RESOLUTION OF THE WAVEFRONT SET USING CONTINUOUS SHEARLETS

GITTA KUTYNIOK AND DEMETRIO LABATE

Abstract. It is known that the Continuous Wavelet Transform of a distribution f decays rapidly near the points where f is smooth, while it decays slowly near the irregular points. This property allows the identification of the singular support of f. However, the Continuous Wavelet Transform is unable to describe the geometry of the set of singularities of f and, in particular, identify the wavefront set of a distribution. In this paper, we employ the same framework of affine systems which is at the core of the construction of the wavelet transform to introduce the Continuous Shearlet Transform. This is defined by $\mathcal{SH}_\psi f(a,s,t) = \langle f, \psi_{ast} \rangle$, where the analyzing elements ψ_{ast} are dilated and translated copies of a single generating function ψ. The dilation matrices form a two-parameter matrix group consisting of products of parabolic scaling and shear matrices. We show that the elements $\{\psi_{ast}\}$ form a system of smooth functions at continuous scales $a > 0$, locations $t \in \mathbb{R}^2$, and oriented along lines of slope $s \in \mathbb{R}$ in the frequency domain. We then prove that the Continuous Shearlet Transform does exactly resolve the wavefront set of a distribution f.

1. Introduction

It is well-known that, provided ψ is a ‘nice’ continuous wavelet on \mathbb{R}^n and f is a distribution that is smooth apart from a discontinuity at a point $x_0 \in \mathbb{R}^n$, the Continuous Wavelet Transform

$\mathcal{W}_\psi f(a,t) = a^{-\frac{n}{2}} \int_{\mathbb{R}^n} f(x) \psi(a^{-1}(x-t)) \, dx, \quad a > 0, t \in \mathbb{R}^n$

decays rapidly as $a \to 0$ unless t is near x_0 [19, 25]. As a consequence, the Continuous Wavelet Transform is able to resolve the singular support of a distribution f, i.e., to identify the set of points where f is not regular. However, the transform $\mathcal{W}_\psi f(a,t)$ is unable to provide additional information about the geometry of the singular support. In many situations, it is essential to not only identify the location of a certain distributed singularity, but also its orientation in the sense of resolving the wavefront set. This is, for instance, particularly useful in the study of the propagation of singularities associated with partial differential equations [20, 27].

Historically, the idea of using continuous transforms to identify both the location and the geometry of the set of singularities of a distribution can be traced back to the notion of wave packet transforms, introduced independently by Bros and Iagolnitzer [1] and Córdoba and Fefferman [10]. More recently, Smith [26] and Candès...
and Donoho [6, 7] have introduced continuous transforms, which use parabolic scaling and rotations in polar coordinates and have the ability to resolve the wavefront set of a distribution. In particular, the Continuous Curvelet Transform of Candès and Donoho is closely related to the successful discrete curvelet construction [5]. However, the Continuous Curvelet Transform does not have the simple mathematical structure of the wavelet transform. For instance, it requires infinitely many generators, thereby losing useful properties of the Continuous Wavelet Transform such as being associated with an affine group structure.\(^1\) This raises the question, whether it is possible to construct a genuinely ‘wavelet-like’ continuous transform, which is capable of precisely resolving the wavefront set of distributions while being equipped with the same simple affine structure of the Continuous Wavelet Transform.

Another motivation for our investigation and the use of the framework of affine systems comes from the study of discrete wavelets, and, more specifically, their ability to approximate efficiently smooth functions with singularities. This property is closely related to the micro-local properties of the Continuous Wavelet Transform. To illustrate this point, consider a one-dimensional function \(f\) that is smooth apart from a discontinuity at a point \(x_0\) and consider its wavelet representation:

\[
f = \sum_{j,k \in \mathbb{Z}} \langle f, \psi_{j,k} \rangle \psi_{j,k},
\]

where \(\psi_{j,k}(x) = 2^{-j/2} \psi(2^{-j} x - k)\) and \(\psi\) is a “nice” wavelet. Notice that the coefficients of the representation are just samples of the Continuous Wavelet Transform at points \((2^{-j}, 2^j k)\), for \(j, k \in \mathbb{Z}\), that is, \(W_\psi f(2^{-j}, 2^j k) = \langle f, \psi_{j,k} \rangle\). Since the elements \(W_\psi f(2^{-j}, 2^j k)\) decay rapidly for \(j \to \infty\) unless \(k\) is near \(x_0\), it follows that one can approximate \(f\) accurately by using very few coefficients of the wavelet representation. Indeed, the wavelet representation is optimally sparse for this type of functions (cf. [24, Ch.9]). However, the situation is significantly different in higher dimensions, where more general discontinuities are usually present or even dominant, and traditional wavelets are not equally effective. Consider, for example, the wavelet representation of a two-dimensional function that is smooth away from a discontinuity along a curve. Because the discontinuity is spatially distributed, it interacts extensively with the elements of the wavelet basis, and thus “many” wavelet coefficients are needed to represent the function accurately. In fact, this is a manifestation of the fact that the Continuous Wavelet Transform is unable to deal with distributed discontinuities effectively. As pointed out by several authors (see [4, 5]), to overcome this limitation, one needs a transform with the ability to capture the geometry of multidimensional phenomena. In this paper, we will show that this can be achieved by properly reexamining the notion of continuous wavelet transform in higher dimension.

Indeed, the Continuous Shearlet Transform, which is introduced in this paper, fully exploits the framework of affine group on \(\mathbb{R}^2\) to precisely capture the geometric information of two-dimensional functions. More precisely, the Continuous Shearlet Transform maps a tempered distribution \(f \in S'(\mathbb{R}^2)\) to \(SH_\psi f(a, s, t) = \langle f, \psi_{ast} \rangle\) on the transform domain \(\{(a, s, t) : a > 0, s \in \mathbb{R}, t \in \mathbb{R}^2\}\), where the analyzing elements \(\psi_{ast}\) are dilated and translated copies of a single generating function \(\psi \in \mathcal{S}(\mathbb{R}^2)\), with \(\mathcal{S}(\mathbb{R}^2)\) denoting the Schwartz space of rapidly decreasing functions on \(\mathbb{R}^2\).

\(^1\)Recall that also the corresponding discrete curvelets have no affine structure and are not associated to a Multiresolution Analysis.
This generator \(\psi\) is called a \textit{continuous shearlet}, and is chosen to be arbitrarily smooth with compact support in the frequency domain. The dilation matrices consist of the product of a parabolic scaling matrix associated with some \(a > 0\) and a shear matrix associated with some \(s \in \mathbb{R}\). As a result, the elements \(\psi_{a,t}\) constitute an \textit{affine system} of well localized waveforms at various scales \(a\), orientations controlled by \(s\) and spatial locations \(t\). Due to the parabolic scaling, the elements \(\psi_{a,t}\) become increasingly thin as \(a \to 0\), and this anisotropic behavior allows them to detect the singularities along curves. As a result, the Continuous Shearlet Transform is able to identify not only the singular support of a distribution \(f\), but also the orientation of distributed singularities along curves. In particular, the decay properties of the Continuous Shearlet Transform as \(a \to 0\) precisely characterize the \textit{wavefront set} of \(f\) (see Section 5) with the translation parameter detecting the location and the shear parameter \(s\) detecting the orientation of a singularity.

We would also like to mention that the study of the discrete analog of the Continuous Shearlet Transform is currently being developed by the authors and their collaborators. In particular, by employing the advantageous properties of the shear operator over the rotation operator, it was recently shown that discrete shearlets are associated with a Multiresolution Analysis and with directional subdivision schemes generalizing those of traditional wavelets. This is very relevant for the development of fast algorithmic implementations. In addition, shearlets provide optimally sparse representations for bivariate functions with discontinuities along curves. We refer to [13, 15, 16, 17, 18, 22, 21] for more detail about the research about shearlets.

\textit{Note added:} Following submission of this paper, it was shown in [11] that the Continuous Shearlet Transform is related with a locally compact group, the so-called \textit{Shearlet group}, in the sense of the continuous shearlet systems being generated by a strongly continuous, irreducible, square-integrable representation of this group. This additional rich mathematical structure enables, for instance, the application of uncertainty principles to tune the accuracy of the transform [11], and of the coorbit theory to study smoothness spaces, so-called \textit{Shearlet Coorbit Spaces}, associated with the decay of the shearlet coefficients [12].

The paper is organized as follows. In Section 2 we recall the basic properties of affine systems on \(\mathbb{R}^n\) and the Continuous Wavelet Transform, and then introduce the Continuous Shearlet Transform (Section 3). In Section 4 we apply this new transform to several examples of distributions containing different types of singularities. The main result of this paper is proved in Section 5, where we show that the Continuous Shearlet Transform exactly characterizes the wavefront set of a distribution. Finally, in Section 6, we discuss several variants and generalizations of our construction.

2. \textbf{Affine systems and wavelets}

\subsection*{2.1. One-dimensional Continuous Wavelet Transform.} Let \(\mathbb{A}_1\) be the \textit{affine group} associated with \(\mathbb{R}\), consisting of all pairs \((a, t)\), \(a, t \in \mathbb{R}, a > 0\), with group operation \((a, t) \cdot (a', t') = (aa', t + at')\). The \textit{(continuous) affine systems} generated by \(\psi \in L^2(\mathbb{R})\) are obtained from the action of the \textit{quasi–regular representation} \(\pi_{(a,t)}\) of \(\mathbb{A}_1\) on \(L^2(\mathbb{R})\), that is

\[\{\psi_{a,t}(x) = \pi_{(a,t)} \psi(x) = T_t D_a \psi(x) : (a, t) \in \mathbb{A}_1\}\],

where the translation operator \(T_t \) is defined by \(T_t \psi(x) = \psi(x - t) \) and the dilation operator \(D_a \) is defined by \(D_a \psi(x) = a^{-1/2} \psi(a^{-1} x) \).

It was observed by Calderón [2] that, if \(\psi \) satisfies the admissibility condition
\begin{equation}
\int_0^\infty |\hat{\psi}(a\xi)|^2 \frac{da}{a} = 1 \quad \text{for a.e. } \xi \in \mathbb{R},
\end{equation}
then any \(f \in L^2(\mathbb{R}) \) can be recovered via the reproducing formula:
\[f = \int_{A_1} \langle f, \psi_{a,t} \rangle \psi_{a,t} \, d\mu(a,t), \]
where \(d\mu(a,t) = dt \, d\lambda(a) \) is the left Haar measure of \(A_1 \). Here the Fourier transform is defined by \(\hat{\psi}(\xi) = \int \psi(x) e^{-2\pi i x \xi} \, dx \). As usual, \(\hat{\psi} \) will denote the inverse Fourier transform. The function \(\psi \) is called a continuous wavelet, if \(\psi \) satisfies (2.1), and \(W_\psi f(a,t) = (f, \psi_{a,t}) \) is the Continuous Wavelet Transform of \(f \). We refer to [14] for more details about this.

Discrete affine systems and wavelets are obtained by ‘discretizing’ appropriately the corresponding continuous systems. In fact, by replacing \((a,t) \in A_1 \) with the discrete set \((2^j, 2^m) \), \(j, m \in \mathbb{Z} \), one obtains the discrete dyadic affine system
\begin{equation}
\{ \psi_{j,m}(x) = T_{2^j} D_{2^m} \psi(x) = D_{2^j} T_{2^m} \psi(x) : j, m \in \mathbb{Z} \},
\end{equation}
and \(\psi \) is called a wavelet if (2.2) is an orthonormal basis or, more generally, a Parseval frame for \(L^2(\mathbb{R}) \).

Recall that a countable collection \(\{ \psi_i \}_{i \in I} \) in a Hilbert space \(\mathcal{H} \) is a Parseval frame (sometimes called a tight frame) for \(\mathcal{H} \), if \(\sum_{i \in I} |\langle f, \psi_i \rangle|^2 = ||f||^2 \) for all \(f \in \mathcal{H} \). This is equivalent to the reproducing formula \(f = \sum_{i \in I} \langle f, \psi_i \rangle \psi_i \) for all \(f \in \mathcal{H} \), where the series converges in the norm of \(\mathcal{H} \). Thus Parseval frames provide basis-like representations even though a Parseval frame need not be a basis in general. We refer the reader to [8, 9] for more details about frames.

2.2. Higher-dimensional Continuous Wavelet Transform. The natural way of extending the theory of affine systems to higher dimensions is by replacing \(A_1 \) with the full affine group of motions on \(\mathbb{R}^n \), \(A_n \), consisting of the pairs \((M, t) \in GL_n(\mathbb{R}) \times \mathbb{R}^n \) with group operation \((M, t) \cdot (M', t') = (MM', t + Mt') \). Similarly to the one-dimensional case, the affine systems generated by \(\psi \in L^2(\mathbb{R}^n) \) are given by
\[\{ \psi_{M,t}(x) = T_t D_M \psi(x) : (M, t) \in A_n \}, \]
where here the dilation operator \(D_M \) is defined by \(D_M \psi(x) = |\det M|^{-\frac{1}{2}} \psi(M^{-1} x) \).

The generalization of the Calderón admissibility condition to higher dimensions and the construction of multidimensional wavelets is a far more complex task than the corresponding one-dimensional problem, and yet not fully understood. We refer to [23, 29] for more details.

Now let \(G \) be a subset of \(GL_n(\mathbb{R}) \) and define \(A \subseteq A_n \) by \(A = \{(M, t) : M \in G, t \in \mathbb{R}^n \} \). If there exists a function \(\psi \in L^2(\mathbb{R}^n) \) such that, for all \(f \in L^2(\mathbb{R}^n) \), we have:
\begin{equation}
f = \int_{\mathbb{R}^n} \int_G \langle f, T_t D_M \psi \rangle T_t D_M \psi \, d\lambda(M) \, dt,
\end{equation}
where \(\lambda \) is a measure on \(G \), then \(\psi \) is a continuous wavelet with respect to \(A \). The following result, that is a simple modification of Theorem 2.1 in [29], gives an exact
characterization of all those $\psi \in L^2(\mathbb{R}^n)$ that are continuous wavelets with respect to Λ. The proof of this theorem is reported in the Appendix.

Theorem 2.1. Equality (2.3) is valid for all $f \in L^2(\mathbb{R}^n)$ if and only if, for all $\xi \in \mathbb{R}^n \setminus \{0\}$,

$$\Delta(\psi)(\xi) = \int_G |\hat{\psi}(M^t\xi)|^2 \det M \, d\lambda(M) = 1. \tag{2.4}$$

The choice of the measure λ on G is not unique. If G is not simply a subset of $GL_n(\mathbb{R})$, but also a subgroup, then we can use the left Haar measure on G which is unique up to a multiplicative constant. Also, observe that Theorem 2.1 extends to functions on subspaces of $L^2(\mathbb{R}^n)$ of the form

$$L^2(V)^\vee = \{f \in L^2(\mathbb{R}^n) : \text{supp } \hat{f} \subset V\}.$$

2.3. Localization of Wavelets. The decay properties of the functions $\psi_{M,t} = T_t D_M \psi$, where $\hat{\psi} \in C_0^\infty$, are described by the following proposition.

Proposition 2.2. Suppose that $\psi \in L^2(\mathbb{R}^n)$ is such that $\hat{\psi} \in C_0^\infty(\mathbb{R})$, where $R = \text{supp} \hat{\psi} \subset \mathbb{R}^n$. Then, for each $k \in \mathbb{N}$, there is a constant C_k such that, for any $x \in \mathbb{R}^n$, we have

$$|\psi_{M,t}(x)| \leq C_k \det M \left| 1 + |M^{-1}(x-t)|^2 \right|^{-k}.$$

In particular, $C_k = k m(R) \left(||\hat{\psi}||_\infty + ||\Delta^k \hat{\psi}||_\infty \right)$, where $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ is the frequency domain Laplacian operator and $m(R)$ is the Lebesgue measure of R.

The proof of this proposition relies on the following known observation, whose proof is included for completeness.

Lemma 2.3. Let g be such that $\hat{g} \in C_0^\infty(R)$, where $R \subset \mathbb{R}^n$ is the supp \hat{g}. Then, for each $k \in \mathbb{N}$, there is a constant C_k such that for any $x \in \mathbb{R}^n$

$$|g(x)| \leq C_k (1 + |x|^2)^{-k}.$$

In particular, $C_k = k m(R) \left(||\hat{g}||_\infty + ||\Delta^k \hat{g}||_\infty \right)$.

Proof. Since $g(x) = \int_R \hat{g}(\xi) e^{2\pi i \xi x} \, d\xi$, then, for every $x \in \mathbb{R}^2$,

$$|g(x)| \leq m(R) ||\hat{g}||_\infty. \tag{2.5}$$

An integration by parts shows that

$$\int_R \Delta \hat{g}(\xi) e^{2\pi i \xi x} \, d\xi = -(2\pi)^2 |x|^2 g(x)$$

and thus, for every $x \in \mathbb{R}^2$,

$$|g(x)| \leq m(R) ||\Delta^k \hat{g}||_\infty. \tag{2.6}$$

Using (2.5) and (2.6), we have

$$|g(x)| \leq m(R) \left(||\hat{g}||_\infty + ||\Delta^k \hat{g}||_\infty \right). \tag{2.7}$$

Observe that, for each $k \in \mathbb{N}$,

$$|g(x)| \leq k m(R) \left(1 + |x|^{2k} \right)^{-k} \left(||\hat{g}||_\infty + ||\Delta^k \hat{g}||_\infty \right). \tag{2.7}$$

Using this last inequality and (2.7), we have that for each $x \in \mathbb{R}^n$

$$|g(x)| \leq k m(R) \left(1 + |x|^2 \right)^{-k} \left(||\hat{g}||_\infty + ||\Delta^k \hat{g}||_\infty \right).$$
A simple re-scaling argument now proves Proposition 2.2.

Proof of Proposition 2.2. A direct computation gives:

\[\psi(M^{-1}(x-t)) = \int_R \hat{\psi}(\xi) e^{2\pi i M^{-1}(x-t) \xi} d\xi \]

\[= \int_R \hat{\psi}(\xi) e^{2\pi i(x-t) M^{-1} \xi} d\xi \]

\[= \int_{(M^t)^{-1} R} \hat{\psi}(M^t \eta) e^{2\pi i(x-t) \eta} |\det M| d\eta. \]

It follows that

\[|\psi(M^{-1}(x-t))| \leq m((M^t)^{-1} R) |\det M| \|\hat{\psi}(M^t)\|_\infty = m(R) \|\hat{\psi}\|_\infty. \]

Using a simple modification of the argument in Lemma 2.3, we have that

\[(2\pi |M^{-1}(x-t)|)^2 k |\psi(M^{-1}(x-t))| \leq m(R) \|\Delta^k \hat{\psi}\|_\infty. \]

Next, arguing again as in Lemma 2.3 we have that

\[|\psi(M^{-1}(x-t))| \leq k m(R) (1 + |M^{-1}(x-t)|^2)^{-k} (\|\hat{\psi}\|_\infty + \|\Delta^k \hat{\psi}\|_\infty). \]

This completes the proof. □

3. **Continuous Shearlet Transform**

3.1. Definition

In this paper, we will be interested in the affine systems obtained when \(\Lambda \) is a subset of \(\mathbb{A}_2 \) of the form

\[\Lambda = \{(M, t) : M \in G, t \in \mathbb{R}^2 \}, \]

and \(G \subset GL_2(\mathbb{R}) \) is the set of matrices:

\[G = \left\{ M = M_{as} = \begin{pmatrix} a & -\sqrt{a} s \\ 0 & \sqrt{a} \end{pmatrix}, \quad a \in I, s \in S \right\}, \]

where \(I \subset \mathbb{R}^+ \), \(S \subset \mathbb{R} \). It is useful to notice that the matrices \(M \) can be factorized as \(M = B A \), where \(B \) is the shear matrix \(B = \begin{pmatrix} 1 & -s \\ 0 & 1 \end{pmatrix} \) and \(A \) is the diagonal matrix \(A = \begin{pmatrix} a & 0 \\ 0 & \sqrt{a} \end{pmatrix} \). In particular, \(A \) produces parabolic scaling, that is, \(f(Ax) = f(A(x_1, x_2) = f(A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) \) leaves invariant the parabola \(x_1 = s \). Thus, the matrix \(M \) can be interpreted as the superposition of parabolic scaling and shear transformation.

We will now consider those functions, which satisfy (2.1) for the subset \(\Lambda \) of the affine group, given by (3.1). In order to distinguish these functions from a general continuous wavelet, in the following we will refer to them as continuous shearlets. We will consider two situations, corresponding to \(I = \mathbb{R}^+ \), \(S = \mathbb{R} \) or \(I = \{a : 0 \leq a \leq 1\}, S = \{s \in \mathbb{R} : |s| \leq s_0\} \), for some \(s_0 > 0 \).

For \(\xi = (\xi_1, \xi_2) \in \mathbb{R}^2 \), \(\xi_2 \neq 0 \), let \(\hat{\psi} \) be given by

\[\hat{\psi}(\xi) = \hat{\psi}(\xi_1, \xi_2) = \hat{\psi}_1(\xi_1) \hat{\psi}_2(\xi_2). \]

Proposition 3.1. Let \(\Lambda \) be given by (3.1) and (3.2) with \(I = \mathbb{R}^+ \), \(S = \mathbb{R} \), and \(\psi \in L^2(\mathbb{R}^2) \) be given by (3.3) where:

(i) \(\psi_1 \in L^2(\mathbb{R}) \) satisfies the Calderón condition (2.1);

(ii) \(\|\psi_2\|_{L^2} = 1 \).
Then ψ is a continuous shearlet for $L^2(\mathbb{R}^2)$ with respect to Λ.

Proof. A direct computation shows that $M^\dagger(\xi_1, \xi_2) = (a\xi_1, a^{1/2}(\xi_2-s\xi_1))^\dagger$. By choosing as measure $d\lambda(M) = \frac{da}{\det M^\dagger} ds$, the admissibility condition (2.4) becomes

$$\Delta(\psi)(\xi) = \int_\mathbb{R} \int_\mathbb{R^+} |\hat{\psi}_1(a\xi_1)|^2 |\hat{\psi}_2(a^{-\frac{1}{2}}(\frac{s}{\xi_1} - s))|^2 a^{-\frac{3}{2}} da ds = 1.$$

Thus, by Theorem 2.1, to show that (3.4) is satisfied. Using the assumption on ψ_1 and ψ_2, we have:

$$\Delta(\psi)(\xi) = \int_\mathbb{R} \int_\mathbb{R^+} |\hat{\psi}_1(a\xi_1)|^2 |\hat{\psi}_2(a^{-\frac{1}{2}}(\frac{s}{\xi_1} - s))|^2 a^{-\frac{3}{2}} da ds$$

$$= \int_\mathbb{R^+} |\hat{\psi}_1(a\xi_1)|^2 \left(\int_\mathbb{R} |\hat{\psi}_2(a^{-\frac{1}{2}}(\frac{s}{\xi_1} - s))|^2 ds \right) \frac{da}{a}$$

$$= \int_\mathbb{R^+} |\hat{\psi}_1(a\xi_1)|^2 \frac{da}{a} = 1 \text{ for a.e. } \xi = (\xi_1, \xi_2) \in \mathbb{R}^2.$$

This shows that equality (3.4) is satisfied and, hence, ψ is a continuous shearlet. □

If the set S is not all of \mathbb{R}, then we need some additional assumptions on ψ. Consider the subspace of $L^2(\mathbb{R}^2)$ given by $L^2(C)^\vee = \{ f \in L^2(\mathbb{R}^2) : \text{supp} \hat{f} \subset C \}$, where

$$C = \{(\xi_1, \xi_2) \in \mathbb{R}^2 : |\xi_1| \geq 2 \text{ and } |\frac{s}{\xi_1}| \leq 1 \}.$$

We have the following result.

Proposition 3.2. Let Λ be given by (3.1) and (3.2) with $I = \{ a : 0 \leq a \leq 1 \}$, $S = \{ s \in \mathbb{R} : |s| \leq 2 \}$, and $\psi \in L^2(\mathbb{R}^2)$ be given by (3.3) where:

(i) $\psi_1 \in L^2(\mathbb{R})$ satisfies the Calderón condition (2.1), and $\text{supp} \hat{\psi}_1 \subset [-2, -\frac{1}{2}] \cup [\frac{1}{2}, 2]$;

(ii) $\|\psi_2\|_{L^2} = 1$ and $\text{supp} \hat{\psi}_2 \subset [-1, 1],$

Then ψ is a continuous shearlet for $L^2(C)^\vee$ with respect to Λ, that is, for all $f \in L^2(C)^\vee$,

$$f(x) = \int_{\mathbb{R}^2} \int_{-2}^{2} \int_{-1}^{1} \langle f, \psi_{ast} \rangle \psi_{ast}(x) \frac{da}{a^3} ds dt.$$

Proof. We apply again Theorem 2.1 to functions on $L^2(C)^\vee$. Using the assumptions on ψ_2, S and I we have that, for $\xi \in C$:

$$\int_{\frac{1}{\sqrt{a^2+2}}}^{\frac{1}{\sqrt{a^2-2}}} |\hat{\psi}_2(s)|^2 ds = \int_{-1}^{1} |\hat{\psi}_2(s)|^2 ds = 1.$$

Thus, for a.e. $\xi \in C$ we have that

$$\Delta(\psi)(\xi) = \int_{-2}^{2} \int_{-1}^{1} |\hat{\psi}(M^\dagger_{\xi}(\xi))|^2 a^{-\frac{3}{2}} da ds$$

$$= \int_{-2}^{2} \int_{0}^{1} |\hat{\psi}_1(a\xi_1)|^2 |\hat{\psi}_2(a^{-\frac{1}{2}}(\frac{s}{\xi_1} - s))|^2 a^{-\frac{3}{2}} da ds$$

$$= \int_{0}^{1} |\hat{\psi}_1(a\xi_1)|^2 \int_{\frac{1}{\sqrt{a^2+2}}}^{\frac{1}{\sqrt{a^2-2}}} |\hat{\psi}_2(s)|^2 ds \frac{da}{a}.$$
\[\int_0^1 \left| \hat{\psi}_1(a\xi_1) \right|^2 \frac{da}{a}. \]

Since \(\xi_1 \geq 2 \), using the assumptions on the support of \(\hat{\psi}_1 \) and condition (2.1), from the last expression we have that, for a.e. \(\xi \in C \),

\[\Delta(\psi)(\xi) = \int_0^{\xi_1} \left| \hat{\psi}_1(a) \right|^2 \frac{da}{a} = \int_0^2 \left| \hat{\psi}_1(a) \right|^2 \frac{da}{a} = \int_0^\infty \left| \hat{\psi}_1(a) \right|^2 \frac{da}{a} = 1. \]

This shows that the admissibility condition (2.4) for this system is satisfied and this completes the proof. \(\square \)

There are several examples of functions \(\psi_1 \) and \(\psi_2 \) satisfying the assumptions of Proposition 3.1 as well as Proposition 3.2. In addition, we can choose \(\psi_1, \psi_2 \) such that \(\hat{\psi}_1, \hat{\psi}_2 \) are real valued and belong to \(C_0^\infty \) (see [15, 18] for the construction of these functions).

![Support of the shearlets \(\hat{\psi}_{ast} \) (in the frequency domain) for different values of \(a \) and \(s \).](image)

Figure 1. Support of the shearlets \(\hat{\psi}_{ast} \) (in the frequency domain) for different values of \(a \) and \(s \).

Now we can define the Continuous Shearlet Transform:

Definition 3.3. Let \(\psi \in L^2(\mathbb{R}^2) \) be given by (3.3) where:

(i) \(\psi_1 \in L^2(\mathbb{R}) \) satisfies the Calderón condition (2.1), and \(\hat{\psi}_1 \in C_0^\infty(\mathbb{R}) \) with \(\text{supp} \hat{\psi}_1 \subset [-2, -\frac{1}{2}] \cup [\frac{1}{2}, 2] \);

(ii) \(\|\psi_2\|_{L^2} = 1 \), and \(\psi_2 \in C_0^\infty(\mathbb{R}) \) with \(\text{supp} \hat{\psi}_2 \subset [-1, 1] \) and \(\hat{\psi}_2 > 0 \) on \((-1, 1) \).

The set of functions generated by \(\psi \) under the action of \(\Lambda \), namely:

\[\{ \psi_{ast} = T_t D_{Ma_s} \psi = a^{-\frac{3}{4}} \psi(M_{as}^{-1}(\cdot - t)) : a \in I \subset \mathbb{R}^+, s \in S \subset \mathbb{R}, t \in \mathbb{R}^2 \} \]

where \(M_{as} \) was defined in (3.2), is called a continuous shearlet system. The Continuous Shearlet Transform of \(f \) is defined by

\[\text{SH}_f(a, s, t) = \langle f, \psi_{ast} \rangle. \quad a \in I \subset \mathbb{R}^+, s \in S \subset \mathbb{R}, t \in \mathbb{R}^2. \]

Observe that, unlike the traditional wavelet transform which depends only on scale and translation, the shearlet transform is a function of three variables, that is, the scale \(a \), the shear \(s \) and the translation \(t \). Many properties of the continuous
shearlets are more evident in the frequency domain. A direct computation shows that
\[
\hat{\psi}_{ast}(\xi) = a^{\frac{7}{2}} e^{-2\pi i \xi} \hat{\psi}(a \xi_1, \sqrt{a}(\xi_2 - s \xi_1))
\]
\[
= a^{\frac{7}{2}} e^{-2\pi i \xi} \hat{\psi}(a \xi_1) \hat{\psi}_2(a^{-\frac{7}{4}}(\xi_2 - s)).
\]
Thus, each function \(\hat{\psi}_{ast}\) is supported on the set:
\[
\text{supp } \hat{\psi}_{ast} \subset \{(\xi_1, \xi_2) : \xi_1 \in [-\frac{2}{\alpha}, -\frac{1}{2a}] \cup [\frac{1}{2a}, \frac{2}{a}], |\xi_2 - s| \leq \sqrt{a}\}.
\]
As illustrated in Figure 1, each continuous shearlet \(\psi_{ast}\) has frequency support on a pair of trapezoids, symmetric with respect to the origin, oriented along a line of slope \(s\). The support becomes increasingly thin as \(a \to 0\).

When \(S = \mathbb{R}\) and \(I = \mathbb{R}^+\), by Proposition 3.1, the Continuous Shearlet Transform provides a reproducing formula (2.3) for all \(f \in L^2(\mathbb{R}^2)\):
\[
\|f\|^2 = \int_{\mathbb{R}^3} \int_{-\infty}^{\infty} \int_{0}^{\infty} |\text{SH}_\psi f(a, s, t)|^2 \frac{da}{a^3} ds dt.
\]
On the other hand, if \(S, I\) are bounded sets, by Proposition 3.2, the Continuous Shearlet Transform provides a reproducing formula only for functions in a proper subspace of \(L^2(\mathbb{R}^2)\). However, even when \(S, I\) are bounded, it is possible to obtain a reproducing formula for all \(f \in L^2(\mathbb{R}^2)\) as follows. Let
\[
\hat{\psi}^{(v)}(\xi) = \hat{\psi}^{(v)}(\xi_1, \xi_2) = \hat{\psi}_1(\xi_2) \hat{\psi}_2(\xi_1^2),
\]
where \(\hat{\psi}_1, \hat{\psi}_2\) are defined as in Definition 3.3, and let \(\Lambda^{(v)} = \{(M, t) : M \in \mathbb{C}, t \in \mathbb{R}^2\}\), where
\[
(3.5) \quad G^{(v)} = \left\{ M = M_{ast} = \begin{pmatrix} \sqrt{a} & 0 \\ -\sqrt{a} s & a \end{pmatrix}, \quad a \in I, \ s \in S \right\},
\]
Then, proceeding as above, it is easy to show that \(\psi^{(v)}\) is a continuous shearlet for \(L^2(C^{(v)})\) with respect to \(\Lambda^{(v)}\), where \(C^{(v)}\) is the vertical cone:
\[
C^{(v)} = \{(\xi_1, \xi_2) \in \mathbb{R}^2 : |\xi_2| \geq 2 \text{ and } |\xi_1| > 1\}.
\]
Accordingly, we introduce the shearlet system \(\{\psi_{ast}^{(v)} = T_t D_M \psi^{(v)} : a \in I, s \in S, t \in \mathbb{R}^2\}\), for \((M, t) \in \Lambda^{(v)}\), and the associated Continuous Shearlet Transform \(\text{SH}_{\psi^{(v)}} f(a, s, t) = \langle f, \psi^{(v)} \rangle\). Finally, let \(W(x)\) be such that \(\hat{W}(\xi) \in C^\infty(\mathbb{R}^2)\) and
\[
(3.6) \quad |\hat{W}(\xi)|^2 + \chi_{C_1}(\xi) \int_0^1 |\hat{\psi}_1(a \xi_1)|^2 \frac{da}{a} + \chi_{C_2}(\xi) \int_0^1 |\hat{\psi}_2(a \xi_2)|^2 \frac{da}{a} = 1,
\]
for a. e. \(\xi \in \mathbb{R}^2\), where \(C_1 = \{(\xi_1, \xi_2) \in \mathbb{R}^2 : |\xi_2| \leq 1\}, C_2 = \{(\xi_1, \xi_2) \in \mathbb{R}^2 : |\xi_2| > 1\}.\) Then it follows that \(W\) is a \(C^\infty\)-window function in \(\mathbb{R}^2\) with \(\hat{W}(\xi) = 1\) for \(\xi \in [-1/2, 1/2]^2\), \(\hat{W}(\xi) = 0\) outside the box \(\{\xi \in [-2, 2]^2\}\). Finally, let \((P_{C_1} f)^\wedge = \hat{f} \chi_{C_1}\) and \((P_{C_2} f)^\wedge = \hat{f} \chi_{C_2}\). Then, for each \(f \in L^2(\mathbb{R}^2)\) we have:
\[
(3.7) \quad \|f\|^2 = \int_{\mathbb{R}^2} |\langle f, T_t W \rangle|^2 dt + \int_{\mathbb{R}^2} \int_{-\infty}^{\infty} |\text{SH}_{(P_{C_1} f)}(a, s, t)|^2 \frac{da}{a^3} ds dt
\]
\[
+ \int_{\mathbb{R}^2} \int_{-\infty}^{\infty} |\text{SH}_{(P_{C_2} f)}(a, s, t)|^2 \frac{da}{a^3} ds dt.
\]
The proof of this equality is reported in the Appendix. Equation (3.7) shows that f is continuously reproduced by using isotropic window functions at coarse scales, and two sets of continuous shearlet systems at fine scales: one set corresponding to the horizontal cone C (in the frequency domain) and another set corresponding to the vertical cone $C^{(v)}$. The advantage of this construction, with respect to the simpler one where $S = \mathbb{R}$, is that in this case the set S associated with the shear variable is the closed interval $S = \{s : |s| \leq 2\}$. This property will be important in Subsection 4.4 and Section 5.

There are other choices of the subset Λ, given by (3.1), generating affine systems with properties similar to the continuous shearlet systems. Variants and generalizations of this construction will be discussed in Section 6.

3.2. Localization of Shearlets. Since the continuous shearlets ψ we constructed in the previous subsection satisfy $\hat{\psi} \in C_0^\infty(\mathbb{R}^2)$, it follows that the analyzing elements of the associated continuous shearlet systems decay rapidly as $|x| \to \infty$, that is:

$$\psi_{ast}(x) = O(|x|^{-k}) \quad \text{as} \quad |x| \to \infty, \quad \text{for every} \quad k \geq 0.$$

More precisely, we have the following result.

Proposition 3.4. Let $\psi \in L^2(\mathbb{R}^2)$ be a continuous shearlet satisfying $\hat{\psi} \in C_0^\infty(\mathbb{R}^2)$, and let M be defined as in (3.2). Then, for each $k \in \mathbb{N}$, there is a constant C_k such that, for any $x \in \mathbb{R}^2$, we have

$$|\psi_{ast}(x)| \leq C_k |\det M|^{-\frac{1}{2}} (1 + |M^{-1}(x-t)|^2)^{-k} = C_k a^{-\frac{1}{2}} (1 + a^{-2}(x_1 - t_1)^2 + 2a^{-2}s(x_1 - t_1)(x_2 - t_2) + a^{-1}(1 + a^{-1} s^2)(x_2 - t_2)^2)^{-k}.$$

In particular, $C_k = k \frac{15}{2} (\|\hat{\psi}\|_\infty + \|\Delta^k \hat{\psi}\|_\infty)$, where $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$ is the frequency domain Laplacian operator.

Proof. Observe that, for $t = (t_1, t_2)$ and $x = (x_1, x_2) \in \mathbb{R}^2$, we have:

$$\psi_{ast}(x) = |\det M|^{-\frac{1}{2}} \psi(M^{-1}(x-t)) = a^{-\frac{1}{2}} \psi\left(a^{-1}(x_1 - t_1) + s a^{-1}(x_2 - t_2) \right).$$

The proof then follows from Proposition 2.2, where

$$R = \{(\xi_1, \xi_2) : \xi_1 \in [-\frac{3}{2}, \frac{3}{2}] \cup \left[\frac{1}{\sqrt{a}}, \frac{3}{\sqrt{a}}\right], |s - \frac{\xi_2}{\alpha} - \frac{\xi_1}{\beta}| \leq \sqrt{a}\}.$$

It is easy to check that $m(R) = \frac{15}{2} \sqrt{a}$. □

4. Analysis of singularities

As observed above, the continuous shearlet ψ, constructed in Section 3, satisfies $\psi \in C_0^\infty(\mathbb{R}^2)$. It follows that $\psi \in \mathcal{S}(\mathbb{R}^2)$ and, therefore, the Continuous Shearlet Transform $S\mathcal{H}_\psi f(a, s, t) = (f, \psi_{ast})$, $a > 0$, $s \in \mathbb{R}$, $t \in \mathbb{R}$, is well defined for all tempered distributions $f \in \mathcal{S}'$.

In the following, we will examine the behavior of the Continuous Shearlet Transform of several distributions containing different types of singularities. This will be useful to illustrate the basic properties of the shearlet transform, before stating a more general result in the next section. Indeed, the rate of decay of the Continuous
Shearlet Transform exactly describes the location and orientation of the singularities. Interestingly, despite the different mathematical structure, the decay rates found for the Continuous Shearlet Transform are consistent with those found using the Continuous Curvelet Transform in [6].

In order to state our results, it will be useful to introduce the following notation to distinguish between the following two different behaviors of the Continuous Shearlet Transform.

Definition 4.1. Let f be a distribution on \mathbb{R}^2, $\mathcal{SH}_\psi f(a, s, t)$ be defined as in Definition 3.3, and let $r \in \mathbb{R}$. Then $\mathcal{SH}_\psi f(a, s, t)$ decays rapidly as $a \to 0$, if

$$\mathcal{SH}_\psi f(a, s, t) = O(a^k) \quad \text{as } a \to 0,$$

for every $k \geq 0$.

We use the notation:

$$\mathcal{SH}_\psi f(a, s, t) \sim a^{r_0} \quad \text{as } a \to 0,$$

if there exist constants $0 < \alpha \leq \beta < \infty$ such that

$$\alpha a^{r_0} \leq \mathcal{SH}_\psi f(a, s, t) \leq \beta a^{r_0} \quad \text{as } a \to 0.$$

4.1. Point singularities. We start by examining the decay properties of the Continuous Shearlet Transform of the Dirac δ.

Proposition 4.2. If $t = 0$, we have

$$\mathcal{SH}_\psi \delta(a, s, t) \sim a^{-\frac{3}{4}} \quad \text{as } a \to 0.$$

In all other cases, $\mathcal{SH}_\psi \delta(a, s, t)$ decays rapidly as $a \to 0$.

Proof. For $t = 0$ we have

$$\langle \delta, \psi_{ast} \rangle = \psi_{ast}(0) = a^{-\frac{3}{4}} \psi(0) \sim a^{-\frac{3}{4}} \quad \text{as } a \to 0.$$

Next let $t \neq 0$. Then

$$\langle \delta, \psi_{ast} \rangle = \psi_{ast}(0),$$

and, by Proposition 3.4, for each $k \in \mathbb{N}$, we have

$$|\psi_{ast}(0)| \leq C_k a^{-\frac{3}{4}}(1 + a^{-2}t_2^2 + 2a^{-2}st_1t_2 + (1 + a^{-1}s^2)a^{-1}t_2^2)^{-k}.$$

Thus, if $t_2 \neq 0$, then $|\psi_{ast}(0)| = O(a^{k-3/4})$ as $a \to 0$. Otherwise, if $t_2 = 0$, $t_1 \neq 0$, then $|\psi_{ast}(0)| = O(a^{2k-3/4})$ as $a \to 0$. □

4.2. Linear singularities. Next we will consider the linear delta distribution $\nu_p(x_1, x_2) = \delta(x_1 + px_2)$, $p \in \mathbb{R}$, defined by

$$\langle \nu_p, f \rangle = \int f(-px_2, x_2) \, dx_2.$$

The following result shows that the Continuous Shearlet Transform precisely determines both the position and the orientation of the linear singularity, in the sense that the transform $\mathcal{SH}_\psi \nu_p(a, s, t)$ always decays rapidly as $a \to 0$ except when t is on the singularity and $s = p$, i.e., the direction perpendicular to the singularity or, in other words, in which the singularity occurs.

Proposition 4.3. If $t_1 = -pt_2$ and $s = p$, we have

$$\mathcal{SH}_\psi \nu_p(a, s, t) \sim a^{-\frac{1}{4}} \quad \text{as } a \to 0.$$

In all other cases, $\mathcal{SH}_\psi \nu_p(a, s, t)$ decays rapidly as $a \to 0$.

Proof. The following heuristic argument gives
\[
\hat{\nu}_p(\xi_1, \xi_2) = \int \int \delta(x_1 + px_2) e^{-2\pi i \xi_2} dx_2 dx_1
\]
\[
= \int e^{-2\pi i x_2(p - \xi_1)} dx_2 = \delta(\xi_2 - p \xi_1) = \nu_{-(\frac{1}{p})}(\xi_1, \xi_2).
\]
That is, the Fourier transform of the linear delta on \(\mathbb{R}^2\) is another linear delta on \(\mathbb{R}^2\), where the slope \(-\frac{1}{p}\) is replaced by the slope \(p\). A direct computation gives:
\[
\langle \hat{\nu}_p, \hat{\psi}_{ast} \rangle = \int_{\mathbb{R}} \hat{\psi}_{ast}(\xi_1, p \xi_1) d\xi_1
\]
\[
= a^{\frac{3}{2}} \int_{\mathbb{R}} \hat{\psi}(a \xi_1, \sqrt{a} p \xi_1 - \sqrt{a} s \xi_1) e^{2\pi i a \xi_1(t_1 + pt_2)} d\xi_1
\]
\[
= a^{-\frac{1}{2}} \int_{\mathbb{R}} \hat{\psi}(\xi_1, a^{-\frac{1}{2}} p \xi_1 - a^{-\frac{1}{2}} s \xi_1) e^{2\pi i a^{-\frac{1}{2}} \xi_1(t_1 + pt_2)} d\xi_1
\]
\[
= a^{-\frac{1}{2}} \int_{\mathbb{R}} \hat{\psi}_1(\xi_1) \hat{\psi}_2(a^{-\frac{1}{2}} (p - s)) e^{2\pi i a^{-\frac{1}{2}} \xi_1(t_1 + pt_2)} d\xi_1
\]
\[
= a^{-\frac{1}{2}} \hat{\psi}_2(a^{-\frac{1}{2}} (p - s)) \hat{\psi}_1(a^{-1}(t_1 + pt_2)).
\]
If \(s \neq p\), then there exists some \(a > 0\) such that \(|p - s| > \sqrt{a}\). This implies that \(\hat{\psi}_2(a^{-1/2}(p - s)) = 0\), and so \(\langle \hat{\nu}_p, \hat{\psi}_{ast} \rangle = 0\). On the other hand, if \(t_1 = -pt_2\) and \(s = p\), then \(\hat{\psi}_2(a^{-1/2}(p - s)) = \hat{\psi}_2(0) \neq 0\), and
\[
\langle \hat{\nu}_p, \hat{\psi}_{ast} \rangle = a^{-\frac{1}{2}} \hat{\psi}_2(a^{-\frac{1}{2}} (p - s)) \hat{\psi}_1(0) \sim a^{-\frac{1}{2}} \text{ as } a \to 0.
\]
If \(t_1 \neq -pt_2\), by Proposition 2.2, we observe that, for all \(k \in \mathbb{N}\),
\[
\langle \hat{\nu}_p, \hat{\psi}_{ast} \rangle \leq a^{-\frac{1}{2}} \hat{\psi}_2(a^{-\frac{1}{2}} (p - s)) ||\hat{\psi}_1(a^{-1}(t_1 + pt_2))||
\]
\[
\leq C_k a^{-\frac{1}{2}} \hat{\psi}_2(a^{-\frac{1}{2}} (p - s))(1 + a^{-2}(t_1 + pt_2)^2)^{-k} = O(a^{2k-\frac{1}{2}}) \text{ as } a \to 0. \tag*{□}
\]

4.3. Polygonal singularities. Here we consider the characteristic function \(\chi_V\) of the cone \(V = \{(x_1, x_2) : x_1 \geq 0, qx_1 \leq x_2 \leq px_1\}\), where \(0 < q \leq p < \infty\). We have the following result.

Proposition 4.4. For \(t = 0\), if \(s = -\frac{1}{p}\) or \(s = -\frac{1}{q}\), we have
\[
\text{SH}_\psi \chi_V(a, s, t) \sim a^{\frac{3}{2}} \text{ as } a \to 0,
\]
and if \(s \neq -\frac{1}{p}\) and \(s \neq -\frac{1}{q}\), we have
\[
\text{SH}_\psi \chi_V(a, s, t) \sim a^{\frac{5}{2}} \text{ as } a \to 0.
\]
For \(t \neq 0\), if \(s = -\frac{1}{p}\) or \(s = -\frac{1}{q}\), we have
\[
\text{SH}_\psi \chi_V(a, s, t) \sim a^{\frac{5}{2}} \text{ as } a \to 0.
\]
In all other cases, \(\text{SH}_\psi \chi_V(a, s, t)\) decays rapidly as \(a \to 0\).

The decay of the Continuous Shearlet Transform of \(\chi_V\) is illustrated in Figure 2. As shown in the figure, the decay of \(\text{SH}_\psi \chi_V(a, s, t)\) exactly identifies the location and orientation of the singularities. It is interesting to notice that the orientation of the linear singularities can even be detected considering only the ‘point singularity’ at the origin.
If \(\hat{\chi}_V \) can be computed to be
\[
\hat{\chi}_V(\xi_1, \xi_2) = C \frac{1}{(\xi_1 + q\xi_2)(\xi_1 + p\xi_2)}, \quad \text{where } C = \frac{(p + q)^2}{(2\pi)^2}.
\]

A direct computation gives:
\[
\langle \hat{\chi}_V, \hat{\psi}_{ast} \rangle = C a_2^2 \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{1}{(\xi_1 + q\xi_2)(\xi_1 + p\xi_2)} \hat{\psi}_1(a\xi_1) \hat{\psi}_2(a^{-\frac{1}{2}}(\xi_1 - s)) e^{2\pi i \xi_1} d\xi_1 d\xi_2
\]
\[
= C a_2^2 \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{1}{(a^{-1}\xi_1 + q\xi_2)(a^{-1}\xi_1 + p\xi_2)} \hat{\psi}_1(\xi_1) \hat{\psi}_2(a^{-\frac{1}{2}}(a^{-1}\xi_1 - s)) e^{2\pi i a^{-1}\xi_1} d\xi_1 d\xi_2
\]
\[
= C a_2^2 \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{1}{(a^{-1}\xi_1 + q\xi_1(a^{-1/2}\xi_2 + a^{-1}s))(a^{-1}\xi_1 + p\xi_1(a^{-1/2}\xi_2 + a^{-1}s))} \hat{\psi}_1(\xi_1) \hat{\psi}_2(\xi_2) e^{2\pi i a^{-1}\xi_1(t_1 + s t_2) + a^{-1/2}\xi_1} d\xi_1 d\xi_2
\]
\[
= C a_2^2 \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{1}{(a^{-1/2}\xi_1(1 + s) + q\xi_1\xi_2)(a^{-1/2}\xi_1(1 + s) + p\xi_1\xi_2)} \hat{\psi}_1(\xi_1) \hat{\psi}_2(\xi_2) e^{2\pi i a^{-1}\xi_1(t_1 + s t_2) + a^{-1/2}\xi_1} d\xi_1 d\xi_2.
\]
Let us first consider the case \(t = 0 \). By the previous computation we can rewrite \(\langle \hat{\chi}_V, \hat{\psi}_{ast} \rangle \) as
\[
C a_2^2 \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\xi_1}{(a^{-1/2}\xi_1(1 + s) + q\xi_1\xi_2)(a^{-1/2}\xi_1(1 + s) + p\xi_1\xi_2)} \hat{\psi}_1(\xi_1) \hat{\psi}_2(\xi_2) d\xi_1 d\xi_2.
\]
If \(s \neq -\frac{1}{p} \) and \(s \neq -\frac{1}{q} \) for \(a \ll 1 \) we can rewrite \(\langle \hat{\chi}_V, \hat{\psi}_{ast} \rangle \) as
\[
C a_2^2 \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\xi_1}{(\xi_1(1 + s) + a^{1/2}q\xi_1\xi_2)(\xi_1(1 + s) + a^{1/2}p\xi_1\xi_2)} \hat{\psi}_1(\xi_1) \hat{\psi}_2(\xi_2) d\xi_1 d\xi_2
\]
\[
\sim C' a_2^2 \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\xi_1}{(\xi_1(1 + s))(\xi_1(1 + s))} \hat{\psi}_1(\xi_1) \hat{\psi}_2(\xi_2) d\xi_1 d\xi_2.
\]
We will now examine the behavior of the continuous Shearlet Transform of a distribution having a discontinuity along a curve. Throughout this section we will assume that the shearlet \(\psi \) is odd, \(\hat{\psi} \) is even and strictly decreasing. This assumption will be used in the proof of Proposition 4.5.

The above computation also shows that if \(t = 0 \) and \(s = -\frac{1}{p} \) or \(s = -\frac{1}{q} \), we have

\[
\langle \hat{\chi}_V, \hat{\psi}_{\text{ast}} \rangle \sim a^{\frac{2}{q}} \quad \text{as} \quad a \to 0.
\]

Secondly, let \(s \neq -\frac{1}{p} \). We have:

\[
\langle \hat{\chi}_V, \hat{\psi}_{\text{ast}} \rangle = C a^{\frac{1}{2}} \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\xi_1}{(a^{-1/2}\xi_1(1+sp)+q\xi_1\xi_2)(a^{-1/2}\xi_1(1+sp)+a^{-1/2}p\xi_1\xi_2)} \hat{\psi}_1(\xi_1) \hat{\psi}_2(\xi_2) e^{2\pi ia^{-1/2}pt_1\xi_1} d\xi_1 d\xi_2
\]

\[
\sim a^{\frac{2}{q}} \quad \text{as} \quad a \to 0.
\]

Since \(\psi_1 \) and \(\psi_2 \) are band-limited, the function \(\varphi \) has compact support, hence \((\varphi \hat{\psi}_1)^\vee \) is of rapid decay towards infinity. Thus

\[
\langle \hat{\chi}_V, \hat{\psi}_{\text{ast}} \rangle = C a^{\frac{1}{2}} (\varphi \hat{\psi}_1)^\vee \sim a^{-1/2}(1-sp) \quad \text{as} \quad a \to 0.
\]

Finally, in case \(t_2 \neq pt_1 \), \(t_2 \neq qt_1 \) and \(t_1 \neq 0 \), a similar argument to the one above shows that \(\langle \hat{\chi}_V, \hat{\psi}_{\text{ast}} \rangle \) decays rapidly also in this case. \(\square \)

4.4. Curvilinear singularities. We will now examine the behavior of the Continuous Shearlet Transform of a distribution having a discontinuity along a curve. Throughout this section we will assume that the shearlet \(\psi(\xi, \xi_2) = \hat{\psi}_1(\xi_1) \hat{\psi}_2(\xi_2) \) satisfies the following additional assumptions: \(\hat{\psi}_1 \) is odd, \(\hat{\psi}_2 \) is even and strictly decreasing. This assumption will be used in the proof of Proposition 4.5.

Let \(B(x_1, x_2) = \chi_D(x_1, x_2) \), where \(D = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 \leq 1\} \). We have the following:
Proposition 4.5. If $t_1^2 + t_2^2 = 1$ and $s = \frac{t_2}{t_1}$, $t_1 \neq 0$, we have

$$\mathcal{SH}_\psi B(a, s, t) \sim a^{\frac{3}{2}} \text{ as } a \to 0.$$

In all other cases, $\mathcal{SH}_\psi B(a, s, t)$ decays rapidly as $a \to 0$.

The assumption $t_1 \neq 0$ shows that the shearlet transform $\mathcal{SH}_\psi B(a, s, t)$ is unable to handle the vertical direction $s \to \infty$. To provide a complete analysis of the singularities of B, we need to use both $\mathcal{SH}_\psi B(a, s, t)$ and $\mathcal{SH}_\psi B^{(v)}(a, s, t)$ (as defined in Section 3). Since the shearlets $\psi^{(v)}_{ast}$ are defined on the vertical cone $C^{(v)}$, using $\mathcal{SH}_\psi B^{(v)}(a, s, t)$ one can obtain a similar result to Proposition 4.5, for $s = \frac{t_1}{t_2}$, $t_2 \neq 0$. Since the argument for both cases is exactly the same, we will only examine the transform $\mathcal{SH}_\psi B(a, s, t)$.

In order to prove Proposition 4.5, we need to recall the following facts. First, we recall the asymptotic behavior of Bessel functions, that is given by the following lemma (cf. [28]):

Lemma 4.6. There exists a constant C_0 such that

$$J_1(2\pi \lambda) \sim C_0 \lambda^{-\frac{1}{2}} (e^{2\pi i \lambda} + e^{-2\pi i \lambda}) \text{ as } \lambda \to \infty,$$

and, for $N = 1, 2, \ldots$, there are constants C_N satisfying

$$\left(\frac{d}{d\lambda} \right)^N J_1(2\pi \lambda) \sim C_N \lambda^{-\frac{1}{2}} (e^{2\pi i \lambda} \pm e^{-2\pi i \lambda}) \text{ as } \lambda \to \infty,$$

where the sign in \pm_N depends on N and J_1 is the Bessel function of order 1.

Secondly, we recall the following fact concerning oscillatory integrals of the First Kind, that can be found in [28, Ch.8]:

Lemma 4.7. Let $A \in C_0^\infty(\mathbb{R})$ and $\Phi \in C^1(\mathbb{R})$, with $\Phi'(t) \neq 0$ on supp A. Then

$$I(\lambda) = \int_\mathbb{R} A(t) e^{2\pi i \lambda \Phi(t)} dt = \frac{(-1)^N}{(2\pi i \lambda)^N} \int_\mathbb{R} D^N(A(t)) e^{2\pi i \lambda \Phi(t)} dt,$$

for $N = 1, 2, \ldots$, where $D(A(t)) = \frac{d}{dt} \left(\frac{A(t)}{\Phi'(t)} \right)$.

We can now prove Proposition 4.5.

Proof of Proposition 4.5. The Continuous Shearlet Transform of $B(x)$ is given by:

$$\mathcal{SH}_\psi B(a, s, t) = \langle B, \psi_{ast} \rangle = a^\frac{3}{2} \int_\mathbb{R} \hat{\psi}_1(a\xi_1) \hat{\psi}_2(a^{-\frac{1}{2}}(\xi_2 - s)) e^{2\pi i \xi_1 \lambda_1} \hat{B}(\xi) d\xi_1 d\xi_2.$$

The Fourier transform $\hat{B}(\xi_1, \xi_2)$ is the radial function:

$$\hat{B}(\xi_1, \xi_2) = 2 \int_{-1}^1 \sqrt{1 - x^2} e^{2\pi i x \sqrt{\xi_1^2 + \xi_2^2}} dx = |\xi_1|^{-1} J_1(2\pi|\xi_1|),$$

where J_1 is the Bessel function of order 1. Therefore, the asymptotic behavior of $\hat{B}(\lambda)$ follows from Lemma 4.6, with the factor $\lambda^{-1/2}$ replaced by $\lambda^{-3/2}$.

Because of the radial symmetry, it is convenient to convert (4.1) into polar coordinates:

$$\mathcal{SH}_\psi B(a, s, t) = a^\frac{3}{2} \int_\mathbb{R} \hat{\psi}_1(a\rho \cos \theta) \hat{\psi}_2(a^{-\frac{1}{2}}(\tan \theta - s)) e^{2\pi i \rho (t_1 \cos \theta + t_2 \sin \theta)} \hat{B}(\rho) \rho d\rho d\theta.$$
\[(4.2) \quad = a^{-\frac{1}{2}} \int \hat{\psi}_1(\rho \cos \theta) \hat{\psi}_2(a^{-\frac{1}{2}}(\tan \theta - s)) e^{2\pi i \xi (t_1 \cos \theta + t_2 \sin \theta)} \hat{B}(\xi) \rho \, d\rho \, d\theta.\]

We will now examine the asymptotic decay of the function \(SH_\psi B(a, s, t)\) along the curve \(\partial B\) for \(a \to 0\). Thus, we set \(t_1^2 + t_2^2 = 1\) and, without loss of generality, assume \(a < 1\). As we will show, the decay depends on whether the direction associated with \(s\) is normal to the curve \(\partial B\) or not.

Let us begin by considering the non-normal case \(s \neq t_2/t_1\). From (4.2), we have:

\[SH_\psi B(a, s, t) = a^{-\frac{1}{2}} \int I(a, \rho) \hat{B}(\frac{\xi}{a}) \rho \, d\rho,\]

where (using the conditions on the support of \(\hat{\psi}_2\))

\[I(a, \rho) = \int_{|\tan \theta - s| < \sqrt{a}} \hat{\psi}_1(\rho \cos \theta) \hat{\psi}_2(a^{-\frac{1}{2}}(\tan \theta - s)) e^{2\pi i \xi (t_1 \cos \theta + t_2 \sin \theta)} \, d\theta.\]

Observe that the domain of integration is the cone \(|\tan \theta - s| < \sqrt{a}\) about the direction \(\tan \theta = s\), with \(a < 1\). This implies that \(\theta\) ranges over an interval. Since the conditions on the support of \(\hat{\psi}_1\) imply that \(|\rho \cos \theta| < \frac{1}{2} [\frac{1}{a}, 2]\), it follows that \(\rho\) also ranges over an interval and, as a consequence, \(I(a, \rho)\) is compactly supported in \(\rho\).

We will show that \(I(a, \rho)\) is an oscillatory integral of the First Kind that decays rapidly for \(a \to 0\) for each \(\rho\). To show that this is the case, we will apply Lemma 4.7 to \(I(a, \rho)\), where \(A(\theta; \rho) = \hat{\psi}_1(\rho \cos \theta) \hat{\psi}_2(a^{-1/2}(\tan \theta - s))\), \(\Phi(\theta; \rho) = \rho(t_1 \cos \theta + t_2 \sin \theta)\) and \(\lambda = a^{-1}\) and \(\rho\) is a fixed parameter. Observe that \(\Phi'(\theta; \rho) = \rho(-t_1 \sin \theta + t_2 \cos \theta)\) and \(\Phi'(\theta; \rho) \neq 0\) for \(\tan \theta \neq \frac{t_2}{t_1}\). Thus, provided \(|s - \frac{t_2}{t_1}| \geq \sqrt{a}\), it follows that \(\Phi'(\theta; \rho) \neq 0\) on \(\text{supp} \ A\). A direct computation gives

\[D(A(\theta; \rho)) = \frac{\partial}{\partial \theta} \hat{\psi}_1(\rho \cos \theta) \hat{\psi}_2(a^{-\frac{1}{2}}(\tan \theta - s))\]

\[= \frac{\sin \theta}{t_1 \sin \theta - t_2 \cos \theta} \hat{\psi}_1(\rho \cos \theta) \hat{\psi}_2(a^{-\frac{1}{2}}(\tan \theta - s)) + \]

\[+ a^{-\frac{1}{2}} \frac{\sec^2 \theta}{\rho(t_2 \cos \theta - t_1 \sin \theta)} \hat{\psi}_1(\rho \cos \theta) \hat{\psi}_2(a^{-\frac{1}{2}}(\tan \theta - s)) + \]

\[+ a^{-\frac{1}{2}} \frac{\tan \theta}{\rho^2(t_2 \cos \theta - t_1 \sin \theta)^2} \hat{\psi}_1(\rho \cos \theta) \hat{\psi}_2(a^{-\frac{1}{2}}(\tan \theta - s)).\]

Thus, since \(\tan \theta \neq \frac{t_2}{t_1}\), using the assumptions on \(\hat{\psi}_1, \hat{\psi}_2\), we obtain

\[|D(A(\theta; \rho))| < a^{-\frac{1}{2}} C(\theta, \rho) \left(\|\hat{\psi}_1 \hat{\psi}_2\|_\infty + \|\hat{\psi}_1 \hat{\psi}_2\|_\infty + \|\hat{\psi}_1 \hat{\psi}_2\|_\infty\right).\]

As observed above, the assumptions on the support of \(\hat{\psi}_1, \hat{\psi}_2\) imply that \(D(A(\theta; \rho))\) is compactly supported in \(\rho\) away from \(\rho = 0\). Using this observation and \(\Phi'(\theta) \neq 0\), it follows that

\[\|D(A(\rho))\|_\infty < C a^{-\frac{1}{2}}.\]

Applying the same estimate repeatedly, we have that for each \(N \in \mathbb{N}\)

\[\|D^N(A(\rho))\|_\infty < C_N a^{-\frac{N}{2}}.\]

Thus, using Lemma 4.7 with \(\lambda = a^{-1}\), we conclude that for each \(N \in \mathbb{N}\) there is a constant \(C_N > 0\) such that

\[\sup_{\rho} |I(a, \rho)| < C_N a^{\frac{N}{2}}.\]
This follows from the general analysis given in Section 5. To do that, and ensure that the integral does not vanish, the functions $\hat{\psi}$ and $\hat{\psi}$ have be to chosen appropriately. This can be done, for example, by choosing $\hat{\psi}$ the other hand, $a < 1$, the functions are equicontinuous and they converge uniformly:

$$\lim_{a \to 0} h_a(u) = h_0(u) = \hat{\psi}_1(\rho) \hat{\psi}_2(u) e^{-\pi i a u^2}.$$

Thus, we have the uniform limit:

$$\lim_{a \to 0} \eta_a(\rho) = \eta_0(\rho) = \int_{-1}^{1} \hat{\psi}_1(\rho) \hat{\psi}_2(u) e^{-\pi i \rho u^2} du,$$

and the same convergence holds for all u-derivatives. In particular, $\|\eta_a\|_\infty < C$, for all $a < 1$.

Using the asymptotic estimate given by Lemma 4.6 into (4.3), for a small, we have:

$$|(\hat{B}, \hat{\psi}_{a0(1,0)})| \sim C a^{-\frac{3}{2}} \left(\int \left(\frac{u}{\rho} \right)^{\frac{3}{2}} \eta_a(\rho) e^{4\pi i \rho} \rho d\rho + \int \left(\frac{u}{\rho} \right)^{\frac{3}{2}} \eta_a(\rho) \rho d\rho \right)$$

$$= C a^{\frac{3}{2}} \left(\hat{F}_a \left(-\frac{2}{a} \right) + \int \hat{F}_a(\rho) d\rho \right),$$

where $F_a(\rho) = \eta_a(\rho) \rho^{-1/2}$. The family of functions $\{F_a : 0 < a < 1\}$ has all its ρ derivatives bounded uniformly in a, and so $\hat{F}_a \left(-\frac{2}{a} \right)$ decays rapidly as $a \to 0$. On the other hand, $\int \hat{F}_a(\rho) d\rho$ tends to $\int \eta_0(\rho) \rho^{-1/2} d\rho$ as $a \to 0$.

One can show that there is a constant $C > 0$ such that $\int \eta_0(\rho) \rho^{-1/2} d\rho > C$. To do that, and ensure that the integral does not vanish, the functions $\hat{\psi}_1$ and $\hat{\psi}_2$ have to be chosen appropriately. This can be done, for example, by choosing $\hat{\psi}_1$ odd and $\hat{\psi}_2$ even and decreasing. The proof of this fact is omitted.

Using these observations, we conclude that

$$|(\hat{B}, \hat{\psi}_{a0(1,0)})| \sim a^{\frac{3}{2}} \text{ as } a \to 0.$$

Finally, if t is not on ∂B, then one can show that $\mathcal{S}H_\psi B(a,s,t)$ has rapid decay. This follows from the general analysis given in Section 5. □
5. Characterization of the Wavefront Set Using the Shearlet Transform

The examples described in Section 4 suggest that the set of singularities of a distribution on \(\mathbb{R}^2 \) can be characterized using the Continuous Shearlet Transform. In this section, we will show that this is indeed the case. In order to do this, it will be useful to introduce the notions of singular support and wavefront set.

For a distribution \(u \), we say that \(x \in \mathbb{R}^2 \) is a regular point of \(u \) if there exists some \(\phi \in C_0^\infty(U_x) \), where \(U_x \) is a neighborhood of \(x \) and \(\phi(x) \neq 0 \), such that \(\phi u \in C_0^\infty(\mathbb{R}^n) \). Recall that the condition \(\phi u \in C_0^\infty(\mathbb{R}^n) \) is equivalent to \((\phi u)\wedge\) being rapidly decreasing. The complement of the regular points of \(u \) is called the singular support of \(u \) and is denoted by \(\text{sing supp}(u) \). It is easy to see that the singular support of \(u \) is a closed subset of \(\text{supp}(u) \).

The wavefront set of \(u \) consists of certain \((x, \lambda) \in \mathbb{R}^2 \times \mathbb{R} \), with \(x \in \text{sing supp}(u) \). For a distribution \(u \), a point \((x, \lambda) \in \mathbb{R}^2 \times \mathbb{R} \) is a regular directed point for \(u \) if there are neighborhoods \(U_x \) of \(x \) and \(V_\lambda \) of \(\lambda \), and a function \(\phi \in C_0^\infty(\mathbb{R}^2) \), with \(\phi = 1 \) on \(U_x \), so that, for each \(N > 0 \), there is a constant \(C_N \) with

\[
|\{(x, \lambda) \in \mathbb{R}^2 \times \mathbb{R} \mid x \in \text{sing supp}(u) \} \cap U_x \times V_\lambda| \leq C_N (1 + |\eta_1|)^{-N},
\]

for all \(\eta = (\eta_1, \eta_2) \in \mathbb{R}^2 \) satisfying \(\frac{\eta_2}{\eta_1} \in V_\lambda \). The complement in \(\mathbb{R}^2 \times \mathbb{R} \) of the regular directed points for \(u \) is called the wavefront set of \(u \) and is denoted by \(\text{WF}(u) \). Thus, the singular support is measuring the location of the singularities and \(\lambda \) is measuring the direction perpendicular to the singularity.\(^2\)

In the examples presented in Section 4, one can verify the following:

(i) Point Singularity \(\delta(x) \): \(\text{sing supp}(\delta) = \{0\} \) and \(\text{WF}(\delta) = \{0\} \times \mathbb{R} \).

(ii) Linear Singularity \(\nu_a(x) \): \(\text{sing supp}(\nu_a) = \{(-px_2, x_2) : x_2 \in \mathbb{R} \} \) and \(\text{WF}(\nu_a) = \{((px_2, x_2), p) : x_2 \in \mathbb{R} \} \).

(iii) Curvilinear Singularity \(B(x) \): \(\text{sing supp}(B) = \{(x_1, x_2) : x_1^2 + x_2^2 = 1\} \) and \(\text{WF}(B) = \{(((x_1, x_2), \lambda) : x_1^2 + x_2^2 = 1, \lambda = \frac{2\pi}{\pi}\} \).

As observed in Section 4, all these sets are exactly identified by the decay properties of the Continuous Shearlet Transform. Indeed, we have the following general result:

Theorem 5.1.

(i) Let \(\mathcal{R} = \{t_0 \in \mathbb{R}^2 : \text{for } t \text{ in a neighborhood } U \text{ of } t_0, |\text{SH}_0(a, s, t)| = O(a^k) \text{ and } |\text{SH}_0^{(s)}(a, s, t)| = O(a^{k'}) \text{ as } a \to 0, \text{ for all } k, k' \in \mathbb{N}, \text{ with the O(·)-terms uniform over } (s, t) \in [-1, 1] \times U \}. \text{ Then} \)

\[\text{sing supp}(f)^c = \mathcal{R}. \]

(ii) Let \(\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2 \), where \(\mathcal{D}_1 = \{(t_0, s_0) \in \mathbb{R}^2 \times [-1, 1] : \text{for } (s, t) \text{ in a neighborhood } U \text{ of } (s_0, t_0), |\text{SH}_0(a, s, t)| = O(a^k) \text{ as } a \to 0, \text{ for all } k \in \mathbb{N}, \text{ with the O(·)-term uniform over } (s, t) \in U \} \) and \(\mathcal{D}_2 = \{(t_0, s_0) \in \mathbb{R}^2 \times [1, \infty) : \text{for } (\frac{1}{k}, t) \text{ in a neighborhood } U \text{ of } (s_0, t_0), |\text{SH}_f^{(s)}(a, s, t)| = O(a^{k'}) \text{ as } a \to 0, \text{ for all } k, k' \in \mathbb{N}, \text{ with the O(·)-term uniform over } \left(\frac{1}{k}, t\right) \in U \}. \text{ Then} \)

\[\text{WF}(f)^c = \mathcal{D}. \]

\(^2\)This definition is consistent with [6], where the direction of the singularity is described by the angle \(\theta \). Observe that our approach does not distinguish between \(\theta \) and \(\theta + \pi \), since the continuous shearlets have frequency support that is symmetric with respect to the origin. However, in Section 6 we discuss a variant of the Continuous Shearlet Transform, which can distinguish these cases.
The statement (ii) of the theorem shows that the Continuous Shearlet Transform \(SH_{\psi} f(a, s, t) \) identifies the wavefront set for directions \(s \) such that \(|s| = \frac{|\xi|}{a} \leq 1 \) (in the frequency domain). The Continuous Shearlet Transform \(SH_{\psi} f(a, s, t) \) identifies the wavefront set for directions \(s \) such that \(|s| = \frac{|\xi|}{a} \leq 1 \), corresponding to \(|\frac{\xi}{a}| \geq 1 \). This result is in part inspired by Theorems 5.1 and 5.2 in [6] where a similar result is proved for the Continuous Curvelet Transform. Several lemmata will be needed in order to prove Theorem 5.1. In these proofs, some ideas from [6] will be adapted to the distinct mathematical structure of the shearlet approach.

The following lemma shows that if \(t \) is outside the support of a function \(g \), then the Continuous Shearlet Transform of \(g \) decays rapidly as \(a \to 0 \).

Lemma 5.2. Let \(g \in L^2(\mathbb{R}^2) \) with \(\|g\|_\infty < \infty \), and \(a < 1 \). If \(\text{supp}(g) \subset B \subset \mathbb{R}^2 \), then for all \(k > 1 \),

\[
|SH_{\psi} g(a, s, t)| = |\langle g, \psi_{ast} \rangle| \leq C_k C(s)^2 \|g\|_\infty a^{\frac{1}{2}} \left(1 + C(s)^{-1}a^{-1}d(t, B)^2 \right)^{-k},
\]

where \(C(s) = \left(1 + \frac{a^2}{4} + \left(s^2 + \frac{a^4}{4}\right)^\frac{1}{2}\right)^\frac{1}{2} \) and \(C_k \) is as in Proposition 3.4.

Proof. Since \(\|g\|_\infty < \infty \), by Proposition 3.4, for all \(k \in \mathbb{N} \), there is a \(C_k > 0 \) such that:

\[
|\langle g, \psi_{ast} \rangle| \leq \|g\|_\infty \int_B |\psi_{ast}(x)| dx \\
\leq C_k \|g\|_\infty a^{-\frac{3}{2}} \int_B \left(1 + \|M^{-1}(x-t)\|^2\right)^{-k} dx \\
= C_k \|g\|_\infty a^{-\frac{3}{2}} \int_{B+t} \left(1 + \|M^{-1}x\|^2\right)^{-k} dx,
\]

(5.1)

where \(M = \begin{pmatrix} \frac{a}{\sqrt{\pi}} & -\frac{a}{\sqrt{\pi}} \\ 0 & \sqrt{\pi} \end{pmatrix} \). Observe that \(\|x\| = \|MM^{-1}x\| \leq \|M\|_{\text{op}} \|M^{-1}x\| \), and, thus,

\[
\|M^{-1}x\| \geq \frac{1}{\|M\|_{\text{op}}} \|x\|.
\]

Since \(M = \begin{pmatrix} 1 & -s \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & \sqrt{\pi} \end{pmatrix} \) and \(\left\| \begin{pmatrix} a & 0 \\ 0 & \sqrt{\pi} \end{pmatrix} \right\|_{\text{op}} = \sqrt{a} \), then

\[
\|M^{-1}x\| \geq C(s)^{-1}a^{-\frac{1}{2}} \|x\|,
\]

where \(C(s) = \left\| \begin{pmatrix} 1 & -s \\ 0 & 1 \end{pmatrix} \right\|_{\text{op}} \). Using this observation in (5.1), we have that

\[
|\langle g, \psi_{ast} \rangle| \leq C_k \|g\|_\infty a^{-\frac{3}{2}} \int_{B+t} \left(1 + C(s)^{-2}a^{-1}\|x\|^2\right)^{-k} dx \\
\leq C_k C(s)^2 \|g\|_\infty a^{\frac{1}{2}} \int_{\infty}^{C(s)^{-1}a^{-1/2}d(t, B)} \left(1 + r^2\right)^{-k} r dr \\
= C_k C(s)^2 \|g\|_\infty a^{\frac{1}{2}} \left(1 + C(s)^{-2}a^{-1}d(t, B)^2 \right)^{-k}.
\]
At last, we compute \(C(s) \). We have \(\left(\begin{array}{ccc} 1 - s \\ 0 \\ 1 \end{array} \right) \left(\begin{array}{ccc} 1 - s \\ 0 \\ 1 \end{array} \right) = \left(\begin{array}{ccc} 1 + s^2 - s \\ 0 \\ 1 \end{array} \right) \). The largest eigenvalue of this matrix is \(\lambda_{\max} = 1 + s^2 + \left(s^2 + \frac{s^4}{4} \right)^{\frac{1}{2}} \). Thus we have \(C(s) = \left(1 + \frac{s^2}{2} + \left(s^2 + \frac{s^4}{4} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \) for all \(s \in \mathbb{R} \). \(\square \)

We can now prove the following inclusions.

Proposition 5.3. Let \(\mathcal{R} \) and \(\mathcal{D} \) be defined as in Theorem 5.1. Then:

(i) \(\text{sing supp}(f)^c \subseteq \mathcal{R} \).

(ii) \(\text{WF}(f)^c \subseteq \mathcal{D} \).

Proof. (i) Let \(t_0 \) be a regular point of \(f \). Then there exists \(\phi \in C_0^\infty(\mathbb{R}^2) \) with \(\phi(t_0) \equiv 1 \) on \(B(t_0, \delta) \), which is the ball centered at \(t_0 \) with radius \(\delta \), such that \(\phi f \in C^\infty(\mathbb{R}^2) \). We will show that \(t_0 \in \mathcal{R} \). For this, we decompose \(\mathcal{S}H_{\phi} f(a, s, t) \) as

\[\mathcal{S}H_{\phi} f(a, s, t) = \langle \psi_{\text{ast}}, \phi f \rangle + \langle \psi_{\text{ast}}, (1 - \phi) f \rangle. \]

Observe that

\[|\langle \psi_{\text{ast}}, \phi f \rangle| \leq a^{\frac{3}{2}} \int_{\mathbb{R}^2} |\hat{\psi}_{1}(a \xi_1)| |\hat{\psi}_{2}(\frac{\xi_2}{\sqrt{a}} - s)| |\hat{\phi}(\xi_1, \xi_2)| d\xi_1 d\xi_2 = I^+ + I^-, \]

where \(I^+ \) is the integral restricted to \(\xi_1 \geq 0 \) and \(I^- \) is the integral restricted to \(\xi_1 < 0 \).

Since \(\phi \in C_0^\infty(\mathbb{R}^2) \), then \(|\hat{\phi}(\xi)| = O(1 + |\xi|)^{-k} \). Using this fact together with the assumptions on the support of \(\hat{\psi}_{\text{ast}} \), for \(k > 2 \), we have:

\[I^+ = a^{\frac{3}{2}} \int_{\mathbb{R}^2 \times \mathbb{R}} |\hat{\psi}_{1}(a \xi_1)| |\hat{\psi}_{2}(\frac{\xi_2}{\sqrt{a}} - s)| |\hat{\phi}(\xi_1, \xi_2)| d\xi_1 d\xi_2 \]

\[\leq C_k \|\hat{\psi}\|_{\infty} a^{\frac{3}{2}} \int_{\mathbb{R}^2} \left(\int_{(s-\sqrt{\pi})\xi_1}^{(s+\sqrt{\pi})\xi_1} (1 + \xi_1^2 + \xi_2^2)^{-k/2} d\xi_2 \right) d\xi_1 \]

\[\leq C_k \|\hat{\psi}\|_{\infty} a^{\frac{3}{2}} \int_{\mathbb{R}^2} \left(\int_{(s-\sqrt{\pi})\xi_1}^{(s+\sqrt{\pi})\xi_1} d\xi_2 \right) d\xi_1 \]

\[= 2 C_k \|\hat{\psi}\|_{\infty} a^{\frac{3}{2}} \int_{\mathbb{R}^2} (1 + \xi_1)^{-k} \sqrt{a} \xi_1 d\xi_1 \]

\[\leq 2 C_k \|\hat{\psi}\|_{\infty} a^{\frac{3}{2}} \int_{\mathbb{R}^2} (1 + \xi_1)^{-k+1} d\xi_1 \]

\[\leq \frac{2 C_k \|\hat{\psi}\|_{\infty} a^{\frac{3}{2}}}{k - 2} (2 a)^{-k}. \]

Thus, \(I^+ \) decays rapidly as \(a \to 0 \), uniformly over \((t, s) \in B(t_0, \frac{\delta}{2}) \times \mathbb{R} \). The estimate for \(I^- \) is similar and, hence, the first term on the RHS of (5.2) decays rapidly as \(a \to 0 \), uniformly over \((t, s) \in B(t_0, \frac{\delta}{2}) \times \mathbb{R} \).

Using Lemma 5.2, we estimate the second term on the RHS of (5.2) as:

\[|\langle \psi_{\text{ast}}, (1 - \phi) f \rangle| \leq C_k C(s)^2 \| (1 - \phi) f \|_{\infty} a^\frac{3}{2} (1 + C(s)^{-1} a^{-1} d(t, B(t_0, \delta)^{\circ})^2)^{-k}, \]

where \(k \in \mathbb{N} \) is arbitrary. Since \(\| (1 - \phi) f \|_{\infty} \) is bounded, this yields

\[|\langle \psi_{\text{ast}}, (1 - \phi) f \rangle| = O(a^k) \quad \text{as} \quad a \to 0, \]
uniformly over \((t, s) \in B(t_0, \frac{4}{3}) \times [-1, 1]\). A similar estimate holds when \(SH_{\psi} f(a, s, t) \) is replaced by \(SH^{(w)}_{\psi} f(a, s, t) \). This proves (i).

(ii) Let \((t_0, s_0)\) be a regular directed point of \(f\), with \(s_0 \in [-1, 1]\). Then there exists a \(\phi \in C^\infty_0(\mathbb{R}^2)\) with \(\phi(t_0) \equiv 1\) on a ball \(B(t_0, \delta_1)\) such that, for each \(k \in \mathbb{N}\) we have \(|\phi'(\xi)| = O((1 + |\xi|)^{-k})\) for all \(\xi \in \mathbb{R}^2\) satisfying \(\frac{\xi}{\xi_1} \in B(s_0, \delta_2)\). We will prove that \((t_0, s_0) \in \mathcal{D}\). For this, we decompose \(SH_{\psi} f(a, s, t) \) as in (5.2). The second term on the RHS of (5.2) can be estimated as in the case (i). For the first term of (5.2), we only need to show that \(\text{supp} \hat{\psi}_{ast} \subset \{ \xi \in \mathbb{R}^2 : \frac{\xi}{\xi_1} \in B(s_0, \delta_2) \}\) for all \((s, t) \in B(s_0, \delta_2) \times B(t_0, \delta_1)\), since in this cone \(\phi f\) decays rapidly. As above, we only consider the case \(\xi_1 > 0\); the case \(\xi_1 \leq 0\) is similar. The support of \(\hat{\psi}_{ast}\) in this half plane is given by

\[
\{ (\xi_1, \xi_2) : \xi_1 \in [\frac{1}{\delta_1}, \frac{2}{\delta_1}], \xi_2 \in [s - \sqrt{a}, s + \sqrt{a}] \}.
\]

Let \((s, t) \in B(s_0, \delta_2) \times B(t_0, \delta_1)\). The cone \(\{ \xi \in \mathbb{R}^2 : \xi_1 \in B(s_0, \delta_2) \}\) is bounded by the lines \(\xi_2 = (s_0 - \xi_2)\xi_1\) and \(\xi_2 = (s_0 + \xi_2)\xi_1\). Now let \((\xi_1, \xi_2) \in \text{supp} \hat{\psi}_{ast}\). Then, for a small enough, we have

\[
|\xi_2| - s_0 \leq \sqrt{a} \leq \delta_2,
\]

and this completes the proof in this case. In case \(|s_0| \geq 1\) (this corresponds to \(|\xi_1| \leq 1\)), we proceed exactly as above, using the transform \(SH^{(w)}_{\psi} f(a, s, t) \) rather than \(SH_{\psi} f(a, s, t) \). \(\square \)

For the converse inclusions we need some additional lemmata. For simplicity of notation, in the following proofs the symbols \(C'\) and \(C_k\) are generic constants and may vary from expression to expression (in the case of \(C_k\), the constant depends on \(k\)).

Lemma 5.4. Let \(S \subset \mathbb{R}\) be a compact set, and let \(g \in L^2(\mathbb{R}^2)\) with \(|g|_\infty < \infty\). Suppose that \(\text{supp} g \subset \mathcal{B}\) for some \(\mathcal{B} \subset \mathbb{R}^2\) and define \((\mathcal{B}^\eta)^c = \{ x \in \mathbb{R}^2 : d(x, \mathcal{B}) > \eta \}\). Further define \(h \in L^2(\mathbb{R}^2)\) by

\[
\hat{h}(\xi) = \int_0^\infty \int_{(\mathcal{B}^\eta)^c} \int_S SH_{\psi} g(a, s, t) \hat{\psi}_{ast}(\xi) \, ds \, dt \, da / \eta^3.
\]

Then \(\hat{h}(\xi)\) decays rapidly as \(|\xi| \to \infty\) with constants dependent only on \(|g|_\infty\) and \(\eta\).

Proof. Using the fact that \(S\) is compact, Lemma 5.2 implies that, for each \(k > 0\),

\[
|SH_{\psi} g(a, s, t)| \leq C_k a^{\frac{3}{2}} (1 + a^{-1}d(t, \mathcal{B})^2)^{-k},
\]

where \(C_k\) depends on \(|g|_\infty\) but not on \(s\). By definition, the support of \(\hat{\psi}_{ast}\) is contained in the set

\[
\Gamma(a, s) = \{ \xi \in \mathbb{R}^2 : \frac{\xi}{\xi_1} \leq a[|\xi| \leq 2, \frac{|s - \xi_2|}{\xi_1} \leq \sqrt{a}] \}.
\]

Thus, \(|\hat{\psi}_{ast}(\xi)| \leq C' a^{\frac{3}{2}} \chi_{\Gamma(a, s)}(\xi)\) and

\[
\int_S \chi_{\Gamma(a, s)}(\xi) \, ds \leq \int_{S^\eta} \int_{\Gamma(a, s)} \chi_{\Gamma(a, s)}(\xi) \, ds \leq C' \sqrt{a}.
\]
Collecting the above arguments,
\[
\hat{h}(\xi) \leq \int_0^\infty \int_B \left| \mathcal{S} \mathcal{W}_g(a,s,t) \right| \frac{d\omega}{\omega^3} ds dt \frac{da}{a^3}
\]
\[
\leq C_k \int_0^\infty \int_B \int_S a \chi_{\Gamma(a,s)}(\xi) (1 + a^{-1}d(t,B)^2)^{-k} ds dt \frac{da}{a^3}
\]
\[
\leq C_k \int_0^\infty \int_B \int_S \chi_{\Gamma(a,s)}(\xi) ds a (1 + a^{-1}d(t,B)^2)^{-k} dt \frac{da}{a^3}
\]
\[
\leq C_k \int_B \int_S a^{-1} \int_S (1 + a^{-1}d(t,B)^2)^{-k} dt da
\]
\[
\leq C_k \int_B \int_S a^{-1} (1 + a^{-1}d(t,B)^2)^{-k} da
\]
\[
\leq C_k \int_B \int_S (1 + |\xi|^2)^{-k+2} da \]

Since this holds for each \(k > 0 \), \(\hat{h}(\xi) \) decays rapidly as \(|\xi| \to \infty \). \(\square \)

Lemma 5.5. Let \(S \subset \mathbb{R} \) and \(B \subset \mathbb{R}^2 \) be compact sets. Suppose that \(G(a,s,t) \) decays rapidly as \(a \to 0 \) uniformly for \((s,t) \in S \times B \). Define \(h \in L^2(\mathbb{R}^2) \) by

\[
\hat{h}(\xi) = \int_0^\infty \int_B \int_S G(a,s,t) \hat{\psi}_{ast}(\xi) ds dt \frac{da}{a^3}.
\]

Then \(\hat{h}(\xi) \) decays rapidly as \(|\xi| \to \infty \).

Proof. As in Lemma 5.4, we will use the fact that \(|\hat{\psi}_{ast}(\xi)| \leq C' a^{1/2} \chi_{\Gamma(a,s)}(\xi) \), where \(\Gamma(a,s) \) is given by (5.3), and the estimate (5.4). Also, by hypothesis, for each \(k > 0 \) and \(a > 0 \) we have

\[
\sup \left\{ |G(a,s,t)| : |\xi| \in \left[\frac{1}{2\pi}, \frac{3}{2\pi} \right], t \in B \right\} \leq C_k a^k.
\]

Using all these observation, we have that, for each \(k > 0 \),

\[
|\hat{h}(\xi)| \leq \int_0^\infty \int_B \int_S |G(a,s,t)| \hat{\psi}_{ast}(\xi) ds dt \frac{da}{a^3}
\]
\[
\leq C_k \int_0^\infty \int_B \int_S \chi_{\Gamma(a,s)}(\xi) a^{k-2} ds dt da
\]
\[
\leq C_k \int_B \int_S a^{k-\frac{3}{2}} da
\]
\[
\leq C_k |\xi|^{-k+\frac{3}{2}}. \quad \square
\]

The proof of the following lemma adapts several ideas from [3, Lemma 2.3].

Lemma 5.6. Suppose \(0 \leq a_0 \leq a_1 < 1 \) and \(|s| \leq s_0 \). Then for \(K > 1 \), there is a constant \(C_K \), dependent on \(K \) only, such that:

\[
|\langle \hat{\psi}_{ast}, \hat{\psi}_{ast} \rangle| \leq C_K \left(1 + \frac{a_1}{a_0} \right)^{-K} \left(1 + \frac{|s - s'|^2}{a_1^2} \right)^{-K} \left(1 + \frac{\|t - t'\|^2}{a_1^2} \right)^{-K}
\]
Proof. By the properties of ψ, for $\|\xi\| > \frac{1}{2}$ and any $k > 0$, there exists a corresponding constant C_k such that

$$ |\hat{\psi}(\xi)| \leq C_k \frac{1}{(1 + |\xi_1| + |\xi_2|)^k}. $$

Further, $\hat{\psi}(\xi) = 0$ for $\|\xi\| < \frac{1}{2}$. Thus, observing that $M_{as}^a \xi = (a \xi_1, \sqrt{a} \xi_2 - \sqrt{a} s \xi_1)$, we obtain

$$ |\hat{\psi}_{ast}(\xi)| \leq C_k \frac{a \xi}{(1 + a |\xi_1| + \sqrt{a} |\xi_2 - s \xi_1|)^k}. $$

Using polar coordinates, by writing $\xi_1 = r \cos \theta$ and $\xi_2 = r \sin \theta$, this expression can be written as

$$ |\hat{\psi}_{ast}(r, \theta)| \leq C_k \frac{a \xi}{(1 + a r \cos \theta + \sqrt{a} r \sin \theta - s \cos \theta)^k}. $$

For $|\theta| \leq \beta$, with $\beta < \pi/2$, using the assumption $|s| \leq s_0$, the last expression can be controlled by

$$ (5.5) \quad |\hat{\psi}_{ast}(r, \theta)| \leq C_k \frac{a \xi}{(1 + a r - \sqrt{a} r |\sin \theta - s|)^k}. $$

In addition, since $\sin \theta \sim \theta$ on $|\theta| \leq \pi/2$, we can replace $\sin \theta$ with θ in the above expression.

Let $\Delta s = s - s'$, $a_0 = \min(a, a')$ and $a_1 = \max(a, a')$. Using (5.5), and applying the same argument on $|\theta| \leq \pi/2$ and $\pi/2 < |\theta| \leq \pi$, it follows that

$$ \int_{\left|\frac{\xi}{a}\right| < \tan \beta} |\hat{\psi}_{a' a'}(\xi) \hat{\psi}_{ast}(\xi)| d\xi \leq C_k \int_0^{a_0} \frac{1}{\alpha} \int_{-\pi}^\pi \frac{a a'}{1 + \alpha r + \sqrt{\alpha r} |\theta - s|} \left(1 + a r + \sqrt{\alpha r} |\theta - s'|\right)^{\alpha} d\theta dr $$

$$ \leq C_k \int_0^{a_0} \frac{1}{\alpha} \int_{-\pi}^\pi \frac{a a'}{1 + \alpha r + \sqrt{\alpha r} |\theta - s|} \left(1 + a r + \sqrt{\alpha r} |\theta - s'|\right)^{\alpha} d\theta dr. $$

where $\alpha = \frac{\sqrt{\alpha r}}{1 + \alpha r}$, $\alpha' = \sqrt{\alpha r}$, $\theta = \frac{\Delta s}{\sqrt{\alpha r}}$. Using a simple calculation, for $\alpha > \alpha' > 1$, $k > 1$, $r \geq 1/a'$, provided $k > 1$, the last expression gives

$$ (5.6) \quad \int_{-\infty}^\infty \frac{1}{(1 + \alpha |\theta|^k) (1 + \alpha' |\theta + \Delta s|^k)} d\theta \leq C_k \frac{a r}{\sqrt{\alpha r}} \left(1 + \frac{|\Delta s|}{\sqrt{\alpha r}}\right)^{-k}. $$

Another simple estimate, provided $k' > 1$, yields

$$ (5.7) \quad \int_0^\infty \frac{1}{(1 + a_0 r)^{k'} (1 + a_1 r)^k} dr \leq C_k' \frac{1}{a_0} \left(1 + a_1/a_0\right)^{-k}.$$

Thus, using (5.6) and (5.7), for $\alpha > \alpha' > 1$, $a_0 = a'$ and $a_1 = a$, we obtain

$$ \int_{\left|\frac{\xi}{a}\right| < \tan \beta} |\hat{\psi}_{a' a'}(\xi) \hat{\psi}_{ast}(\xi)| d\xi \leq C_k \frac{a_1}{a_0} \left(1 + \frac{a_1}{a_0}\right)^{-k+1} \left(1 + \frac{|\Delta s|}{\sqrt{a_0}}\right)^{-k}. $$
\[\leq C_k \left(1 + \frac{a_1}{a_0} \right)^{-k+2} \left(1 + \frac{|\Delta s|}{\sqrt{a_0}} \right)^{-k} \cdot \]

Similarly, for \(\alpha > \alpha' > 1, a_1 = a' \) and \(a_0 = a \), a similar calculation gives

\[\int_{|\xi| < \tan \beta} \left| \hat{\psi}_{a's't'}(\xi) \right| d\xi \leq C_k \left(1 + \frac{a_1}{a_0} \right)^{-k} \left(1 + \frac{|\Delta s|}{\sqrt{a_1}} \right)^{-k} \leq C_k \left(1 + \frac{a_1}{a_0} \right)^{-k+1} \left(1 + \frac{|\Delta s|}{\sqrt{a_1}} \right)^{-k} \cdot \]

In general, renaming the index \(k \), we can show that

\[\text{(5.8)} \quad \int_{|\xi| < \tan \beta} \left| \hat{\psi}_{a's't'}(\xi) \right| d\xi \leq C_k \left(1 + \frac{a_1}{a_0} \right)^{-k} \left(1 + \frac{|\Delta s|}{\sqrt{a_1}} \right)^{-k} \cdot \]

To complete the proof, we will employ the formulas

\[\frac{\partial}{\partial \xi_1} \hat{\psi}_{a'st}(\xi) = (a - \sqrt{a} s) \hat{\psi}_{a'st}(\xi), \quad \frac{\partial}{\partial \xi_2} \hat{\psi}_{a'st}(\xi) = \sqrt{a} \hat{\psi}_{a'st}(\xi), \]

\[\frac{\partial^2}{\partial \xi_1^2} \hat{\psi}_{a'st}(\xi) = (a - \sqrt{a} s)^2 \hat{\psi}_{a'st}(\xi), \quad \frac{\partial^2}{\partial \xi_2^2} \hat{\psi}_{a'st}(\xi) = a \hat{\psi}_{a'st}(\xi). \]

Thus, observing that \(a, a' < 1 \) and \(|s| < s_0 \) yields

\[|\Delta \xi \hat{\psi}_{a'st}(\xi) \hat{\psi}_{a's't'}(\xi)| \leq C' a_1 |\hat{\psi}_{a'st}(\xi)| |\hat{\psi}_{a's't'}(\xi)|. \]

Set

\[L = I - \frac{\Delta \xi}{(2\pi)^2 a_1}. \]

On the one hand, for each \(k \), we have

\[\text{(5.9)} \quad |L^k \left(\hat{\psi}_{a'st} \hat{\psi}_{a's't'}(\xi) \right)| \leq C' |\hat{\psi}_{a'st}(\xi)| |\hat{\psi}_{a's't'}(\xi)|. \]

On the other hand

\[\text{(5.10)} \quad L^k (e^{-2\pi i \xi(t-t')}) = \left(1 + \frac{||t-t'||^2}{a_1} \right)^k e^{-2\pi i \xi(t-t')}. \]

Repeated integrations by parts give

\[\langle \hat{\psi}_{a'st}, \hat{\psi}_{a's't'} \rangle = \int_{|\xi| < \tan \beta} \hat{\psi}_{a'st}(\xi) \overline{\hat{\psi}_{a's't'}(\xi)} d\xi \]

\[= \int_{|\xi| < \tan \beta} (a a')^{3/4} \hat{\psi}(M_{a'st}^t \xi) \overline{\hat{\psi}(M_{a's't'}^t \xi)} e^{-2\pi i \xi(t-t')} d\xi \]

\[= \int_{|\xi| < \tan \beta} L^k \left((a a')^{3/4} \hat{\psi}(M_{a'st}^t \xi) \overline{\hat{\psi}(M_{a's't'}^t \xi)} \right) L^{-k} (e^{-2\pi i \xi(t-t')}) d\xi. \]

Therefore, from the last expression, using (5.8)–(5.10), it follows that

\[|\langle \hat{\psi}_{a'st}, \hat{\psi}_{a's't'} \rangle| \leq C_k \left(1 + \frac{||t-t'||^2}{a_1} \right)^{-k} \left(1 + \frac{a_1}{a_0} \right)^{-k} \left(1 + \frac{|\Delta s|}{\sqrt{a_1}} \right)^{-k}. \]

The proof is completed recalling that, for \(m > 0, (1 + |x|)^{-2m} \sim (1 + |x|^2)^{-m} \).

That is, there are constants \(C_1, C_2 > 0 \) such that \(C_1 (1 + |x|^n)^{-m} \leq (1 + |x|)^{-2m} \leq C_2 (1 + |x|^2)^{-m} \). \(\square \)
From Lemma 5.6, the following result can be easily deduced.

Lemma 5.7. Let $\phi_1 \in C^\infty(\mathbb{R}^2)$ be supported in $B(0, 1)$, and define $\phi(x) = \phi_1(a_{\phi}^{-1}(x-t))$.

1. Suppose $0 \leq \sqrt{a_0} \leq \sqrt{a_1} \leq a_\phi < 1$. Then for $K > 0$,

\[
|\langle \phi \psi_{a_0,t}, \psi_{a_1,s,t'} \rangle| \leq C_K \left(1 + \frac{a_1}{a_0}\right)^{-K} \left(1 + \frac{|s-s'|^2}{a_1}\right)^{-K} \left(1 + \frac{||t-t'||^2}{a_1}\right)^{-K}.
\]

2. Suppose $0 \leq \sqrt{a_0} \leq a_\phi \leq \sqrt{a_1} < 1$, $a_1 \leq a_\phi$. Then for $K > 0$,

\[
|\langle \phi \psi_{a_0,t}, \psi_{a_1,s,t'} \rangle| \leq C_K \left(1 + \frac{a_1}{a_0}\right)^{-K} \left(1 + \frac{|s-s'|^2}{a_1}\right)^{-K} \left(1 + \frac{||t-t'||^2}{a_1}\right)^{-K}.
\]

3. Suppose $0 \leq \sqrt{a_0} \leq a_\phi \leq a_1 \leq \sqrt{a_1} < 1$. Then for $K > 0$,

\[
|\langle \phi \psi_{a_0,t}, \psi_{a_1,s,t'} \rangle| \leq C_K \left(1 + \frac{a_1}{a_0}\right)^{-K} \left(1 + \frac{||t-t'||^2}{a_1}\right)^{-K}.
\]

Now we can complete the proof of Theorem 5.1.

Proof of Theorem 5.1.

Since one direction was proved by Proposition 5.3, we only have to prove the inclusions:

1. $\mathcal{R} \subseteq \text{sing supp}(f)$
2. $\mathcal{D} \subseteq \text{WF}(f)$

First we prove (i). Let $t_0 \in \mathcal{R}$. Then for all $t \in B(t_0, \delta)$, where $B(t_0, \delta)$ denotes a ball centered at t_0 of radius δ, we have that $|\text{SH}_{\phi}(a,s,t)| = O(a_\delta^k)$ as $a \to 0$, for all $k \in \mathbb{N}$ with the $O(\cdot)$-term uniform over $(t,s) \in B(t_0, \delta) \times [-1, 1]$. A similar estimate holds for $\text{SH}_{\phi}(a,s,t)$.

Choose $\phi \in C^\infty(\mathbb{R}^2)$ to be supported in $B(t_0, \nu)$ with $\nu \ll \delta$ and let $\eta = \frac{\delta}{2}$. Let $\tilde{g}_0(\xi) = (\phi P(f))^{(\xi)}(\xi)$, where $P(f) = \int_{\mathbb{R}} (f, T_b W) T_b W \text{d}b$ and W is the window function defined by (3.6). Further, define $\tilde{g}_i, i = 1, \ldots, 4$ as

\[
\tilde{g}_i(\xi) = \chi_{C_i}(\xi) \int_{Q_i} \tilde{\psi}_{a_0,t}(\xi) \text{SH}_{\psi}(a,s,t) d\mu(a,s,t), \quad i = 1, 2,
\]

\[
\tilde{g}_{i+2}(\xi) = \chi_{C_2}(\xi) \int_{Q_2} \tilde{\psi}_{a_0,t}(\xi) \text{SH}_{\psi}(a,s,t) d\mu(a,s,t), \quad i = 1, 2,
\]

where C_1, C_2 are defined after equation (3.6), $d\mu(a,s,t) = \frac{\text{d}a}{a_0} ds dt$, and $Q_1 = [0, 1] \times [-2, 2] \times B(t_0, \eta)$ and $Q_2 = [0, 1] \times [-2, 2] \times B(t_0, \eta)^c$. Now set $g = \phi f$ and consider the decomposition

\[
\tilde{\phi} f(\xi) = \tilde{g}_0(\xi) + \tilde{g}_1(\xi) + \tilde{g}_2(\xi) + \tilde{g}_3(\xi) + \tilde{g}_4(\xi).
\]

The term $\tilde{g}_0(\xi)$ decays rapidly as $|\xi| \to \infty$ since ϕ and $P(f)$ are in C^∞. The term $\tilde{g}_2(\xi)$ decays rapidly as $|\xi| \to \infty$ by Lemma 5.4. In addition, by Lemma 5.5, $\tilde{g}_1(\xi)$ decays rapidly as $|\xi| \to \infty$ provided that $\text{SH}_{\phi} g$ decays rapidly as $a \to 0$ uniformly over $(t,s) \in B(t_0, \eta) \times [-2, 2]$. In the sequel, we will only analyze the terms \tilde{g}_i for $i = 1, 2$; the cases $i = 3, 4$ are similar.

We claim that $\text{SH}_{\phi} g$ indeed decays rapidly as $a \to 0$ uniformly over $B(t_0, \eta) \times [-2, 2]$. In order to prove this, we decompose f as $f = P(f) + P_{C_1} f + P_{C_2} f$, where $(P_{C_1} f)^\wedge = f \chi_{C_1}$ and $(P_{C_2} f)^\wedge = f \chi_{C_2}$. It is clear that $\text{SH}_{\phi}(P(f))$ decays rapidly
by the smoothness of ϕ and $P(f)$. Next, we examine the term $P_C f$. The analysis of $P_C f$ is very similar and will be omitted. We use the decomposition $P_C f = f_1 + f_2$, where

$$f_i(x) = \int_{Q_i} \psi_{ast}(x) \mathcal{S}H_{\psi_i} f(a, s, t) \, d\mu(a, s, t), \quad i = 1, 2.$$

Let us start by considering the term corresponding to f_1. First we observe that

$$\mathcal{S}H_{\psi_i}(\phi f_1)(a, s, t) = \langle \phi f_1, \psi_{ast} \rangle = \int_{Q_1} \langle \phi \psi_{ast}, \psi_{ast} \ast t \rangle \mathcal{S}H_{\psi_i} f(a', s', t') \, d\mu(a', s', t').$$

We will now decompose $Q_1 = Q_{10} \cup Q_{11} \cup Q_{12}$, corresponding to $a' > \delta$, $a' \leq \delta < \sqrt{a}$ and $\sqrt{a} \leq \delta$, respectively. In case $\sqrt{a}, \sqrt{a'} \leq \delta$, by Lemma 5.7, we obtain

$$|\langle \phi \psi_{ast}, \psi_{ast} \ast t \rangle| \leq C_K \left(1 + \frac{a_1}{a_0}\right)^{-K} \left(1 + \frac{\|t - t'\|^2}{a_1}\right)^{-K}.$$ \tag{5.11}

This implies that, for $m > 4$ and $K \geq m - 1$

$$\int_0^\delta \left(1 + \frac{a_1}{a_0}\right)^{-K} \frac{d a'}{a'} \leq C_{m,K} a^{m-2}, \quad 0 < a < \delta. \tag{5.12}$$

In fact, for $a' = a_0 \leq a = a_1$,

$$\int_0^a \left(1 + \frac{a}{a'}\right)^{-K} \frac{d a'}{a'} = a^{m-2} \int_0^1 (1 + x)^{-K} \, dx = C_K a^{m-2}.$$

For $a = a_0 \leq a' = a_1$,

$$\int_a^\delta \left(1 + \frac{a'}{a}\right)^{-K} \frac{d a'}{a'} = a^{m-2} \int_1^{\delta/a} x^{m-3} (1 + x)^{-K} \, dx \leq a^{m-2} \int_1^{\infty} x^{m-3} (1 + x)^{-K} \, dx = C_{K,m} a^{m-2}.$$

Thus, (5.12) follows from the last two estimates. Using (5.12) it follows that

$$\int_{Q_{12}} \langle \phi \psi_{ast}, \psi_{ast} \ast t \rangle \mathcal{S}H_{\psi_i} f(a', s', t') \, d\mu(a', s', t') \leq C' \int_{B(t_0, \eta)} \int_0^\delta \left(1 + \frac{a_1}{a_0}\right)^{-K} \frac{d a'}{a'} \, dt' \, ds' \leq C_m a^{m-2},$$

for all $m > 4$. Using the other cases of Lemma 5.7, one can show similar estimates for the integrals over the sets Q_{10} and Q_{11}. This proves that $\mathcal{S}H_{\phi f_1}(a, s, t) \text{ decays rapidly for } a \to 0 \text{ uniformly over } B(t_0, \eta) \times [-2, 2].$

Let us now consider the term corresponding to f_2:

$$\mathcal{S}H_{\psi_i}(\phi f_2)(a, s, t) = \langle \phi f_2, \psi_{ast} \rangle = \int_{Q_1} \langle \phi \psi_{ast}, \psi_{ast} \ast t \rangle \mathcal{S}H_{\psi_i} f(a', s', t') \, d\mu(a', s', t').$$

We will decompose $Q_2 = Q_{21} \cup Q_{22}$, corresponding to $\|t - t'\| > \eta$ and $\|t - t'\| \leq \eta$, respectively. Observe that, for $\|t - t'\| > \eta$ and $K > 1$,

$$\int_{B(t, \eta)^c} \left(1 + \frac{\|t - t'\|}{a_1}\right)^{-K} \, dt' \leq \int_{\eta}^{\infty} \left(1 + \frac{\eta}{a_1}\right)^{-K} \eta \, dr \leq C'_a \left(1 + \frac{\eta}{a_1}\right)^{-K+2}.$$
Further notice that, on the region Q_{21}, the function $\mathcal{SH}_\psi f(a', s', t')$ is bounded by $C'(a')^{3/4}$ since f is bounded. Thus
\[
\int_{Q_{21}} \langle \phi \psi_{ast}, \psi_{a's't'} \rangle \mathcal{SH}_\psi f(a', s', t') \ d\mu(a', s', t') \\
\leq C' \int_{-2}^{2} \int_{0}^{4} \int_{B(t_0, \eta)} \left(1 + \frac{||(t - t')||^2}{a_1} \right)^{-K} dt' \left(1 + \frac{a_1}{a_0} \right)^{-K} \frac{da'}{(a')^{3/4}} ds' \\
\leq C' \int_{0}^{\eta} a_1 \left(1 + \frac{\eta}{a_1} \right)^{-K+2} \left(1 + \frac{a_1}{a_0} \right)^{-K} \frac{da'}{(a')^{9/4}},
\]
and this is of rapid decay, as $a \to 0$, uniformly over Q_{21}. As for the region Q_{22}, if $t \in B(t_0, \eta)$ and $||(t - t')|| > \eta$, then $t' \in B(t_0, \delta)$ and thus the function $\mathcal{SH}_\psi f$ decays rapidly, for $a \to 0$, over this region. Repeating the analysis from the case Q_{12}, we can prove that $\int_{Q_{22}} \langle \phi \psi_{ast}, \psi_{a's't'} \rangle \mathcal{SH}_\psi f(a', s', t') \ d\mu(a', s', t')$ is of rapid decay, as $a \to 0$, uniformly over Q_{22}. Combining these observations, we conclude that $\mathcal{SH}_\psi(\phi f_2)(a, s, t)$ decays rapidly as $a \to 0$ uniformly over $B(t_0, \eta) \times [-2, 2]$. It follows that $\mathcal{SH}_\psi g(a, s, t)$ decays rapidly as $a \to 0$ uniformly for all $(s, t) \in B(t_0, \eta) \times [-2, 2]$, and, thus, by Lemma 5.5, $g_1(\xi)$ decays as $|\xi| \to \infty$. We can now conclude that \hat{g} decays rapidly as $|\xi| \to \infty$, hence completing the proof of (i).

For part (ii), we only sketch the idea of the proof, since it is very similar to part (i). Let $(t_0, s_0) \in \mathcal{D}$. We consider separately the case $|s_0| \leq 1$ and $|s_0| \geq 1$. In the first case, for all $t \in B(t_0, \delta)$ and $s \in B(s_0, \Delta)$, we have that $|\mathcal{SH}_\psi f(a, s, t)| = O(a^k)$, as $a \to 0$, for all $k \in \mathbb{N}$ with the $O(.)$-term uniform over $(t, s) \in B(t_0, \delta) \times B(s_0, \Delta)$. Choose $\phi \in L^2(\mathbb{R}^2)$ which is supported in a ball $B(0, \nu)$ with $\nu \ll \delta$ and let $\eta = \frac{\nu}{2}$. Then the proof proceeds as in part (i), replacing $B(t_0, \delta) \times [-2, 2]$ with $B(t_0, \delta) \times B(s_0, \Delta)$. Also, for the estimates involving inner products of ψ_{ast} and $\psi_{a's't'}$ we will now use Lemma 5.7 including the directionally sensitive term. For example, when $\sqrt{a}, \sqrt{a'} \leq \delta$, by Lemma 5.7 we will use the estimate
\[
|\langle \phi \psi_{ast}, \psi_{a's't'} \rangle| \leq C_K \left(1 + \frac{a_1}{a_0} \right)^{-K} \left(1 + \frac{|s - s'|^2}{a_1} \right)^{-K} \left(1 + \frac{||(t - t')||^2}{a_1} \right)^{-K},
\]
rather than (5.11). We can proceed similarly for the other estimates. The proof for the case $|s_0| \geq 1$ is exactly the same, with the transform $\mathcal{SH}_\psi^{(s)} f(a, s, t)$ replacing $\mathcal{SH}_\psi f(a, s, t)$.

6. Extensions and Generalizations of the Continuous Shearlet Transform

As mentioned above, there are several variants and generalizations of the continuous shearlets introduced in Section 3. In fact, using the theory of the affine systems, we can obtain several other examples of continuous shearlets depending on the three variables: scale, shear and location.

For example, we can generalize our construction by considering the case where Λ is given by (3.1) and M is of the form
\[
M_\delta = \begin{pmatrix} a & -a^\delta s \\ 0 & a^\delta \end{pmatrix} = BA_\delta, \quad a \in I, s \in S,
\]
we can modify the set \(\Lambda \) as follows. Let \(\Lambda \) \\
\[\{ \hat{\psi}_{ast} = T_I D_{M \delta} \psi : (M \delta, t) \in \Lambda \}, \]
where \(\hat{\psi}_{ast} \) is supported on the set:
\[\text{supp} \hat{\psi}_{ast} \subset \{(\xi_1, \xi_2) : \xi_1 \in [-\frac{2}{\alpha}, -\frac{1}{2\alpha}] \cup [\frac{1}{2\alpha}, \frac{2}{\alpha}], |\frac{\xi_2}{\xi_1} - s| \leq a^{1-\delta}\}. \]
This provides a new family of transforms \(\text{SH}^\delta \psi f(a, s, t) = \langle f, \hat{\psi}_{ast} \rangle \), for various values of \(\delta \). It turns out that, provided \(0 \leq \delta < 1 \), the behavior of the transforms \(\text{SH}^\delta \psi f(a, s, t) \) is very similar to the Continuous Shearlet Transform in dealing with pointwise and linear singularities. More precisely, one can repeat the analysis in Sections 4.1, 4.2 and 4.3 using \(\text{SH}^\delta \psi f(a, s, t) \) (notice \(\delta \neq 1 \)). Also in the case of curvilinear singularities (see Section 4.4), the behavior of the transforms \(\text{SH}^\delta \psi f(a, s, t) \) is similar to the Continuous Shearlet Transform, provided \(0 < \delta < 1 \). However, our proof of Theorem 5.1 makes use of the fact that \(\delta = \frac{1}{2} \); that is, we need to use the Continuous Shearlet Transform.

Another variant of affine systems generated by \(\Lambda \), given by (3.1), is obtained by reversing the order of the shear and dilation matrices, namely, by letting
\[M \delta = \begin{pmatrix} a & -a s \\ 0 & a^\delta \end{pmatrix} = A \delta B, \quad a \in I, s \in S, \]
where \(A \delta, B \) are defined as above, and \(0 \leq \delta \leq 1 \) is fixed. Also in this case, we can construct variants of the continuous shearlet systems. Using the same ideas as above, we obtain a system of functions \(\psi_{ast} \) with support
\[\text{supp} \hat{\psi}_{ast} \subset \{(\xi_1, \xi_2) : \xi_1 \in [-\frac{2}{\alpha}, -\frac{1}{2\alpha}] \cup [\frac{1}{2\alpha}, \frac{2}{\alpha}], |\frac{\xi_2}{\xi_1} - s| \leq a^{1-\delta}\}. \]
It turns out (as one can see from the support condition) that the transform associated with these systems is not even able to ‘locate’ the linear singularities, in the sense described in Section 4.2.

The frequency support of the continuous shearlets is symmetric with respect to the origin. Therefore the Continuous Shearlet Transform is unable to distinguish the orientation associated with the angle \(\theta \) from the angle \(\theta + \pi \) (cf. Footnote 2). In order to be able to distinguish these two directions, we can modify our construction as follows. Let \(\psi \in L^2(\mathbb{R}^2) \) be defined as in Section 3, except that \(\text{supp} \hat{\psi}_1 \subset [\frac{1}{2}, 2] \). That is, we have a one-sided version of the shearlet \(\hat{\psi} \) illustrated in Figure 1. It is then clear that, if we consider the affine system generated by \(\psi \) under the action of \(\Lambda \) given by (3.1) and (3.2), this cannot provide a reproducing system for all of \(L^2(\mathbb{R}^2) \). In fact, \(\psi \) is a wavelet for the subspace \(L^2(H)^\perp \), where \(H = \{(\xi_1, \xi_2) \in \mathbb{R}^2 : \xi_1 \geq 0\} \). In order to obtain a wavelet for the space \(L^2(\mathbb{R}^2) \), we can modify the set \(\Lambda \) as follows. Let \(\Lambda' \) given by (3.1), where \(G \subset GL_2(\mathbb{R}) \) is
the set of matrices:

\[
G = \left\{ M = \begin{pmatrix} \ell a & -\ell \sqrt{a} s \\ 0 & \ell \sqrt{a} \end{pmatrix}, \quad a \in I, \ s \in S, \ \ell = -1, 1 \right\},
\]

where \(I \subset \mathbb{R}^+ \), \(S \subset \mathbb{R} \). Then the function \(\psi \) is a continuous wavelet for \(L^2(\mathbb{R}^2) \) with respect to \(\Lambda' \). These modified versions of the continuous shearlets depend on four variables \(a, s, t, \ell \) and have frequency support:

\[
\text{supp } \hat{\psi}_{ast\ell} \subset \begin{cases} \{ (\xi_1, \xi_2) : \xi_1 \in \left[-\frac{1}{2}, -\frac{1}{2} \right], \ |\xi_2 - s| \leq \sqrt{a} \}, & \text{if } \ell = -1, \\
\{ (\xi_1, \xi_2) : \xi_1 \in \left[\frac{1}{2a}, \frac{1}{a} \right], \ |\xi_2 - s| \leq \sqrt{a} \}, & \text{if } \ell = 1.\end{cases}
\]

We remark that these modified versions of the continuous shearlets are in fact complex functions, whereas the shearlets we use throughout this paper are real functions.

Finally, there exists a natural way to construct continuous shearlets also in dimensions larger than 2. We refer to [18] for a discussion about the generalizations of shear matrices to higher dimensions.

Appendix A. Additional Computations

Proof of Theorem 2.1.

Suppose that (2.4) holds. Then, by applying Parseval and Plancherel formulas, for any \(f \in L^2(\mathbb{R}^n) \),

\[
\int_{\mathbb{R}^n} \int_G |\langle f, T_1 D_M \psi \rangle|^2 \, d\lambda(M) \, dt
= \int_{\mathbb{R}^n} \int_G \left| \int_{\mathbb{R}^n} f(\xi) \psi(M^t \xi) e^{2\pi i \xi t} d\xi \right|^2 |\det M| \, d\lambda(M) \, dt
= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} \tilde{f}(\xi) \psi(M^t \xi) \chi_{B}(\xi) d\xi \right|^2 dt \, |\det M| \, d\lambda(M)
= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |\hat{f}(\xi)|^2 |\hat{\psi}(M^t \xi)|^2 |\det M| \, d\xi \, d\lambda(M)
= \int_{\mathbb{R}^n} |\hat{f}(\xi)|^2 \Delta(\psi)(\xi) \, d\xi = \|f\|^2.
\]

Equation (2.3) follows from the above equality by polarization.

Conversely, suppose that

\[
\int_{\mathbb{R}^n} \int_G |\langle f, T_1 D_M \psi \rangle|^2 \, d\lambda(M) \, dt = \|f\|^2
\]

for all \(f \in L^2(\mathbb{R}^n) \). Let \(\xi_0 \) be a point of differentiability of \(\Delta(\psi)(\xi) \) and let \(\hat{f}(\xi) = |B(\xi_0, r)|^{-1/2} \chi_{B(\xi_0, r)}(\xi) \), where \(B(\xi_0, r) \) is a ball centered at \(\xi_0 \) of radius \(r \). By reversing the chain of equalities above we conclude that

\[
\frac{1}{|B(\xi_0, r)|} \int_{B(\xi_0, r)} \Delta(\psi)(\xi) \, d\xi = 1
\]
Thus, combining (A.1), (A.3) and (A.4) and using (3.6), it follows that

\[
\int_{\mathbb{R}^2} |\langle f, T_t W \rangle|^2 \; dt = \int_{\mathbb{R}^2} \left| \int_{\mathbb{R}^2} \hat{f}(\xi) \overline{W(\xi)} e^{2\pi i t \xi} \; d\xi \right|^2 \; dt = \int_{\mathbb{R}^2} \left| \left(\frac{\hat{f}}{t} \right) \right|^2 \; dt
\]

(A.1)

Similarly, we can conclude that

\[
\int_{\mathbb{R}^2} |\hat{f}(\xi)|^2 |\overline{W(\xi)}|^2 \; d\xi.
\]

Thus, using the last equality, (A.2) yields

\[
\int_{\mathbb{R}^2} \int_{-2}^2 \int_0^1 |\langle P_{\delta} f, \psi_{a\eta} \rangle|^2 \; \frac{da}{a^2} \; ds \; dt = \int_{\mathbb{R}^2} |\hat{f}(\xi)|^2 \chi_{C_1}(\xi) \int_0^1 |\hat{\psi}_1(a\xi_1)|^2 \; \frac{da}{a} \; d\xi.
\]

(A.3)

Similarly, we can conclude that

\[
\int_{\mathbb{R}^2} \int_{-2}^2 \int_0^1 |\langle P_{\delta} f, \psi_{a\eta}^{(c)} \rangle|^2 \; \frac{da}{a^2} \; ds \; dt = \int_{\mathbb{R}^2} |\hat{f}(\xi)|^2 \chi_{C_2}(\xi) \int_0^1 |\hat{\psi}_1(a\xi_2)|^2 \; \frac{da}{a} \; d\xi.
\]

(A.4)

Thus, combining (A.1), (A.3) and (A.4) and using (3.6), it follows that

\[
\int_{\mathbb{R}^2} |\langle f, T_t W \rangle|^2 \; dt + \int_{\mathbb{R}^2} \int_{-2}^2 \int_0^1 |\langle P_{\delta} f, \psi_{a\eta} \rangle|^2 \; \frac{da}{a^3} \; ds \; dt
\]

\[
+ \int_{\mathbb{R}^2} \int_{-2}^2 \int_0^1 |\langle P_{\delta} f, \psi_{a\eta}^{(c)} \rangle|^2 \; \frac{da}{a^3} \; ds \; dt
\]

\[
= \int_{\mathbb{R}^2} |\hat{f}(\xi)|^2 \left(|\overline{W(\xi)}|^2 + \chi_{C_1}(\xi) \int_0^1 |\hat{\psi}_1(a\xi_1)|^2 \; \frac{da}{a} + \chi_{C_2}(\xi) \int_0^1 |\hat{\psi}_1(a\xi_2)|^2 \; \frac{da}{a} \right) \; d\xi
\]

\[
= \|f\|^2.
\]
Acknowledgments

The research for this paper was performed while the first author was visiting the Departments of Mathematics at Washington University in St. Louis and the Georgia Institute of Technology. This author thanks these departments for their hospitality and support during these visits. We are also indebted to F. Bornemann, E. Candès, L. Demanet, K. Guo, W. Lim, G. Weiss, and E. Wilson for helpful discussions.

References

Department of Statistics, Stanford University, Stanford, CA 94305, USA
E-mail address: kutyniok@stanford.edu

Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, NC 27695, USA
E-mail address: dlabate@unity.ncsu.edu