HEIND IIND

Lena

Model 3

0.1 1 1
0.2 0 0
0.3 1 1
0.4 20 0
0.5 27 1
0.6 115 0
0.7 268 0
0.8 625 0

Model 4

0.1 1 0
0.2 -1 -1
0.3 13 -1
0.4 62 -2
0.5 208 -1
0.6 644 0
0.7 4756 -3
0.8 24644 12

Boat

Model 3

0.1 2 2
0.2 0 0
0.3 10 0
0.4 19 0
0.5 64 0
0.6 125 0
0.7 331 0
0.8 688 3

Model 4

0.1 114 -11
0.2 149 6
0.3 111 -12
0.4 105 -21
0.5 203 -17
0.6 563 -8
0.7 4568 -24
0.8 24053 6

Tab. 1. The table compares the difference between the number of true noisy
pixels and the number of noisy pixels detected using HEIND and IIND routines.
The noise is generated using Model 3, with m = 10, and Model 4, with m = 15.

We set p1 = p
4 , p2 = 3p

4 , where p is the noise density.
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Tab. 2. Restoration results in PSNR and MSSIM on images corrupted by RVIN
of Model 3.

Image Index Noise MED H-MNASM SM-BDND FWNLM DAWSM IIND+TV-H IIND+ST

Lena

PSNR

0.1 28.49 42.78 42.88 35.58 42.73 43.79 45.09
0.2 27.09 39.20 36.52 33.11 39.27 40.71 42.13
0.3 25.73 36.46 30.54 30.00 36.72 38.45 39.98
0.4 24.71 33.96 26.02 25.23 34.84 36.85 38.43
0.5 23.78 31.62 21.98 19.59 32.93 35.23 36.84
0.6 22.26 29.94 18.86 14.16 31.02 33.75 35.45
0.7 18.4 28.09 16.09 9.96 28.68 32.02 33.83
0.8 13.51 26.21 13.23 7.61 24.87 30.18 31.75

MSSIM

0.1 0.8144 0.9898 0.9899 0.9185 0.98984 0.99121 0.99157
0.2 0.8090 0.9787 0.9695 0.9026 0.97891 0.98235 0.98346
0.3 0.8027 0.9644 0.9146 0.8655 0.96536 0.97164 0.97444
0.4 0.7924 0.9438 0.7974 0.7590 0.94971 0.95992 0.96494
0.5 0.7773 0.9161 0.6037 0.5093 0.92895 0.94531 0.95298
0.6 0.7210 0.8821 0.3922 0.1933 0.89947 0.92729 0.94013
0.7 0.5338 0.8347 0.2252 0.0636 0.85452 0.90369 0.9238
0.8 0.2202 0.7703 0.1164 0.0293 0.75118 0.86705 0.89621

Boat

PSNR

0.1 25.71 39.77 39.96 32.44 40.11 41.72 43.66
0.2 24.69 36.30 34.76 30.15 36.40 38.30 40.31
0.3 23.60 33.53 29.81 27.39 34.11 36.16 37.94
0.4 22.77 31.12 25.26 23.99 32.06 34.27 36.06
0.5 21.82 29.15 21.70 18.81 30.48 32.70 34.44
0.6 20.63 27.30 18.67 13.71 28.81 31.13 32.76
0.7 17.59 25.85 16.00 9.88 26.85 29.60 30.96
0.8 13.01 24.25 13.17 7.46 23.90 27.88 29.09

MSSIM

0.1 0.7408 0.9880 0.9888 0.9255 0.98891 0.99144 0.99298
0.2 0.7352 0.9753 0.9686 0.8929 0.97575 0.98181 0.98552
0.3 0.7280 0.9562 0.9108 0.8387 0.95989 0.97028 0.97646
0.4 0.7177 0.9299 0.7976 0.7278 0.93989 0.95613 0.96678
0.5 0.6997 0.8957 0.6136 0.4780 0.91575 0.93848 0.95444
0.6 0.6507 0.8466 0.4138 0.1923 0.88179 0.91539 0.93775
0.7 0.4838 0.7912 0.2379 0.0760 0.83139 0.88474 0.91361
0.8 0.2030 0.7179 0.1239 0.0345 0.73027 0.83859 0.87795

Barbara

PSNR

0.1 23.13 33.72 33.71 28.90 33.73 34.70 43.44
0.2 22.64 30.40 29.93 26.45 30.43 31.47 39.88
0.3 22.05 28.33 26.75 24.09 28.43 29.41 37.67
0.4 21.55 26.84 23.59 21.18 27.02 27.97 35.74
0.5 20.93 25.73 20.68 17.08 25.76 26.68 34.04
0.6 19.88 24.67 17.82 13.00 24.46 25.54 31.83
0.7 17.06 23.65 15.34 9.67 23.22 24.45 29.50
0.8 12.71 22.41 12.41 7.36 21.34 23.38 26.06

MSSIM

0.1 0.65131 0.98083 0.98084 0.91838 0.98085 0.98374 0.99375
0.2 0.6464 0.95716 0.95261 0.87181 0.95761 0.96446 0.98666
0.3 0.63918 0.92926 0.89258 0.79172 0.93144 0.94204 0.9789
0.4 0.63028 0.89445 0.77457 0.64701 0.90148 0.91619 0.96958
0.5 0.61471 0.85508 0.61567 0.42912 0.86542 0.88582 0.95791
0.6 0.57536 0.80378 0.41587 0.18966 0.81465 0.84626 0.93819
0.7 0.43476 0.74262 0.25679 0.071393 0.75194 0.80096 0.90822
0.8 0.18377 0.66162 0.13388 0.028673 0.64356 0.73547 0.83195
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Tab. 3. Restoration results in PSNR and MSSIM on images corrupted by RVIN

of Model 4 (p1 = p
4 , p2 = 3p

4 ).
Image Index Noise MED H-MNASM SM-BDND FWNLM DAWSM IIND+TV-H IIND+ST

Lena

PSNR

0.1 28.67 42.70 41.72 35.57 42.79 43.81 44.99
0.2 27.93 39.02 32.55 31.92 39.01 40.64 42.10
0.3 26.43 36.27 25.60 25.38 36.69 38.43 40.06
0.4 23.90 33.66 20.57 17.96 34.21 36.75 38.32
0.5 18.10 30.83 16.69 12.30 31.57 35.15 36.89
0.6 11.67 27.13 13.58 8.34 28.56 33.79 35.46
0.7 7.76 17.49 10.44 6.41 21.43 31.97 33.84
0.8 6.14 10.63 7.63 5.75 12.28 28.68 31.78

MSSIM

0.1 0.8133 0.9903 0.9891 0.9184 0.98977 0.99111 0.99148
0.2 0.8056 0.9783 0.9437 0.8939 0.97838 0.98226 0.98346
0.3 0.7906 0.9632 0.8010 0.7729 0.96476 0.97125 0.97409
0.4 0.7515 0.9407 0.5693 0.4424 0.94553 0.9594 0.96464
0.5 0.5505 0.9022 0.3294 0.1554 0.91414 0.94499 0.95316
0.6 0.2125 0.8167 0.1791 0.0723 0.85203 0.9277 0.94048
0.7 0.1068 0.3142 0.0895 0.1890 0.64213 0.89886 0.9229
0.8 0.2641 0.0973 0.0538 0.1378 0.15073 0.81723 0.89715

Boat

PSNR

0.1 25.75 39.72 39.15 32.44 39.88 41.60 43.56
0.2 24.94 36.13 32.05 27.27 36.47 38.34 40.29
0.3 23.75 33.57 25.80 23.82 33.85 35.99 37.95
0.4 22.07 31.01 21.08 17.44 31.93 34.27 36.05
0.5 17.71 28.78 17.25 12.28 29.87 32.53 34.24
0.6 11.98 26.02 14.14 9.01 27.94 31.12 32.76
0.7 8.27 17.57 10.99 7.17 23.89 29.55 31.05
0.8 6.75 11.02 8.21 6.43 12.68 26.76 28.84

MSSIM

0.1 0.7376 0.9880 0.9878 0.9250 0.98872 0.99149 0.99298
0.2 0.7252 0.9748 0.9462 0.8484 0.97563 0.98158 0.98552
0.3 0.7068 0.9571 0.8210 0.7417 0.95863 0.97011 0.9771
0.4 0.6668 0.9279 .6016 0.4188 0.93618 0.95591 0.96636
0.5 0.4952 0.8830 0.3799 0.1394 0.90489 0.93769 0.95396
0.6 0.1944 0.7996 0.2160 0.0643 0.84282 0.91611 0.93884
0.7 0.1071 0.3321 0.1134 0.1770 0.64963 0.87962 0.91372
0.8 0.2617 0.1144 0.0686 0.1359 0.17162 0.78813 0.87646

Barbara

PSNR

0.1 23.16 33.74 33.60 28.98 33.74 34.76 43.64
0.2 22.75 30.51 28.70 25.89 30.55 31.59 40.04
0.3 22.00 28.34 23.86 21.52 28.48 29.49 37.67
0.4 20.69 26.76 19.53 15.83 26.94 27.97 35.74
0.5 16.63 25.32 15.92 10.88 25.31 26.59 33.80
0.6 10.89 23.91 12.91 7.65 23.64 25.50 31.90
0.7 7.12 20.61 10.06 5.91 19.55 24.31 29.46
0.8 5.56 12.68 7.15 5.24 11.36 21.06 25.94

MSSIM

0.1 0.65121 0.98072 0.97949 0.91835 0.98073 0.98375 0.99375
0.2 0.64137 0.95791 0.93276 0.86306 0.95841 0.96526 0.98685
0.3 0.62809 0.92835 0.79751 0.71265 0.93097 0.94248 0.97898
0.4 0.5949 0.89143 0.58051 0.41609 0.89842 0.91618 0.96958
0.5 0.43686 0.83942 0.37653 0.16014 0.84922 0.88403 0.95709
0.6 0.17787 0.76638 0.22185 0.071622 0.77663 0.84453 0.93898
0.7 0.084802 0.58551 0.12706 0.12893 0.58317 0.78033 0.90756
0.8 0.17731 0.18324 0.072671 0.22409 0.15419 0.5709 0.82726
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