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Abstract
We use general Markov additive processes (Markov modulated Lévy processes) to

integrally handle the complexity of degradation including internally-induced and

externally-induced stochastic properties with complex jump mechanisms. The back-

ground component of the Markov additive process is a Markov chain defined on a

finite state space; the additive component evolves as a Lévy subordinator under a

certain background state, and may have instantaneous nonnegative jumps occurring

at the time the background state switches. We derive the Fokker–Planck equations

for such Markov modulated processes, based on which we derive Laplace expres-

sions for reliability function and lifetime moments, represented by the infinitesimal

generator matrices of Markov chain and the Lévy measure of Lévy subordinator. The

superiority of our models is their flexibility in modeling degradation data with jumps

under dynamic environments. Numerical experiments are used to demonstrate that

our general models perform well.
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1 INTRODUCTION

Reliability of systems is one of the major concerns in many

fields including energy, health, aerospace, national defense,

and so forth. In investigating reliability, unavoidable degra-

dation is one of the major failure mechanisms of the sys-

tems, taking the form of damage, corrosion, erosion, fatigue

crack, deterioration or wear, and so forth. During the life

of many critical systems (e.g., wind turbines, drilling equip-

ment, power/smart grids, mechanical devices, etc.), there

are some external time-varying variables/factors that con-

tinuously govern the progress of the stochastic degrada-

tion of the systems. Such variables are called stochastic

covariates (e.g., dynamic environments such as temperature,

humidity, or vibration). Incorporating this externally-induced

uncertainty together with internally-induced uncertainty in

modeling degradation is a challenging research work, espe-

cially when there are many complex jumps stemming from

both internal features (mechanical, thermal, electrical, or

chemical) of the system and instantaneous state changes of

external variables/factors. The majority of published research

in stochastic degradation modeling has assumed that the

degradation evolves under a deterministic environment. Con-

sidering external factors, Wiener-based stochastic covariate

models in Ebrahimi (2001), Markov modulated linear pro-

cesses and Markov modulated compound Poisson processes

in Kharoufeh et al. (Kharoufeh, 2003; Kharoufeh et al., 2006,

2013; Kharoufeh & Cox, 2005; Kharoufeh & Mixon, 2009)

were studied recently. Poisson process is a special case

of Lévy process, thus the linear-based and Poisson-based

stochastic models are not flexible in general cases (Shu

et al., 2015, 2016, 2019).

To integrally handle the complexities of degradation

including both internally-induced and externally-induced

stochastic properties with complex jump mechanisms, we

propose to develop degradation models under dynamic envi-

ronments using a broad class of general Markov additive

processes (Markov modulated Lévy processes), where the

background component is a Markov chain with finite states,

the additive component evolves as a Lévy subordinator under
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a certain background state, and may have instantaneous non-

negative jumps occurring at the time the background state

switches. We develop the Fokker–Planck equations of such

analytically appealing stochastic processes in order to derive

reliability characteristics. We also develop systematic proce-

dures for deriving and obtaining the explicit and powerful

results, represented by infinitesimal generator matrices and

Lévy measures. Using Markov modulated Lévy processes, the

superiority of our general models stems from their flexibility

in modeling stylized features of degradation data series under

dynamic environments such as jumps fluctuation, symme-

try/asymmetry, and light/heavy tails. Our results are expected

to provide accurate reliability prediction and estimation, by

realizing multiple uncertainty sources of degradation mecha-

nisms.

Without considering external factors, stochastic processes

such as Wiener processes, gamma processes and compound

Poisson processes are directly used to represent degrada-

tion processes when the degradation is observable (see Esary

et al., 1973; Lawless & Crowder, 2004; Si et al., 2013;

Tang & Su, 2008; Tsai et al., 2011). To conduct reliabil-

ity analysis, the failure time is defined as the first passage

time of the degradation process. When the degradation is

unobservable, it is treated as a latent process, measured

and tracked by internal stochastic covariates that are observ-

able marker processes (see Jewell & Kalbfleisch, 1996; Lee

et al., 2000; Shi et al., 1996; Singpurwalla, 2006; Whitmore

et al., 1998). These markers (e.g., diagnostic factors such as

mileage traveled of an auto) provide information about the

progress of degradation processes that can be used to infer

the reliability function or the hazard function. To conduct

reliability/survival analysis, Lee et al. (2000) and Whitmore

et al. (1998) used a bivariate Wiener process to describe the

correlation of the degradation process and the marker pro-

cess, and then formulated the reliability function based on

the first passage time of the Wiener process. Some models

directly defined the hazard function as an explicit function

of the marker process (see Jewell & Kalbfleisch, 1996; Shi

et al., 1996; Singpurwalla, 2006).

In biostatistics, the marker processes are stochastic pro-

cesses representing time-varying covariates that track the

health of a system under study in the language of Kalbfleisch

and Prentice (2002). Jewell et al. (Jewell & Kalbfleisch, 1996;

Jewell & Nielsen, 1993) considered the marker processes as

associated variables that continuously measure the progress

of an individual toward the final expression of the disease

(failure). Assuming a simple additive model for the relation-

ship between the marker process and the hazard function,

the survival distribution of time to failure was expressed,

where the Poisson process was used to represent the marker

process. Yashin and Manton (1997) reviewed models in sur-

vival analysis under the framework that the hazard func-

tion explicitly represents the effects of markers. Typically

they discussed the model where the marker processes are

Wiener-based diffusion processes, where the relationship

between the hazard function and the markers is quadratic.

Fusaro et al. (1993) constructed the model using a non-

parametric frame to describe the dependency of the hazard

on marker variables. Regarding the efficient use of marker

information, Malani (1995) proposed a heuristic approach in

estimating parameters of survival functions. Shi et al. (1996)

studied the distributions of the residual time in acquired

immune deficiency syndrome diagnosis based on markers

that carry valuable information about disease progression.

They derived the residual time distribution for several com-

binations of marker processes and marker-dependent hazard

functions. However, all these stochastic models just represent

internally-induced uncertainty with temporal variability.

Considering the effects of external factors, Ebrahimi (2001)

presented a stochastic covariate failure model for assessing

system reliability, where external stochastic covariates were

modeled by Wiener-based diffusion processes. The life distri-

bution was assumed to be explicitly related to such stochastic

covariates. However, this work cannot handle the random

jumps in degradation.

Markov additive processes are a class of binary stochas-

tic processes with one component as an additive process

(e.g., Lévy process) that is modulated by the other compo-

nent, which is a standard Markov process (see Çınlar, 1972a,

1972b, 1977). They can integrally handle the complexities

of degradation processes under dynamic environments. Spe-

cial Markov additive processes, including Markov modulated

linear processes and Markov modulated compound Poisson

processes, have been used to represent the linear deterministic

degradation with Poisson-type jumps under discrete and finite

state Markov environments (see Kharoufeh, 2003; Kharoufeh

et al., 2006, 2013; Kharoufeh & Cox, 2005; Kharoufeh &

Mixon, 2009). The explicit results were derived based on the

nature of the Poisson process. We propose an extension of

such models using Markov modulated Lévy processes.

The organization of this paper is as follows. In Section 2,

we describe the model construction. In Section 3, we derive

the Fokker–Planck equations of general Markov additive pro-

cesses. In Section 4, we derive the explicit expressions of

reliability function and lifetime moments for systems subject

to degradation under the dynamic environment. Numerical

examples are illustrated in Section 5, and conclusions are

given in Section 6.

2 PRELIMINARIES

In this section, we introduce some mathematical fundamen-

tals related to Lévy processes, followed by model construction

for degradation phenomenon under dynamic environments

based on Markov modulated Lévy processes.

2.1 Lévy–Itô decomposition

Lévy processes provide a potential candidate to describe

a broad class of degradation with random jumps. The
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theories of Lévy processes have been well introduced in

Applebaum (2009) and Sato (1999), and they have been

widely applied in the fields of economics and finance

(see Cont & Tankov, 2004; Fusai & Kyriakou, 2016).

Abdel-Hameed (1984) studied the life distribution properties

of devices subject to Lévy degradation. Under deterministic

environments, Shu et al. (2015, 2016) gave explicit results of

reliability function for degradation described by Lévy subor-

dinators and their functional extensions as a class of nonde-

creasing processes. Their results demonstrated the advantage

of using Lévy subordinators as a realistic model for many

physical degradation phenomena.

The stochastic processes are defined on a complete prob-

ability space (Ω, , P) with a standard, right-continuous and

augmented filtration  = { t, t≥ 0}. Let Rd denote the

Euclidean space of dimension d, R+ denote [0,∞) and |x| =√
x ⋅ x denote the Euclidean norm for x∈Rd. We begin with

the definition of Poisson random measure on R+ ×Rd with

mean Leb× 𝜈, where Leb is the Lebesgue measure and 𝜈 is

a Lévy measure, that is, 𝜈{0} = 0 and ∫
R

d (|x|2 ∧ 1)𝜈(dx) <
∞. Let 𝜃 = {𝜃t, t≥ 0} be a semigroup of time-shift oper-

ator 𝜃t :𝜔 → 𝜃t𝜔 from Ω to Ω such that 𝜃0𝜔 = 𝜔 and

𝜃u(𝜃t𝜔) = 𝜃u+ t𝜔.

Definition 1 (Çınlar, 2011). A random mea-

sure N on R+ ×Rd is called a Poisson random

measure with Lévy measure 𝜈 if.

• For every Borel subset A of [0, t]×Rd, N(A)

is  t measurable;

• N(𝜃t𝜔, B) = N(𝜔, Bt) for every 𝜔∈Ω, t≥ 0

and Borel subset B of R+ ×Rd, where

Bt = {(t+ u) : (u, x)∈B}; and

• N is Poisson with mean Leb× 𝜈.

The Poisson random measure N is said to have the inten-

sity measure Leb× 𝜈 with values in Z+ = {0,1,2, … ,+∞}.

Let B = {x ∈ R
d ∶ |x| ≤ 1} be the closed unit ball in Rd,

and Bc = {x ∈ R
d ∶ |x| > 1} be its complement. The follow-

ing theorem describes the celebrated Lévy–Itô decomposition

(Çınlar, 2011):

Theorem 1 (The Lévy–Itô decomposition

Çınlar, 2011). A process X on (Ω, , P) is a Lévy
process if and only if for every t∈R+,

X(t) = bt + aW(t) + ∫[0,t]×B

x{N(s, dx) − ds𝜈(dx)}

+ ∫[0,t]×Bc
xN(s, dx),

for some b∈Rd, some d × d′ covariance matrix
a, some d′

-dimensional Wiener process W, and
a Poisson random measure N on R+ ×Rd with
some Lévy measure 𝜈 that is independent of W.

A Lévy subordinator is a one-dimensional Lévy process

that is nondecreasing almost surely. Using Lévy–Khintchine

formula (Sato, 1999), a Lévy subordinator has the following

property:

Corollary 1 (Sato, 1999). Let d = 1. A Lévy
process is a subordinator if and only if a = 0,

𝜈(−∞, 0] = 0,

∫
∞

0

(x ∧ 1)𝜈(dx) < ∞, and the drift

b ≡ b − ∫
1

0

x𝜈(dx) ≥ 0.

By Theorem 1 (the Lévy–Itô decomposition) and Corol-

lary 1, a Lévy subordinator X(t) can be written as

X(t) = b t + ∫[0,1]×(0,∞)
xN(ds, dx).

2.2 Model construction

We consider a system subject to degradation with random

jumps, which is a process of stochastically continuous degra-

dation with sporadic jumps that occur at random times and

have random sizes. In addition, the degradation process is

modulated by the environment process. To model the evo-

lution of this type of degradation process, we use Markov

additive processes {X(t), E(t)} as follows. The cumulative

degradation by time t is represented by a nondecreasing con-

tinuous time càdlàg (right continuous with left limits) Markov

modulated Lévy process X(t), and the modulating process is

the environment process, represented by a temporally homo-

geneous continuous time càdlàg Markov jump process E(t)
with finite state space  = {0, 1,… , n}. Let G = (rij), rii =
−
∑

j≠irij, i, j ∈  denote the transition rate matrix (infinitesi-

mal generator matrix) of E(t).
More precisely, the bivariate process {X(t), E(t)} is a

Markov additive process, where conditional on E(t), the con-

ditional law of X(t) evolves as a nondecreasing Lévy process,

that is, a Lévy subordinator. Given E(t) = i∈  during an

interval [t, t+ s), the characteristics of X(t) are functions of

E(t), modeled as

bE(t) = b(E(t)) = b(i), 𝜈E(t)(x) = 𝜈i(x) = 𝜈(i, x).

In practice, the changes of environment states, such as instan-

taneous temperature increase or decrease, can induce certain

damages to the system, modeled by the jumps in the degra-

dation process. Therefore, we assume there is an additional

random nonnegative jump in X(t) when the state of E(t)
changes. When E(t) changes from state i to state j, the distri-

bution of the jump is denoted as Dij(z), defined on R+. For

i = j, Dij(dz) = 𝛿z(0), which is a Dirac delta function. When

the state space  is finite, the class of Markov additive process

{X(t), E(t)} is well understood (see Asmussen, 2003). With-

out the loss of generalization, assume the initial state X(0)= 0,

E(0) = 0 a.s., and it is easy to extend the results to the case

when X(0) = c, E(0) = k, c∈R+, k∈  .
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FIGURE 1 A sample path of Markov additive process with a random jump when the environment states changes

To integrally handle internally-induced and

externally-induced stochastic properties with complex jump

mechanisms, X(t) can be expressed as:

X(t) = ∫
t

0

b(E(𝜉−))d𝜉

+ ∫
t

0 ∫0<x≤1

x(N(E(𝜉−), d𝜉, dx) − 𝜈(E(𝜉−), dx)d𝜉)

+ ∫
t

0 ∫y>1

xN(E(𝜉−), d𝜉, dx) +
∑

𝜉∈[0,t]
ME(𝜉−),E(𝜉),

where ME(𝜉−), E(𝜉) is a random variable following the distribu-

tion DE(𝜉−), E(𝜉)(z), and independent of E(𝜉), for all 𝜉 ∈ [0, t].
In X(t), under a certain state of E(t), the internally-induced

stochastic properties is modeled by a certain Lévy process.

One of the most important advantages of using Lévy pro-

cesses is that their jump parts represented by Lévy measures

can model a great deal of jump mechanisms in degradation.

At different states of E(t), X(t) may evolve in different pat-

terns with different jump mechanisms that can be modeled

by different Lévy processes, representing externally-induced

stochastic properties. In addition, instantaneous nonnegative

jumps induced by the change in E(t) are also properly mod-

eled by a random distribution (see Figure 1). As illustrated in

Figure 1, when E(t) = i, X(t) evolves as a linear process (LP);

when E(t) = j, X(t) evolves as a compound Poisson process

(CP); when E(t) = k, X(t) evolves as an inverse Gaussian pro-

cess (IG); when E(t)= l, X(t) evolves as a gamma process (G);

and when E(t) = m, X(t) evolves as a stable process (S).

3 FOKKER–PLANCK EQUATIONS FOR
MARKOV ADDITIVE PROCESSES

As the partial differential equation of the probability density

function, the Fokker–Planck equation describes the time evo-

lution of probability density for stochastic processes, and is

thus useful in quantifying random phenomena such as uncer-

tainty propagation (see Risken, 1996; Sun & Duan, 2012).

It provides us a way to analyze the probability laws for

stochastic processes of interests, especially for those without

closed-form distributions. Without an analytical expression

of the probability law for {X(t), E(t)}, the development of the

characteristics for such processes and the subsequent reliabil-

ity function is a nontrivial work, even for simple cases. The

difficulty stems from (1) the stochastic evolution of degra-

dation has complex mechanisms such as random jumps, (2)

the stochastic nature of environment, and (3) the distribu-

tional derivation for the first passage time. We overcome

this challenge by deriving the Fokker–Planck equation of

{X(t), E(t)}.

Under the model construction of our Markov additive pro-

cesses {(X(t), E(t))}, the environmental process E(t) is a

continuous-time homogeneous Markov Chains with finite

state space. We further assume that E(t) is a regular jump pro-

cess so that whenever it jumps to a new state, it can stay at the

new state at least for a short random duration. A jump process

is a regular jump process if it only has finite many jumps in

[0, t] for every t> 0. This is a general class of continuous-time

Markov Chains that are very practical in applications. A reg-

ular jump process is stable and conservative so that it has a

density. Conditional on E(t), X(t) is a nondecreasing Lévy

process. We further assume a sufficient condition on the Lévy

measure 𝜈(⋅) to ensure the existence and smoothness of the

probability density for the Lévy process

lim inf
𝜀→0

∫[−𝜀,𝜀]x2𝜈(dx)
𝜀2−a > 0,

for some 0< a< 2; more details can be found in Sato (1999,

Proposition 28.3, p. 190).

Under these model specifications and assumptions, there

exists the joint probability density function p(x, i, t) of the

bivariate stochastic processes {X(t), E(t)}. We can then derive

the Fokker–Planck equation as

𝜕p(x, i, t)
𝜕t

= L∗p(x, i, t),

where L* is the adjoint operator of the infinitesimal generator

of {X(t), E(t)}, that is,

∫R
Lf(x)g(x)dx = ∫R

f (x)L∗g(x)dx.
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It is important to derive the adjoint operator, and our main

result is given in this section. The Fokker–Planck equation is

derived and presented in Theorem 2.

Theorem 2 For the Markov additive pro-
cess {X(t), E(t)} described in Section 2.2, the
Fokker–Planck equation is

𝜕p(x, i, t)
𝜕t

= −b(i) 𝜕
𝜕x

p(x, i, t) +
∑
j∈

rji∫R+
p(x − z, j, t)Dji(dz)

+ ∫R+

(
p(x − y, i, t) − p(x, i, t) + Iy∈(0,1)y

𝜕

𝜕x
p(x, i, t)

)
𝜈(i, dy).

Proof Step 1: For each f ∈ C∞
0
(R2) (f

is a smooth function and compactly sup-

ported), and for each t> 0, we aim to derive

f (X(t+Δt), E(t+Δt))− f (X(t), E(t)).
Both X(t) and E(t) are càdlàg pro-

cesses. We define X(𝜉−) and E(𝜉−) as

the left limits at the time point 𝜉, S = [t,
t+Δt], S1 = {𝜉 ∈ S : E(𝜉)−E(𝜉−) = 0}, and

S2 = {𝜉 ∈ S : E(𝜉)−E(𝜉−)≠ 0}. Then we have

f (X(t + Δt),E(t + Δt)) − f (X(t),E(t))

=
∑
𝜉∈S

f (X(𝜉),E(𝜉)) − f (X(𝜉−),E(𝜉−))

=
∑
𝜉∈S1

f (X(𝜉),E(𝜉)) − f (X(𝜉−),E(𝜉))

+
∑
𝜉∈S2

f (X(𝜉),E(𝜉)) − f (X(𝜉−),E(𝜉−)). (1)

In a continuous time interval s⊆ S1, if

E(𝜉) = e, 𝜉 ∈ s, e∈  , dX(𝜉) has a constant part

dXC(𝜉) = (b(e)− ∫ 0< y< 1y𝜈(e, dy))d𝜉, and a

random jump part dXJ(𝜉) = ∫R+yN(e, d𝜉, dy).
For XJ , we define 𝜏m, 0≤m≤M, m∈N, M ∈N
as the time of the mth jump, 𝜏0 = inf {𝜉 : 𝜉 ∈ s},

𝜏m = inf {𝜉 : 𝜉 > 𝜏m− 1 & ΔXJ(𝜉)> 0},

where ΔXJ(𝜉) = XJ(𝜉)−XJ(𝜉−), and

𝜏 = sup{𝜉 : 𝜉 ∈ s}. Then∑
𝜉∈s

f (X(𝜉),E(𝜉)) − f (X(𝜉−),E(𝜉))

= f (X(max{𝜏M , 𝜏−}), e) − f (X(𝜏M), e)

+
M∑

m=1

(f (X(𝜏m), e) − f (X(𝜏m−1), e))

= f (X(max{𝜏M , 𝜏−}), e) − f (X(𝜏M), e)

+
M∑

m=1

(f (X(𝜏m−) + ΔXJ(𝜏m), e) − f (X(𝜏m−), e))

+
M∑

m=1

(f (X(𝜏m−), e) − f (X(𝜏m−1), e)).

Based on the stochastic integration (see Chap-

ter 4 in Applebaum, 2009), we have∑
𝜉∈S1

f (X(𝜉),E(𝜉)) − f (X(𝜉−),E(𝜉))

= ∫𝜉∈S1

b(E(𝜉))
𝜕f
𝜕x

(X(𝜉−),E(𝜉))d𝜉

− ∫𝜉∈S1
∫0<y<1

y
𝜕f
𝜕x

(X(𝜉−),E(𝜉))𝜈(E(𝜉), dy)d𝜉

+ ∫𝜉∈S1
∫R+

(f (X(𝜉−) + y,E(𝜉)) − f (X(𝜉−),E(𝜉)))

N(E(𝜉), d𝜉, dy).

Then (1) becomes

f (X(t + Δt),E(t + Δt)) − f (X(t),E(t))

= ∫𝜉∈S1

b(E(𝜉))
𝜕f
𝜕x

(X(𝜉−),E(𝜉))d𝜉

− ∫𝜉∈S1
∫0<y<1

y
𝜕f
𝜕x

(X(𝜉−),E(𝜉))𝜈(E(𝜉), dy)d𝜉

+ ∫𝜉∈S1
∫R+

(f (X(𝜉−) + y,E(𝜉)) − f (X(𝜉−),E(𝜉)))

N(E(𝜉), d𝜉, dy)

+
∑
𝜉∈S2

(f (X(𝜉−) + ME(𝜉−),E(𝜉),E(𝜉)) − f (X(𝜉−),E(𝜉−))).

Notice that for 𝜉 ∈ S1, both E(𝜉) and X(𝜉−) are

predictable. Our calculus is in the Itô form.

Step 2: For each f ∈ C∞
0
(R2), we aim to derive

the infinitesimal generator L of {X(t), E(t)}:

Lf(x, i) = lim
Δt→0

E(f (X(t + Δt),E(t + Δt))|X(t) = x,
E(t) = i) − f (x, i)

Δt
.

(2)

As E(t) has the transition rate

matrix (infinitesimal generator matrix)

G = (rij), rii = −
∑

j≠irij, defining

P(E(t+Δt) = j| E(t) = i) = Pij(Δt), we have

lim
Δt→0

E
(∑

𝜉∈S2
(f (X(𝜉) + ME(𝜉−),E(𝜉),E(𝜉))

− f (X(𝜉−),E(𝜉−)))|X(t) = x,E(t) = i
)

Δt

= lim
Δt→0

∑
j≠i∫R+(f (x + z, j) − f (x, i))Dij(dz)Pij(Δt)

Δt

=
∑
j≠i

rij∫R+
(f (x + z, j) − f (x, i))Dij(dz)

=
∑
j∈

rij∫R+
f (x + z, j)Dij(dz).

Since the Poisson random measure N(dt, dy)

has a Poisson distribution with mean 𝜈(dy)dt,
we have

Lf(x, i) = b(i) 𝜕
𝜕x

f (x, i) − ∫0<y<1

y 𝜕

𝜕x
f (x, i)𝜈(i, dy)

+ ∫R+
(f (x + y, i) − f (x, i))𝜈(i, dy)

+
∑
j∈

rij∫R+
f (x + z, j)Dij(dz). (3)
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Step 3: We aim to derive L*, the adjoint operator

corresponding to the infinitesimal generator L
in (3):∑

i∈ ∫R+
Lf(x, i)p(x, i, t)dx =

∑
i∈ ∫R+

f (x, i)L∗p(x, i, t)dx. (4)

Using integration by parts, as p(0, i, t) = 0,

and p(∞, i, t) = 0, we have∑
i∈ ∫R+

b(i) 𝜕
𝜕x

f (x, i)p(x, i, t)dx =
∑
i∈ ∫R+

b(i)p(x, i, t)df(x, i)

=
∑
i∈

b(i)p(x, i, t)f (x, i)
|||||R+

−
∑
i∈ ∫R+

b(i)f (x, i)dp(x, i, t)

=
∑
i∈ ∫R+

− b(i) 𝜕
𝜕x

p(x, i, t)f (x, i)dx, (5)

and∑
i∈ ∫R+∫R+

(f (x + y, i) − f (x, i))𝜈(i, dy)p(x, i, t)dx

−
∑
i∈ ∫R+∫R+

Iy∈(0,1)y
𝜕

𝜕x
f (x, i)𝜈(i, dy)p(x, i, t)dx

=
∑
i∈ ∫R+∫R+

(p(x − y, i, t) − p(x, i, t))𝜈(i, dy)f (x, i)dx

+
∑
i∈ ∫R+∫R+

Iy∈(0,1)y
𝜕

𝜕x
p(x, i, t)𝜈(i, dy)f (x, i)dx. (6)

By swapping i and j, we have∑
i∈ ∫R+

∑
j∈

rij∫R+
f (x + z, j)Dij(dz)p(x, i, t)dx

=
∑
i∈ ∫R+

∑
j∈

rji∫R+
p(x − z, j, t)Dji(dz)f (x, i)dx. (7)

Then from (5), (6) and (7), we have

L∗p(x, i, t) = −b(i) 𝜕
𝜕x

p(x, i, t) +
∑
j∈

rji∫R+
p(x − z, j, t)Dji(dz)

+ ∫R+

(
p(x − y, i, t) − p(x, i, t) + Iy∈(0,1)y

𝜕

𝜕x
p(x, i, t)

)
𝜈(i, dy).

For each f ∈ C∞
0
(R2), we denote

u(t) = E(f (X(t), E(t))). Then based on (2), we

have Lu(t) = 𝜕

𝜕t
u(t) (see Sun & Duan, 2012),

and∑
i∈ ∫R+

Lf(x, i)p(x, i, t)dx =
∑
i∈ ∫R+

𝜕

𝜕t
(f (x, i)p(x, i, t))dx.

From (4), we have∑
i∈ ∫R+

f (x, i)L∗p(x, i, t)dx =
∑
i∈ ∫R+

𝜕

𝜕t
(f (x, i)p(x, i, t))dx,

then
𝜕p(x, i, t)

𝜕t
= L∗p(x, i, t). ▪

To make comparison, Corollary 2 provides the

Fokker–Planck equation of {X(t), E(t)} for the case that there

is no jump in X(t) when the state of E(t) changes.

Corollary 2 For the Markov additive pro-
cess {X(t), E(t)}, assuming there is no jump
in X(t) when the state of E(t) changes, the
Fokker–Planck equation is

𝜕p(x, i, t)
𝜕t

= −b(i) 𝜕
𝜕x

p(x, i, t) +
∑
j∈

rjip(x, j, t)

+ ∫R+

(
p(x − y, i, t) − p(x, i, t) + Iy∈(0,1)y

𝜕

𝜕x
p(x, i, t)

)
𝜈(i, dy).

4 RELIABILITY FUNCTION AND
LIFETIME MOMENTS

A system fails when the degradation process X(t) exceeds a

failure threshold x. To simplify the formula, we assume x is a

constant, and it is straightforward to extend the model when

the failure threshold is a random variable. The lifetime of the

system and its moments are defined respectively as

Tx = inf{t ∶ X(t) > x},M(Tn, x) = E(Tn
x ).

Since X(t) is nondecreasing, we have

{Tx ≥ t} ≡ {X(t) ≤ x},

then the reliability function can be defined as

R(x, t) = P(Tx ≥ t) = P(X(t) ≤ x) = FX(t)(x).

In this section, for a degradation process under the dynamic

environment described by the Markov additive process

{X(t), E(t)}, we derive the explicit expressions of R(x, t) and

lifetime moments M(Tn, x) in terms of Laplace transform, rep-

resented by the infinitesimal generator matrix and the Lévy

measure.

Laplace transform of p(x, i, t) with respect to (w.r.t.) t is

defined to be

pL(x, i, 𝜔) = ∫R+
e−𝜔tp(x, i, t)dt, 𝜔 > 0.

Laplace transform of pL(x, i, 𝜔) w.r.t. x is

pLL(u, i, 𝜔) = ∫R+
e−uxpL(x, i, 𝜔)dx, u > 0.

The results are presented in Theorems 3 and 4.

Theorem 3 For a degradation process under
the dynamic environment that is described by
the Markov additive process {X(t), E(t)} in
Section 2.2, the Laplace expression of reliability
function is

RLL(u, 𝜔) = u−1[1, 0, … , 0][A − B]−1[1, 1, … , 1]T ,

where A is a diagonal matrix with diagonal
entries 𝜔 + b∗(i)u − ∫R+(e−uy − 1)𝜈(i, dy), and
B = [rijdL

ij], i, j∈  . In addition, b*(i)≥ 0, 𝜈 is
the Lévy measure, rij, i, j∈  are entries of the
infinitesimal generator matrix of E(t), dL

ji(u) =∫R+e−uzDji(dz), [1, 0,… , 0] is a vector of size
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n+ 1, where the first element is 1 and all others
are 0, and [1, 1,… , 1] is a vector of size n+ 1,

where all the elements are 1.

Proof Based on Theorem 2, the

Fokker–Planck equation for {X(t), E(t)} is

𝜕p(x, i, t)
𝜕t

= −b(i) 𝜕
𝜕x

p(x, i, t) +
∑
j∈

rji∫R+
p(x − z, j, t)Dji(dz)

+ ∫R+

(
p(x − y, i, t) − p(x, i, t) + Iy∈(0,1)y

𝜕

𝜕x
p(x, i, t)

)
𝜈(i, dy).

(8)

For (8), we do Laplace transform of p(x, i, t)
w.r.t. t for both sides,

𝜔pL(x, i, 𝜔) − p(x, i, 0)

= −b(i)
𝜕pL(x, i, 𝜔)

𝜕x
+
∑
j∈

rji∫R+
pL(x − z, j, 𝜔)Dji(dz)

+ ∫R+

(
pL(x − y, i, 𝜔) − pL(x, i, 𝜔) + Iy∈(0,1)y

𝜕pL(x, i, 𝜔)
𝜕x

)
𝜈(i, dy). (9)

For (9), we do Laplace transform of pL(x, i,
𝜔) w.r.t. x for both sides, then

𝜔pLL(u, i, 𝜔) − Ii=0

= −b(i)upLL(u, i, 𝜔) +
∑
j∈

rji∫R+
e−uzpLL(u, j, 𝜔)Dji(dz)

+ ∫R+
(e−uypLL(u, i, 𝜔) − pLL(u, i, 𝜔)

+ Iy∈(0,1)yupLL(u, i, 𝜔))𝜈(i, dy).

Let b*(i) = b(i)− ∫ 0< y< 1y𝜈(i, dy),

𝜔pLL(u, i, 𝜔) − Ii=0

=
(
−b∗(i)u + ∫R+

(e−uy − 1)𝜈(i, dy)
)

pLL(u, i, 𝜔)

+
∑
j∈

rji∫R+
e−uzDji(dz)pLL(u, j, 𝜔).

Let dL
ji(u) = ∫R+e−uzDji(dz), and then the

matrix form is

pLL(u, 𝜔)[A − B] = [1, 0, … , 0],

where pLL(u,𝜔) = [pLL(u, 0, 𝜔), pLL(u, 1,

𝜔), … , pLL(u, n, 𝜔)], A is a diagonal matrix

with diagonal entries 𝜔 + b∗(i)u − ∫R+(e−uy −
1)𝜈(i, dy), and B = [rijdL

ij], i, j ∈  .

We have

RLL(u, 𝜔) = u−1[1, 0, … , 0][A − B]−1[1, 1, … , 1]T .
▪

Remark 1 For (8), we do Laplace transform of

p(x, i, t) w.r.t. x for both sides,

pL(u, i, t) = ∫R+
e−uxp(x, i, t)dx, u > 0,

then

𝜕pL(u, i, t)
𝜕t

= −b(i)upL(u, i, t)

+
∑
j∈

rji∫R+
e−uzpL(u, j, t)Dji(dz)

+ ∫R+
(e−uypL(u, i, t) − pL(u, i, t)

+ Iy∈(0,1)yupL(u, i, t))𝜈(i, dy)

=
(
−b∗(i)u + ∫R+

(e−uy − 1)𝜈(i, dy)
)

pL(u, i, t)

+
∑
j∈

rjidL
jip

L(u, j, t).

Solving this ordinary differential equation, we

have the solution in the matrix form:

pL(u, t) = [1, 0, … , 0] exp{t[B − A0]},

where A0 is a diagonal matrix with diagonal

entries b∗(i)u − ∫R+(e−uy − 1)𝜈(i, dy), i ∈  .

We use Theorem 3 to derive the Laplace expression for the

moments of lifetime Tx as Theorem 4.

Theorem 4 For a degradation process under
the dynamic environment that is described by
the Markov additive process {X(t), E(t)} in
Section 2.2, the Laplace expression of lifetime
moments is

ML(Tn, u) = n!u−1[1, 0, … , 0][A0 − B]−n[1, 1, … , 1]T ,

where A0 is a diagonal matrix with diagonal
entries b∗(i)u − ∫R+(e−uy − 1)𝜈(i, dy), and B =
[rijdL

ij], i, j ∈  . In addition, b*(i)≥ 0, 𝜈 is the
Lévy measure, rij, i, j∈  are entries of the
infinitesimal generator matrix of E(t), dL

ji(u) =∫R+e−uzDji(dz), [1, 0,… , 0] is a vector of size
n+ 1, where the first element is 1 and all others
are 0, and [1, 1,… , 1] is a vector of size n+ 1,

where all the elements are 1.

Proof We have P(Tx < t) ≡ P̃(x, t) = 1 −
R(x, t). Then P̃(dt, x) = −R(x, dt). The Laplace

transform of P̃(dt, x) w.r.t t is

p̃L(x, 𝜔) = −𝜔RL(x, 𝜔) + u(x), (10)

where u(x) is the unit step function. For (10), we

do Laplace transform w.r.t. x for both sides, then

p̃LL(u, 𝜔) = −𝜔RLL(u, 𝜔) + u−1.

From Theorem 3, we have

p̃LL(u, 𝜔) = −𝜔u−1[1, 0, … , 0][A − B]−1[1, 1, … , 1]T+u−1.
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We denote

p̃LL
n (u, 𝜔) = (−1)n

𝜕np̃LL(u, 𝜔)
𝜕𝜔n ,

and then the Laplace expression of lifetime

moments is

ML(Tn, u) = p̃LL
n (u, 0) = (−1)n

[
𝜕np̃LL(u, 𝜔)

𝜕𝜔n

]
𝜔=0

,

where[
𝜕np̃LL(u, 𝜔)

𝜕𝜔n

]
𝜔=0

= −u−1n
[
𝜕n−1{[1, 0, … , 0][A − B]−1[1, 1, … , 1]T}

𝜕𝜔n−1

]
𝜔=0

,

and[
𝜕n−1{[1, 0, … , 0][A − B]−1[1, 1, … , 1]T}

𝜕𝜔n−1

]
𝜔=0

= (−1)n−1(n − 1)![1, 0, … , 0][A0 − B]−n[1, 1, … , 1]T .

Therefore, we have

ML(Tn, u) = n!u−1[1, 0, … , 0][A0 − B]−n[1, 1, … , 1]T .
▪

To make comparison, Corollaries 3 and 4 provide the

Laplace expressions of reliability function and lifetime

moments, respectively, assuming there is no jump in X(t) at

the time the state of E(t) changes.

Corollary 3 For a degradation process under
the dynamic environment that is described
by the Markov additive process {X(t), E(t)},

assuming there is no jump in X(t) when the
state of E(t) changes, the Laplace expression of
reliability function is

RLL(u, 𝜔) = u−1[1, 0, … , 0][A − G]−1[1, 1, … , 1]T ,

where A is a diagonal matrix with diagonal
entries 𝜔+ b∗(i)u− ∫R+(e−uy − 1)𝜈(i, dy), i ∈  ,

and G is the infinitesimal generator matrix of
E(t).

Corollary 4 For a degradation process under
the dynamic environment that is described
by the Markov additive process {X(t), E(t)},

assuming there is no jump in X(t) when the
state of E(t) changes, the Laplace expression of
lifetime moments is

ML(Tn, u) = n!u−1[1, 0, … , 0][A0 − G]−n[1, 1, … , 1]T ,

where A0 is a diagonal matrix with diagonal
entries b∗(i)u − ∫R+(e−uy − 1)𝜈(i, dy), i ∈  ,

and G is the infinitesimal generator
matrix of E(t).

5 NUMERICAL EXAMPLES

To illustrate our models, we consider two cases of

{X(t), E(t)}:

Case 1 There are no jumps in degrada-

tion X(t) when the states of environment E(t)
changes;

Case 2 There are random jumps in degrada-

tion X(t) when the states of environment E(t)
changes.

We use a Markov process with two states {0, 1} to model

the environment, and its infinitesimal generator matrix is

G =

(
r00 r01

r10 r11

)
.

In Case 2, we use a Lévy distribution to model the jumps

when the environment switches from state 0 to state 1:

D01(dz) =
⎧⎪⎨⎪⎩
√

𝜉

2𝜋
exp

(
− 𝜉

2(z−𝜛)

)
(z−𝜛)

3
2

for z > 𝜛 > 0

0 otherwise,

and then dL
01
(u) = e−u𝜛−

√
2u𝜉 . A gamma distribution is used to

model the jumps when the environment switches from state 1

to state 0:

D10(dz) = 𝛽𝛼z𝛼−1e−𝛽z

Γ(𝛼)
, z > 0,

and then dL
10
(u) =

(
𝛽

𝛽+u

)𝛼

.

We use a Lévy measure to model the Lévy degradation

under the environment state 0:

𝜈(0, dy) =
𝛿𝛾−2𝜅1𝜅1y−𝜅1−1 exp

(
− 1

2
𝛾2y

)
Γ(𝜅1)Γ(1 − 𝜅1)

dy,

where y, 𝛿 > 0, 0<𝜅1 < 1, 𝛾 ≥ 0, which represents a positive

tempered stable process PTS(𝜅1, 𝛿, 𝛾) (Barndorff-Nielsen &

Shephard, 2012).

We use another Lévy measure to model the Lévy degrada-

tion under the environment state 1:

𝜈(1, dy) = 𝜅2

Γ(1 − 𝜅2)
1

y𝜅2+1
dy,

where y> 0, 0<𝜅2 < 1, which represents a positive stable

process PS(𝜅2) (Barndorff-Nielsen & Shephard, 2012). When

𝜅1, 𝜅2 are close to 0, the corresponding stable processes prop-

agate with big jumps; when 𝜅1, 𝜅2 are close to 1, the stable

processes evolve with small jumps. Of note, in the case of sta-

ble Lévy process, it can be easily checked that the conditions

for Theorem 2 are satisfied.

For Case 1, the Laplace expression of reliability function

based on Corollary 3 is
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RLL(u, 𝜔)

= u−1[1, 0]
⎡⎢⎢⎣
𝜔 + b∗(0)u − 𝛿𝛾 + 𝛿

(
𝛾

1

𝜅1 + 2u
)𝜅1

− r00 −r01

−r10 𝜔 + b∗(1)u + u𝜅2 − r11

⎤⎥⎥⎦
−1

[1, 1]T

= u−1 𝜔 + b∗(1)u + u𝜅2 − r11 + r01(
𝜔 + b∗(0)u − 𝛿𝛾 + 𝛿

(
𝛾

1

𝜅1 + 2u
)𝜅1

− r00

)
(𝜔 + b∗(1)u + u𝜅2 − r11) − r01r10

.

The Laplace expression of lifetime moments based on Corollary 4 is

ML(Tn, u) = n!u−1[1, 0]
⎡⎢⎢⎣
b∗(0)u − 𝛿𝛾 + 𝛿

(
𝛾

1

𝜅1 + 2u
)𝜅1

− r00 −r01

−r10 b∗(1)u + u𝜅2 − r11

⎤⎥⎥⎦
−n

[1, 1]T .

The first and second moments of lifetime for Case 1 are

ML(T1, u) = u−1 b∗(1)u+u𝜅2−r11+r01(
b∗(0)u−𝛿𝛾+𝛿

(
𝛾

1
𝜅1 +2u

)𝜅1

−r00

)
(b∗(1)u+u𝜅2−r11)−r01r10

,

ML(T2, u) = 2u−1 [b∗(1)u+u𝜅2−r11]2+r01r10[(
b∗(0)u−𝛿𝛾+𝛿

(
𝛾

1
𝜅1 +2u

)𝜅1

−r00

)
(b∗(1)u+u𝜅2−r11)−r01r10

]2 + 2u−1
r01[b∗(1)u+u𝜅2−r11]+r01

[
b∗(0)u−𝛿𝛾+𝛿

(
𝛾

1
𝜅1 +2u

)𝜅1

−r00

]
[(

b∗(0)u−𝛿𝛾+𝛿
(
𝛾

1
𝜅1 +2u

)𝜅1

−r00

)
(b∗(1)u+u𝜅2−r11)−r01r10

]2 .

For Case 2, the Laplace expression of reliability function based on Theorem 3 is

RLL(u, 𝜔)

= u−1[1, 0]
⎡⎢⎢⎣
𝜔 + b∗(0)u − 𝛿𝛾 + 𝛿

(
𝛾

1

𝜅1 + 2u
)𝜅1

− r00dL
00

−r01dL
01

−r10dL
10

𝜔 + b∗(1)u + u𝜅2 − r11dL
11

⎤⎥⎥⎦
−1

[1, 1]T

= u−1
𝜔 + b∗(1)u + u𝜅2 − r11dL

11
+ r01dL

01(
𝜔 + b∗(0)u − 𝛿𝛾 + 𝛿

(
𝛾

1

𝜅1 + 2u
)𝜅1

− r00dL
00

)
(𝜔 + b∗(1)u + u𝜅2 − r11dL

11
) − r01dL

01
r10dL

10

.

The Laplace expression of lifetime moments based on Theorem 4 is

ML(Tn, u) = n!u−1[1, 0]
⎡⎢⎢⎣

b∗(0)u − 𝛿𝛾 + 𝛿

(
𝛾

1

𝜅1 + 2u
)𝜅1

− r00dL
00

−r01dL
01

−r10dL
10

b∗(1)u + u𝜅2 − r11dL
11

⎤⎥⎥⎦
−n

[1, 1]T .

The first and second moments of lifetime for Case 2 are

ML(T1, u)

= u−1
b∗(1)u + u𝜅2 − r11dL

11
+ r01dL

01(
b∗(0)u − 𝛿𝛾 + 𝛿

(
𝛾

1

𝜅1 + 2u
)𝜅1

− r00dL
00

)
(b∗(1)u + u𝜅2 − r11dL

11
) − r01dL

01
r10dL

10

,

ML(T2, u)

= 2u−1
[b∗(1)u + u𝜅2 − r11dL

11
]2 + r01dL

01
r10dL

10[(
b∗(0)u − 𝛿𝛾 + 𝛿

(
𝛾

1

𝜅1 + 2u
)𝜅1

− r00dL
00

)
(b∗(1)u + u𝜅2 − r11dL

11
) − r01dL

01
r10dL

10

]2

+ 2u−1

r01dL
01
[b∗(1)u + u𝜅2 − r11dL

11
] + r01dL

01

[
b∗(0)u − 𝛿𝛾 + 𝛿

(
𝛾

1

𝜅1 + 2u
)𝜅1

− r00dL
00

]
[(

b∗(0)u − 𝛿𝛾 + 𝛿

(
𝛾

1

𝜅1 + 2u
)𝜅1

− r00dL
00

)
(b∗(1)u + u𝜅2 − r11dL

11
) − r01dL

01
r10dL

10

]2
.
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TABLE 1 Parameter values for the models

x [0,30] 𝛼 0.2 𝜅2 0.9

r00 = − r01 −10 𝛽 50 b*(0) 0.02

r10 = − r11 15 𝛿 0.6 b*(1) 0.01

𝜉 0.0001 𝜅1 0.8

𝜛 0.01 𝛾 0.9
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FIGURE 2 Reliability function w.r.t. time t and failure threshold x for

Case 1

The system fails when X(t) exceeds the threshold x.

The inversion algorithms for Laplace transform (Abate &

Whitt, 1995; Brancik, 2007) were implemented to invert the

Laplace expressions in Theorems 3, 4 and Corollaries 3, 4

in order to compute the values of reliability and lifetime

moments.

The values for the parameters are given in Table 1. The

parameters of a Markov additive process can be estimated

when a real degradation data set from dynamic environ-

ments is available. Since the probability density function of a

general Lévy subordinator is not available in a closed-form,

the traditional maximum likelihood estimation and Bayesian

estimation are not convenient for such general jump processes

and their functional extensions. Based on the characteris-

tic function of Lévy subordinator we can use the cumulant

M-estimator (CME) (Jongbloed & van der Meulen, 2006) to

estimate the parameters. The statistical inference method will

be presented in a separate manuscript.

Figures 2 and 3 show the reliability w.r.t. time t and fail-

ure threshold x based on general Markov additive processes.

For both cases, the reliability decreases as the time increases,

and it increases as the threshold increases. Figure 4 shows

the reliability w.r.t. time t when x = 15 and x = 20 for

both cases. The reliability in Case 2 decreases faster than

that in Case 1 at the same threshold. Figure 5 and Figure 6

illustrate the first moments and the second moments of life-

time with respect to failure threshold x for both cases. Both

the first and the second moments of lifetime in Case 2

are less than that in Case 1 at the same threshold. Besides

the Lévy measures used in this section, we can specify

different Lévy measures to fit the corresponding degrada-

tion data, and evaluate their reliability function and lifetime

moments.

6 CONCLUSIONS

In this paper, we developed new systematic procedures to

derive powerful and compact results for reliability analysis

based on the degradation process under the dynamic environ-

ment:

Step 1: Derive the infinitesimal generator of the

stochastic process of interests;

Step 2: Derive the adjoint operator corresponding to

the infinitesimal generator, based on which the
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FIGURE 3 Reliability function w.r.t. time t and failure threshold x for Case 2
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FIGURE 4 Reliability functions w.r.t. time t when x = 15 and x = 20 for

both Case 1 and Case 2
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FIGURE 5 First moments of lifetime w.r.t. failure threshold x for both

Case 1 and Case 2

Fokker–Planck equation of such stochastic process

is developed;

Step 3: Derive the reliability characteristics of the

system in terms of Laplace transform.

Our work in this paper is summarized as: (1) we model

the degradation process under the dynamic environment using

the Markov additive process, while most models in the lit-

erature were constructed for the deterministic environment;

(2) we use the Lévy subordinator to model the degradation

under a certain environment state, and the corresponding

Lévy measure can represent different complex jump mech-

anisms including infinite activities and finite activities in

degradation; (3) our models are general to fit more types of

degradation data than those based on gamma/Poisson pro-

cesses; and (4) we derive the Fokker–Planck equation for

a class of general Markov additive processes, and obtain

the explicit expressions for reliability function and lifetime

x

0 5 10 15 20 25 30

S
ec

on
d 

m
om

en
ts

0

100

200

300

400

500

600

700

800

Case1
Case2

FIGURE 6 Second moments of lifetime w.r.t. failure threshold x for both

Case 1 and Case 2

moments, which provide a new methodology to deal with

multiple dependent degradation processes under dynamic

environments.
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