MATH 6385-01, Lec 12153

3/17/2020

Continuous-Time Models in Finance

Spring, 2020

Instructor:	Edward P. C. Kao		
Time:	TTH 2:30 – 4:00 pm		
Class Room:	SEC 201		
Office:	629-PGH (713) 743-3456, website: www.math.uh.edu/~edkao edkao@math.uh.edu		
Office Hours:	TTH 10-11 a.m. and 1:00 - 2:00 p.m., or by appointment		
Course Objective:	The course is an introduction to continuous-time models in finance. We first cover tools for pricing contingency claims. They include stochastic calculus, Brownian motion, change of measures, and martingale representation theorem. We then apply these ideas in pricing financial derivatives whose underlying assets are equities, foreign exchanges, and fixed income securities. In addition, we will study models involving jump diffusion and mean reversion and the use of levy processes in finance.		
Grading Guide:	Homework Final (a take home project)	50% 50%	
Required Text:	<i>Arbitrage Theory in Continuous Time</i> , 3 rd edition, by Tomas Bjork, Oxford University Press, 2009.		
References:	The Heston Model and Its Extensions in Matlab by Fabrice Douglas Rouch, Wiley, 2013 <i>Financial Modelling with Jump Processes</i> , by Rama Cont and Peter Tankov, Chapman & Hall, 2004 <i>Applied Conic Finance</i> , by Dilip Madan and Wim Schoutens, Cambridge University Press, 2016.		

MATH 6385, Spring 2020, Tentative Schedule.

Professor Kao

Week	Dates	Topics C	haps in Bjork
1	1/14, 1/16	Stochastic Integrals, Ito formulas	4
2	1/21, 1/23	Stochastic Differential Equations, Ito's Lemma	a 5
3	1/28, 1/30	Forward and Backward Kolmogorov Equation	s 5
4	2/4, 2/6	Portfoilio Dynamics	6
5	2/11, 2/13	Black-Scholes-Merton PDE and Formulas	7
6	2/18, 2/20	Futures and Forwards, Completeness, Hedging	8,9
7	2/25, 2/27	Hedging, Matingale Approach to Arbitrage Th	eory 9, 10, 11
8	3/3,3/5	Multidimensional Models	12, 13, 14
9	3/10, 3/12	Spring Holidays (no classes)	
10	3/17, 3/19	Currency Derivatives	17
11	3/24, 3/26	Bonds and Interest Rates	22
12	3/31, 4/2	Short Rate Models	23, 24
13	4/7, 4/9	Forward Rate Models	25, 26
14	4/14, 4/16	LIBOR and Swap Market Models	26, 27
15	4/21, 4/23	American Options	21