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ABSTRACT
We use Lévy subordinators and non-Gaussian Ornstein–Uhlenbeck processes to model the evolution of
degradation with random jumps. The superiority of our models stems from the flexibility of such processes
in the modeling of stylized features of degradation data series such as jumps, linearity/nonlinearity,
symmetry/asymmetry, and light/heavy tails. Based on corresponding Fokker–Planck equations, we derive
explicit results for the reliability function and lifetimemoments in terms of Laplace transforms, represented
by Lévy measures. Numerical experiments are used to demonstrate that our general models perform
well and are applicable for analyzing a large number of degradation phenomena. More important,
they provide us with a new methodology to deal with multi-degradation processes under dynamic
environments.

1. Introduction

Stochastic processes have been extensively applied to model the
temporal variability of degradation or deterioration evolution
of engineering structures and infrastructures (Esary et al.,
1973; Abdel-Hameed, 1975; Cholette and Djurdjanovic, 2014;
Liu et al., 2014; Moghaddass and Zuo, 2014; Giorgio et al.,
2015). The special cases of Lévy processes such as the Wiener
process/Brownian motion with drift, the compound Poisson
process, and the gamma process have been extensively studied.
These special stochastic models are limited to represent degra-
dation without jumps (the Wiener process) and degradation
with Poisson-type (the compound Poisson process) or gamma-
type (the gamma process) jumps. They have independent and
stationary increments, which makes them suitable to model
degradation processes with linear mean paths. To overcome the
limitation from the linear mean property, Gaussian Ornstein–
Uhlenbeck (OU) processes driven by a Wiener process have
been developed for survival analysis (Aalen and Gjessing,
2004). However, the assumptions of no jumps and Gaussian
distribution (symmetric and light-tailed; i.e., all of the positive
moments are finite) are not consistent with many degradation
phenomena. In this article, in order to flexibly handle stylized
features of degradation data series such as complex jumps,
linearity/nonlinearity, symmetry/asymmetry, and light/heavy
tails, we propose to model stochastic degradation with inde-
pendent or dependent increments using Lévy subordinators or
OU processes driven by Lévy subordinators (i.e., non-Gaussian
OU processes), respectively. For these general stochastic degra-
dation processes, we construct systematic procedures to derive
the explicit expressions for reliability function and lifetime
moments using Fokker–Planck equations. Our proposed new

CONTACT Qianmei Feng qfeng@central.uh.edu
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models offer a general approach for modeling stochastic degra-
dation with complex jump mechanisms using a broad class of
Lévy processes and their functional extensions.

In reliability studies, aWiener process has beenused tomodel
degradation without jumps that changes non-monotonically
according to Gaussian laws (Whitmore et al., 1998; Jin and
Matthews, 2014). Some other degradation models without con-
sidering jumps were studied (Chen and Tsui, 2013; Wang et al.,
2016; Zeng et al., 2016). A compound Poisson process has been
applied to model a finite number of jumps that occur based
on Poisson laws (Esary et al., 1973; Sobczyk, 1987). A gamma
process has been widely used for modeling degradation pro-
cesses that progress in one direction with an infinite number
of jumps in any finite time intervals (Van Noortwijk, 2009;
Ye et al., 2012; Ye et al., 2014). Recently, Kharoufeh (2003),
Kharoufeh et al. (2006), Kharoufeh and Mixon (2009), and
Kharoufeh et al. (2013) obtained explicit results for both life
distribution and lifetime moments, assuming a linear degrada-
tion with Poisson-type jumps. In practice, however, many dif-
ferent complex jump mechanisms are embedded in continuous
degradation processes, beyond Poisson and gamma types. Exist-
ing stochastic degradation models are not appropriate to model
such situations.

Lévy processes provide a potential candidate to describe
a broad class of degradation with random jumps. The the-
ories of Lévy processes were developed in Sato (1999) and
Applebaum (2009), and they have been widely applied in the
fields of economics and finance (Schoutens, 2003; Cont and
Tankov, 2004). Çinlar (1977) was the first study to use Lévy pro-
cesses in degradation analysis. Abdel-Hameed (1984) studied
the life distribution properties of devices subject to Lévy degra-
dation. However, Lévy processes have not been well-developed

Copyright ©  “IIE”
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Figure . Sample paths of Lévy processes (Wiener process (, ); gamma process (, ); compound Poisson process with jumps density  and jumps size following gamma
distribution (, ); Lévy subordinator a: inverse Gaussian process (., .); Lévy subordinator b: positive stable process (.); Lévy subordinator c: positive stable process
(.)).

for use in degradation modeling; e.g., no explicit results of life
distribution from general Lévy degradation processes. Shu et al.
(2015) gave a new closed-form reliability function for degra-
dation described by Lévy subordinators, a class of nondecreas-
ing Lévy processes, which was consistent with the observed
physical degradation phenomena. The advantages of using Lévy
subordinators were also demonstrated. With independent and
stationary increments, however, all Lévy processes have linear
mean paths; i.e., the mean of a Lévy processes is linear with
respect to time t . To model degradation processes with nonlin-
ear mean paths in general, a functional extension of Lévy sub-
ordinators, non-Gaussian OU processes, is an interesting and
effective model to address the problem.

OU processes, another important class of continuous-time
continuous-state stochastic processes, named afterOrnstein and
Uhlenbeck (1930), are used in a physical modeling context,
where the background driving process is a Wiener process and
thus is called an ordinary or Gaussian OU process (Maller et al.,
2009). In the field of physics, the ordinary OU process is repre-
sented by the classic Klein–Kramers dynamics (Kramers, 1940).
In the field of finance, the process is known as the Vasicek
model (Vasicek, 1977), with the interest rate being modeled by
such a process. Non-Gaussian OU processes are a generaliza-
tion of ordinary OU processes that are obtained by replacing
Wiener processes with non-Gaussian Lévy processes (i.e., Lévy
processes without a Gaussian part; e.g., positive tempered sta-
ble processes). They have been recently developed and applied
in financial models, by Barndorff-Nielsen and Shephard (2001,
2002, 2003). To the best of our knowledge, non-Gaussian OU
processes have not been used in degradation modeling. In fact,
it is nontrivial to obtain a closed-form distribution function for
an OU process driven by a Lévy process.

Fokker–Planck equations provide us with a way to analyze
probability laws for stochastic processes, especially for those
without closed-form distributions. Fokker-Planck equations are
a fascinating topic that is being studied by mathematicians in
the field of stochastic processes. As Partial Differential Equa-
tions (PDEs) of the probability density functions, they describe
the time evolution of probability density for stochastic pro-
cesses and are thus useful in quantifying random phenomena,
such as the propagation of uncertainty. The Fokker–Planck
equations for Weiner-based processes can be found in many
textbooks (Risken, 1996; Klebaner, 2005). For such processes, it
is straightforward to derive the Fokker–Planck equations, due
to the absence of jump mechanisms. However, for Lévy-based
processes, explicit results of Fokker–Planck equations cannot be
easily derived, due to the difficulty in obtaining the expression
for the adjoint operators of the infinitesimal generators associ-
ated with Lévy-based processes (Sun and Duan, 2012). Some
interesting results on Fokker–Planck equations for Lévy-based
processes can be found in Schertzer et al. (2001), Denisov
et al. (2009), Sun and Duan (2012). Ren et al. (2012) gave a
numerical algorithm to calculate the mean exit time for Lévy
systems.

In this article, we consider a single degradation process with
random jumps in a system; i.e., a process of stochastically con-
tinuous degradation with sporadic jumps that occur at ran-
dom times and have random sizes. The system fails when the
degradation process hits a boundary. We first use Lévy
subordinators, a class of Lévy processes with nondecreas-
ing sample paths, to model the evolution of the degra-
dation with linear mean paths (Fig. 1). We then propose
a functional extension of Lévy subordinators, non-Gaussian
OU processes (OU processes driven by Lévy subordinators),
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Figure . Sample paths of non-Gaussian OU processes (non-Gaussian OU process a: OU process driven by inverse Gaussian process (., .) and α = 0.2; non-Gaussian
OU process b: OU process driven by positive stable process (.) and α = 0.1; non-Gaussian OU process c: OU process driven by positive stable process (.) and α = 0.1).

to model degradation processes with nonlinear mean paths
(Fig. 2).

Figure 1 shows sample paths of three commonly used Lévy
processes (Wiener process, gamma process, and compound
Poisson process) and three Lévy subordinators with different
jumpmechanisms specified by different Lévymeasures. Figure 2
illustrates sample paths of OU processes driven by Lévy subor-
dinators, a class of non-Gaussian OU processes, and they are
the solutions of stochastic differential equations (SDEs) driven
by Lévy subordinators. The sample data are simulated using
R(YUIMA) (Brouste et al., 2014). In practice, many degrada-
tion processes in highly reliable systems have similar paths to
those shown in Fig. 2: they increase slowly at the early stage
but increase sharply when degradation is accumulated. In these
cases, the linear mean path of a Lévy subordinator is not appro-
priate to represent the degradation.

For both general Lévy subordinators and non-Gaussian OU
processes, the probability distributions are not analytically avail-
able. In addition, the analytical derivation is intractable for non-
Gaussian OU processes. In this article, we tackle these chal-
lenges by using the corresponding Fokker–Planck equations and
then derive explicit expressions for reliability function and life-
timemoments in terms of the Laplace transform. The results are
compact enough to be able to easily compute and evaluate reli-
ability characteristics. More important, by introducing Fokker–
Planck equations into stochastic degradation analysis, our work
provides a new methodology for reliability analysis of complex
degradation phenomenon, such as multi-degradation processes
under dynamic environments.

The organization of the rest of this article is as follows.
Section 2 begins with the Lévy–Itô decomposition and then
describes model construction. In Section 3, we derive the
explicit expressions of the reliability function and lifetime
moments for systems subject to degradation described by Lévy
subordinators and non-Gaussian OU processes, respectively,
based on Fokker–Planck equations. Numerical examples are
illustrated in Section 4, and conclusions are given in Section 5.

Notations
� Euclidean space: Rd, d ∈ N;
� Euclidean norm: |x| = (x, x)1/2 = (

∑d
i=1 x

2
i )

1/2
;

� indicator function: IA(x);
� Lévy processes: X (t );
� Lévy subordinators: Xs(t );

� Lévy measure: ν;
� non-GaussianOUprocesses (OUprocesses driven by Lévy
subordinators):Y (t ).

2. Preliminaries

2.1. Lévy–Itô decomposition

We begin with the definition of Poisson random measure from
Sato (1999). A random variable J has a Poisson distribution with
a mean 0 if J = 0 almost surely (a.s.) and J has a Poisson distri-
bution with a mean +∞ if J = +∞ a.s.

Definition 1 (Sato, 1999). Let (�,B, ν) be a σ -finite measure
space. Given Z̄+ = {0, 1, 2, . . . ,+∞}, a family of Z̄+-valued
random variables {J(A) : A ∈ B} is called a Poisson random
measure on�with an intensity measure ν, if the following con-
ditions hold:

� for every A, J(A) has a Poisson distribution with a mean
ν(A);

� if A1,A2, . . .An are disjoint, then J(A1), J(A2), . . . J(An)

are independent; and
� for every ω, J(·, ω) is a measure on �.

Lemma 1. (The Lévy–Itô decomposition (Applebaum,
2009)). If X (t ) is a Lévy process, then there exist b ∈ Rd, a
Brownian motion Ba with a covariance matrix a, and an inde-
pendent Poisson random measure J on R+ × Rd such that, for
each t ≥ 0,

X (t ) = bt + Ba(t ) +
∫

|y|<1
y(J(t, dy) − ν(t, dy))

+
∫

|y|≥1
yJ(t, dy),

where ν(t, dy) is the mean of the Poisson random measure
J(t, dy).

The intensity measure ν(t, dy) is often called the Lévy mea-
sure. Based on the property of independent and stationary incre-
ments of Lévy process and from the Lévy–Khintchine formula
(Sato, 1999), ν(t, dy) = ν(dy)t .
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2.2. Model construction

We assume that there is a single degradation path with random
jumps occurring in a system. We use a Lévy subordinator Xs(t )
and a non-Gaussian OU processY (t ) to model the degradation
evolution with linear and nonlinear mean paths, respectively.

Lemma 2 (Sato, 1999). Let d = 1. A Lévy process is a subordina-
tor if and only if a = 0,

∫
(−∞,0) ν(dy) = 0,

∫
R+min{1, y}ν(dy) <

∞, and the drift b− ∫
0<y<1 yν(dy) ≥ 0.

Based on Lemmas 1 and 2, for Lévy subordinator Xs(t ):

Xs(t ) = bt +
∫
0<y<1

y(J(t, dy) − ν(t, dy)) +
∫
y≥1

yJ(t, dy).

(1)
In Equation (1), the continuous degradation is modeled by

(b− ∫
0<y<1 yν(dy))t , and the random jumps aremodeled by the

Poisson random measure
∫
R+ yJ(t, dy).

If we specify ν(dx) = γ x−1e−βxdx for small jumps in an
infinitesimal time interval, then the Lévy subordinator in Equa-
tion (1) is a temporally homogeneous gamma process (a gamma
process with stationary increments) G(t ), which has a density

fG(t ) = Ga (x|γ t, β) = βγ t xγ t−1e−βx

	 (γ t )
, γ , β, x, t > 0.

For big jumps occurring based on the Poisson law, we can spec-
ify ν(dx) = λμ(dx), and then the Lévy subordinator is a com-
pound Poisson process C(t ), which has a jump density λ and
a jump size distribution μ. Moreover, we can specify different
forms of Lévy measures in order to model different complex
jump mechanisms.

A non-Gaussian OU process Y (t ) is the solution of an SDE
driven by Xs(t ):

dY (t ) = αY (t )dt + dXs(t ). (2)

Proposition 1. The non-Gaussian OU process resulted from
Equation (2) is

Y (t ) = eαtY (0) +
∫ t

0
eα(t−ξ )dXs(ξ ).

Proof. If f (t, y) ∈ C1,2, then based on Taylor series:

d f = ∂ f
∂t

dt + ∂ f
∂y

dy + 1
2

∂2 f
∂t2

(dt )2 + 1
2

∂2 f
∂y2

(dy)2

+ ∂2 f
∂y∂t

dydt.

Let f (t, y) = ye−αt , then

∂ f
∂t

= −αye−αt ,
∂ f
∂y

= e−αt ,
∂2 f
∂y2

= 0.

Then

d f = ∂ f
∂t

dt + ∂ f
∂y

dy = −αye−αtdt + e−αtdy = e−αtdx,

yt = eαt y0 + eαt
∫ t

0
e−αξdxξ .

This completes the proof. �

Y (0) represents the initial state of the degradation, and we
assume Y (0) = 0 a.s. as many new systems have not accu-
mulated degradation when they are first used. We assume
α > 0, which guarantees that the degradation process is
nondecreasing:

Y (t ) =
∫ t

0
eα(t−ξ )dXs(ξ )

=
∫ t

0
eα(t−ξ )

(
bdξ +

∫
0<y<1

y
(
J(dξ, dy) − ν(dξ, dy)

)

+
∫
y≥1

yJ
(
dξ, dy

))

= 1
α

(eαt − 1)
(
b−

∫
0<y<1

yν(dy)
)

+
∫ t

0
eα(t−ξ )

∫
R+

yJ
(
dξ, dy

)
. (3)

In Equation (3), the continuous degradation part is modeled
by

b− ∫
0<y<1 yν(dy)

α
(eαt − 1),

and the random jumps aremodeled by the Poisson randommea-
sure

∫ t
0 e

α(t−ξ )
∫
R+ yJ(dξ, dy). As illustrated in Fig. 2, the mean

degradation path ofY (t ) is exponential with respect to (w.r.t.) t ,
instead of linear of Xs(t ).

3. Reliability function and lifetimemoments

The system fails when the degradation process Xs(t ) or Y (t )
exceeds a failure threshold x or y. To simplify formulas, we
assume that the failure threshold is a constant, and it is straight-
forward to extend our models when the failure threshold is a
random variable. Based on Xs(t ), the lifetime of the system and
its moments are defined respectively as

Tx = inf {t : Xs(t ) > x} , M
(
Tn
X , x

) = E
(
Tn
x
)
. (4)

Since Xs(t ) is nondecreasing, we have {Tx ≥ t} ≡ {Xs(t ) ≤
x}. Then the reliability function can be defined as

RX (x, t ) = P(Tx ≥ t ) = P(Xs(t ) ≤ x) = FXs(t )(x). (5)

Based onY (t ), similar definitions are

Ty = inf{t : Y (t ) > y}, M
(
Tn
Y , y

) = E
(
Tn
y

)
, (6)

RY (y, t ) = P(Ty ≥ t ) = P(Y (t ) ≤ y) = FY (t )(y). (7)

For many new systems that have not accumulated degrada-
tion when they are first operated, we have Xs(0) = 0 a.s., and

RX (x, 0) = P(Xs(0) ≤ x) = FXs(0)(x) = h(x),

p(x, 0) = ∂FXs(0)(x)
∂x

= δ(x),

where h(x) = I[0,∞)(x) is the unit step function (or the
Heaviside step function), and δ(x) is the Dirac delta function.
Similarly, we have

RY (y, 0) = P(Y (0) ≤ y) = FY (0)(y) = h(y),

p(y, 0) = ∂FY (0)(y)
∂y

= δ(y).
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In addition, RX (0, t ) = P(T0 ≥ t ) = P(Xs(t ) ≤ 0) =
I(−∞,0](t ), and RY (0, t ) = P(T0 ≥ t ) = P(Y (t ) ≤ 0) = I(−∞,0]
(t ).

To obtain expressions of reliability functions and lifetime
moments in Equations (4), (5), (6), and (7), we need to study
the probability laws ofXs(t ) andY (t ). Since there are no closed-
form distribution functions for general Lévy subordinators, it
is a challenge to derive the explicit expressions for reliability
functions and lifetime moments. As PDEs of probability den-
sity functions, Fokker–Planck equations (Sun and Duan, 2012)
provide us a way to overcome the challenge in analyzing proba-
bility laws for stochastic processes we are interested in, especially
for those without closed-form distributions. The Fokker–Planck
equation, also known as the Kolmogorov forward equation,
describes the time evolution of probability density for stochastic
processes.

Let L be an operator and L∗ be the adjoint operator of L, then∫
R
L f (x)g(x)dx =

∫
R
f (x)L∗g(x)dx.

Let p(x, t ) be the probability density function for a stochastic
process X (t ), and the Fokker–Planck equation is

∂ p(x, t )
∂t

= L∗p(x, t ),

where L∗ is the adjoint operator of the infinitesimal generator L
of X (t ):

L f (x) = lim
�t→0

E
{
f (Xt+�t ) |Xt = x

} − f (x)
�t

.

The Laplace transform of p(x, t ) w.r.t. t is defined to be

pL(x, ω) =
∫
R+

e−ωt p(x, t )dt, ω > 0.

The Laplace transform of pL(x, ω) w.r.t. x is

pLL(u, ω) =
∫
R+

e−ux pL(x, ω)dx, u > 0.

Lemma 3. Let RLL(u, ω) be the Laplace expression of reliability
function R(x, t ), then

RLL(u, ω) = u−1pLL(u, ω).

Proof. From the definition of the reliability function, we have:

p(x, t ) = ∂R(x, t )
∂x

.

Then

pL(x, ω) =
∫
R+

e−ωt p(x, t )dt =
∫
R+

e−ωt ∂R(x, t )
∂x

dt

= ∂RL(x, ω)

∂x
.

We have

pLL(u, ω) =
∫
R+

e−ux ∂RL(x, ω)

∂x
dx =

∫
R+

e−uxdRL(x, ω)

= e−uxRL(x, ω)|R+ −
∫
R+

RL(x, ω)de−ux

= uRLL(u, ω).
�

3.1. Results based on Lévy subordinators

For degradation with random jumps described by a Lévy sub-
ordinator Xs(t ), we derive the explicit expressions of RX (x, t )
and lifetime momentsM(Tn

X , x) in terms of Laplace transform,
represented by Lévy measures. Using the procedure similar
to Kharoufeh (2003), the results are presented in Theorems 1
and 2.

Theorem 1. For degradation with random jumps described by a
Lévy subordinator, the Laplace expression of reliability function is

RLL
X (u, ω) = u−1

{
ω + b∗u −

∫
R+

(e−uy − 1)ν(dy)
}−1

,

where b∗ ≥ 0, ν is the Lévy measure.

Proof. Let p(x, t ) be the probability density function of a Lévy
subordinatorXs(t ). Based on Sun andDuan (2012), the Fokker–
Planck equation for Xs(t ) is

∂ p(x, t )
∂t

= −b
∂ p(x, t )

∂x
+

∫
R+

[
p(x − y, t ) − p(x, t )

+Iy∈(0,1)y
∂ p(x, t )

∂x

]
ν(dy). (8)

For Equation (8), we perform a Laplace transform of p(x, t )
w.r.t. t for both sides:

ωpL(x, ω) − p(x, 0) = −b
∂ pL(x, ω)

∂x

+
∫
R+

[
pL(x − y, ω) − pL(x, ω) + Iy∈(0,1)y

∂ pL(x, ω)

∂x

]
ν(dy).

(9)

For Equation (9), we perform a Laplace transformof pL(x, ω)

w.r.t. x for both sides; then

ωpLL(u, ω) − 1 = −bupLL(u, ω) +
∫
R+

[
e−uy pLL(u, ω)

−pLL(u, ω) + Iy∈(0,1)yupLL(u, ω)
]
ν(dy).

Let b∗ = b− ∫
0<y<1 yν(dy), then

pLL(u, ω) =
{
ω + b∗u −

∫
R+

(e−uy − 1)ν(dy)
}−1

.

Based on Lemma 3, we obtain

RLL
X (u, ω) = u−1

{
ω + b∗u −

∫
R+

(e−uy − 1)ν(dy)
}−1

.

�
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Remark 1. For Equation (8), we perform a Laplace transform of
p(x, t ) w.r.t. x for both sides:

E[e−uX (t )] = pL(u, t ) =
∫
R+

e−ux p(x, t )dx,

then

∂ pL(u, t )
∂t

= −bupL(u, t ) +
∫
R+

[
e−uy pL(u, t ) − pL(u, t )

+Iy∈(0,1)yupL(u, t )
]
ν(dy)

=
{
−b∗u +

∫
R+

(e−uy − 1)ν(dy)
}
pL(u, t ).

Solving this Ordinary Differential Equation (ODE), we have

E[e−uX (t )] = pL(u, t )

= pL(u, 0) exp
{
t
[
−b∗u +

∫
R+

(e−uy − 1)ν(dy)
]}

.

Since pL(u, 0) = 1, this is consistent with the characteristic
function of Lévy subordinators.

Before we use Theorem 1 to derive the Laplace expression
for the moments of lifetime Tx as Theorem 2, we introduce an
important relation in Lemma 4.

Lemma 4. Denote

Q̃(x, t ) = − ∂

∂t
R(x, t ),

where R(x, t ) = ∫ x
0 p(v, t )dv , and

Q̃LL
n (u, ω) = (−1)n

∂nQ̃LL(u, ω)

∂ωn ,

where Q̃LL(u, ω) is the Laplace expression of Q̃(x, t ). Let
ML(Tn, u) be the Laplace expression of lifetime moments, then

ML(Tn, u) = Q̃LL
n (u, 0).

Proof. Since Q̃LL(u, ω) = ∫
R+ e−ωt Q̃L(u, t )dt , we have

Q̃LL
n (u, ω) = (−1)n

∂nQ̃LL(u, ω)

∂ωn = (−1)n
∫
R+

∂ne−ωt

∂ωn Q̃L(u, t )dt

=
∫
R+

tne−ωt Q̃L(u, t )dt.

And as

M(Tn, x) =
∫
R+

tnQ̃(x, t )dt,

we obtain

ML(Tn, u) =
∫
R+

tnQ̃L(u, t )dt = Q̃LL
n (u, 0).

�
Theorem 2. For degradation with random jumps described by a
Lévy subordinator, the Laplace expression of lifetime moments is

ML (
Tn
X , u

) = n!u−1
{
b∗u −

∫
R+

(e−uy − 1)ν(dy)
}−n

,

where b∗ ≥ 0, ν is the Lévy measure.

Proof. The Laplace transform of Q̃(x, t ) w.r.t. t is

Q̃L(x, ω) = −
∫
R+

e−ωt ∂

∂t
RX (x, t )dt

= h(x) − ωRL
X (x, ω). (10)

For Equation (10), we perform a Laplace transform w.r.t. x on
both sides; then

Q̃LL(u, ω) = −ωRLL
X (u, ω) + u−1.

From Theorem 1, we have

Q̃LL(u, ω) = −ωu−1
{
ω + b∗u −

∫
R+

(e−uy − 1)ν(dy)
}−1

+ u−1.

From Lemma 4:

ML (
Tn
X , u

) = Q̃LL
n (u, 0) = (−1)n

[
∂nQ̃LL(u, ω)

∂ωn

]
ω=0

,

where[
∂nQ̃LL(u, ω)

∂ωn

]
ω=0

= −u−1
[
ω

∂n{ω + b∗u − ∫
R+ (e−uy − 1)ν(dy)}−1

∂ωn

]
ω=0

−u−1
[
n
∂n−1{ω + b∗u − ∫

R+ (e−uy − 1)ν(dy)}−1

∂ωn−1

]
ω=0

,

and

∂n−1{ω + b∗u − ∫
R+ (e−uy − 1)ν(dy)}−1

∂ωn−1

= (−1)n−1(n − 1)!{ω + b∗u −
∫
R+

(e−uy − 1)ν(dy)}−n.

Therefore, we have

ML (
Tn
X , u

) = n!u−1
{
b∗u −

∫
R+

(e−uy − 1)ν(dy)
}−n

.

�

3.2. Results based on non-Gaussian OU processes

For degradation with random jumps described by the non-
Gaussian OU processY (t ), we derive the explicit expressions of
RY (y, t ) and lifetime moments M(Tn

Y , y) in terms of a Laplace
transform, represented by Lévy measures. The results are pre-
sented in Theorems 3 and 4.

Theorem 3. For degradation with random jumps described by a
non-Gaussian OU processY (t ), the Laplace expression of reliabil-
ity function is

RLL
Y (u, ω) = −u−1

∫ ∞

u
eF(v,u,ω)g(v )dv,

where F(v, u, ω) = ∫ u
v f (v ′, ω)dv ′, f (v, ω) = (ω + b∗v −∫

R+ (e−vz − 1)ν(dz))/αv , and g(v ) = −1/αv . In addition,
b∗ ≥ 0, ν is the Lévy measure.
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Proof. Let p(y, t ) be the probability density function of Y (t ).
Based on Sun and Duan (2012), the Fokker–Planck equation for
Y (t ) is

∂ p(y, t )
∂t

= −α
∂yp(y, t )

∂y
− b

∂ p(y, t )
∂y

+
∫
R+

[
p(y − z, t ) − p(y, t ) + Iz∈(0,1)z

∂ p(y, t )
∂y

]
ν(dz).

(11)

For Equation (11), we perform a Laplace transform of p(y, t )
w.r.t. t for both sides:

ωpL(y, ω) − p(y, 0) = −α
∂ypL(y, ω)

∂y
− b

∂ pL(y, ω)

∂y

+
∫
R+

[
pL(y − z, ω) − pL(y, ω) + Iz∈(0,1)z

∂ pL(y, ω)

∂y

]
ν(dz).

(12)

For Equation (12), we perform a Laplace transform of
pL(y, ω) w.r.t. y for both sides; then

ωpLL(u, ω) − 1 = αu
∂ pLL(u, ω)

∂u
− bupLL(u, ω)

+
∫
R+

[
e−uz pLL(u, ω) − pLL(u, ω)

+Iz∈(0,1)zupLL(u, ω)

]
ν(dz).

Let b∗ = b− ∫
0<z<1 zν(dz). We have that

αu
∂ pLL(u, ω)

∂u
=

{
ω + b∗u −

∫
R+

(
e−uz − 1

)
ν(dz)

}
pLL(u, ω) − 1.

Let f (u, ω) = (ω + b∗u − ∫
R+ (e−uz − 1)ν(dz))/αu, and

g(u) = −1/αu. We have that

∂ pLL(u, ω)

∂u
= f (u, ω)pLL(u, ω) + g(u),

with pLL(∞, ω) = 0. By solving this ODE, we have that

pLL(u, ω) = −e−
∫ ∞
u f (v ′,ω)dv ′

∫ ∞

u
e
∫ ∞
v f (v ′,ω)dv ′

g(v )dv

= −
∫ ∞

u
eF(v,u,ω)g(v )dv,

where F(v, u, ω) = ∫ u
v f (v ′, ω)dv ′. Then based on Lemma 3,

we have RLL
Y (u, ω) = −u−1 ∫ ∞

u eF(v,u,ω)g(v )dv . �

Remark 2. For Equation (11), we perform a Laplace transform
of p(y, t ) w.r.t. y for both sides:

E[e−uY (t )] = pL(u, t ) =
∫
R+

e−uy p(y, t )dy.

Then

∂ pL(u, t )
∂t

= αu
∂ pL(u, t )

∂u
− bupL(u, t )

+
∫
R+

[e−uz pL(u, t ) − pL(u, t ) + Iz∈(0,1)zupL(u, t )]ν(dz)

= αu
∂ pL(u, t )

∂u
+

{
−b∗u +

∫
R+

(
e−uz − 1

)
ν(dz)

}
pL(u, t ).

By using themethod of characteristics to solve this first-order
PDE, we have that

E[e−uY (t )] = pL(ueαt , 0)

× exp
{∫ t

0

[
−b∗ueαr +

∫
R+

(
e−ueαry − 1

)
ν(dy)

]
dr

}
.

Since pL(ueαt , 0) = 1, we have that

E[e−uY (t )] = exp
{∫ t

0

[
−b∗ueαr +

∫
R+

(
e−ueαry − 1

)
ν(dy)

]
dr

}
.

We use Theorem 3 to derive the transform expression for the
moments of lifetime Ty in Theorem 4.

Theorem 4. For degradation with random jumps described by a
non-Gaussian OU process Y (t ), the Laplace expression of lifetime
moments is

ML (
Tn
Y , u

) = (−1)nu−1nα1−n
∫ ∞

u
(lnu − lnv )n−1 eF(v,u)g(v )dv,

where F(v, u) = ∫ u
v f (v ′)dv ′, f (v ) = (b∗v − ∫

R+ (e−vz − 1)
ν(dz))/αv , and g(v ) = −1/αv . In addition, b∗ ≥ 0, ν is the
Lévy measure.

Proof. The Laplace transform of Q̃(y, t ) w.r.t. t is

Q̃L(y, ω) = −
∫
R+

e−ωt ∂

∂t
RY (y, t )dt = h(y) − ωRL

Y (y, ω).

(13)
For Equation (13), we perform a Laplace transform w.r.t. y on
both sides; then

Q̃LL(u, ω) = −ωRLL
Y (u, ω) + u−1.

From Theorem 3, we have that

Q̃LL(u, ω) = u−1ω

∫ ∞

u
eF(v,u,ω)g(v )dv + u−1.

From Lemma 4:

ML (
Tn
Y , u

) = Q̃LL
n (u, 0) = (−1)n

[
∂nQ̃LL(u, ω)

∂ωn

]
ω=0

,

where
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[
∂nQ̃LL(u, ω)

∂ωn

]
ω=0

= u−1

⎡
⎣∂n

(
ω

∫ ∞
u eF(v,u,ω)g(v )dv

)
∂ωn

⎤
⎦

ω=0

= u−1

⎡
⎣ω

∂n
( ∫ ∞

u eF(v,u,ω)g(v )dv
)

∂ωn

⎤
⎦

ω=0

+u−1n

⎡
⎣∂n−1

( ∫ ∞
u eF(v,u,ω)g(v )dv

)
∂ωn−1

⎤
⎦

ω=0

,

and ⎡
⎣∂n−1

( ∫ ∞
u eF(v,u,ω)g(v )dv

)
∂ωn−1

⎤
⎦

ω=0

=
[∫ ∞

u

∂n−1eF(v,u,ω)

∂ωn−1 g(v )dv

]
ω=0

=
[∫ ∞

u

(∫ u

v

1
αv ′ dv ′

)n−1

eF(v,u,ω)g(v )dv

]
ω=0

= α1−n
∫ ∞

u
(lnu − lnv )n−1 eF(v,u)g(v )dv .

Therefore, we have that

ML (
Tn
Y , u

) = (−1)nu−1nα1−n
∫ ∞

u
(lnu − lnv )n−1 eF(v,u)g(v )dv .

�

4. Numerical examples

To illustrate our models, we use an interesting Lévy measure:

ν(dx) = κ

	(1 − κ)

1
xκ+1 dx,

where x > 0, 0 < κ < 1, which represents a positive stable pro-
cess PS(κ), a Lévy subordinator, whose distribution is in gen-
eral unknown in closed form (Barndorff-Nielsen and Shephard,
2012). Notice that if κ is close to zero, the process propagates
with big jumps, and if κ is close to one, the process evolves with
small jumps. The distribution of this variable is asymmetric and
heavy-tailed; i.e., it does not havemoments of order κ and above.

When the degradation evolution can be described by this
positive stable process, the Laplace expression of reliability func-
tion based on Theorem 1 is

RLL
X (u, ω) = u−1{ω + uκ}−1

.

Based on Theorem 2, the Laplace expression of lifetime
moments is

ML (
Tn
X , u

) = n!u−nκ−1.

When the evolution of the degradation can be described by the
non-Gaussian OU process driven by PS(κ), the Laplace expres-
sion of reliability function based on Theorem 3 is

RLL
Y (u, ω) = α−1uα−1ω−1eα

−1 1
κ
uκ

∫ ∞

u
v−(α−1ω+1)e−α−1 1

κ
vκ

dv .

Table . Parameter values.

Parameter Value Parameter Value

x; y [,] κ .
α .

Based on Theorem 4, the Laplace expression of lifetime
moments is

ML(Tn
Y , u) = (−1)nu−1nα1−n

×
∫ ∞

u
(lnu − lnv )

n−1 eα
−1 1

κ (uκ−vκ )(−α−1v−1)dv

= u−1nα−n
n−1∑
i=0

Ci
n−1

(−1)i(lnu)ieα
−1 1

κ u
κ

×
∫ ∞

u
(lnv )n−1−iv−1e−α−1 1

κ vκ

dv .

The specific values for the parameters are given in Table 1.
Sample paths of Xs(t ) and Y (t ) are shown in Fig. 1 (Lévy sub-
ordinator b) and Fig. 2 (non-Gaussian OU b), respectively. The
system fails when the degradation exceeds the respective fail-
ure threshold. The inversion algorithms for Laplace transform
(Abate and Whitt, 1995; Brančík, 2007) were implemented to
invert Laplace expressions in order to compute the values of reli-
ability and lifetime moments.

Figure 3 and Figure 4 show the reliability with respect to time
t and the failure threshold for Xs(t ) and Y (t ), respectively. The
reliability decreases as the time increases, and it increases as the
threshold increases. Figure 5 shows the reliability with respect
to time t when the failure thresholds are 15 and 20, respectively.
The reliability based onY (t ) decreases faster than that based on
Xs(t ). Figure 6 illustrates the first moment of the lifetime with
respect to the failure threshold. The mean failure time based
on Y (t ) is less than that based on Xs(t ) for the same thresh-
old. These observations correspond to the evolution ofY (t ) and
Xs(t ); the mean path ofY (t ) is exponential with respect to time
t , whereas the mean path of Xs(t ) is linear with respect to time
t . In addition to the Lévy measure used in this example, we can
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Figure . Reliability functionwith respect to time t and failure threshold x based on
Xs(t ).
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Figure . Reliability function with respect to time t and failure threshold y based
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andY (t ).

specify different Lévy measures to fit the corresponding degra-
dation data, in order to construct models and analyze reliability
and lifetime.

5. Conclusions

In this article, we presented novel models concerning the
stochastic mechanism of a complex degradation process that is
also subjected to random jumps. Based on the Fokker–Planck
equation, we derived explicit results for reliability function and
lifetime moments in terms of a Laplace transform. The Laplace
expressions of the reliability function and lifetime moments are
represented by Lévy measures. Our model is general, as we can
specify many different Lévy measures to handle many differ-
ent kinds of degradation data sets. The models in the literature
become special cases of our models.

The new method provides a convenient and general way
to evaluate system reliability. When the degradation data are
available, our results are explicit and compact enough for
effective and efficient statistical inference on lifetime character-
istics. The reliability estimation is expected to be more accurate,
as our models integrally consider all the stylized features of
degradation data series including temporal uncertainty, jumps,
independence/dependence, linearity/nonlinearity, symme-
try/asymmetry, and light/heavy tails. Based on the precise
reliability estimation and prediction, an appropriate and valu-
able maintenance policy can be proposed and implemented.

One of the challenging aspects in reliability analysis is how to
formulate reliability functions for degradation processes under
dynamic environments. Our model based on Fokker–Planck
equations provides a new methodology to overcome this chal-
lenge. We will focus on deriving Fokker–Planck equations for
degradation processes under dynamic environments in our
future work. In order to apply the model to degradation data
analysis, statistical inference on Lévymeasures is another poten-
tial research topic. Traditional maximum likelihood estimation
and Bayesian estimation are not convenient for such general
jump processes without closed-form distributions. To apply our
models to real degradation dataset, the parametric estimation
for subordinators and OU processes in Jongbloed and van der
Meulen (2006) can be explored.
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