Chapter 2, Part 1

FIRST ORDER EQUATIONS

\[F(x, y, y') = 0 \]
Assumed Background Material:

Techniques of integration, including:

- Substitution (the most common technique)
- Integration-by-parts
- Integrals involving trig functions
- Partial fraction decomposition
Basic assumption: The equation can be solved for y'; that is, the equation can be written in the form

$$y' = f(x, y) \quad (1)$$
2.2. First Order Linear Equations

\[y' = f(x, y) \]

is a \textbf{linear equation} if \(f \) has the form

\[f(x, y) = P(x)y + q(x) \]

where \(P \) and \(q \) are continuous functions on some interval \(I \). Thus

\[y' = P(x)y + q(x) \]
Standard form:

The **standard form** for a first order linear equation is:

\[y' + p(x)y = q(x) \]

where \(p \) and \(q \) are continuous functions on the interval \(I \)

(Note: A differential equation which is not linear is called **nonlinear**.)
Examples:

1. Find the general solution:

\[y' = ky \quad \text{(See Examples in Chapter 1)} \]
2. Find the general solution:

\[y' + 2xy = 4x \]
Solution Method:

Step 1. Determine that the equation is linear and write it in standard form

\[y' + p(x)y = q(x). \]
\[y' + p(x)y = q(x). \]

\textbf{Step 2.} Multiply by \(e^{\int p(x) \, dx} \).
\[
\left[e^{\int p(x) \, dx} \, y \right]' = q(x) e^{\int p(x) \, dx}
\]

Step 3. Integrate:

\[
e^{\int p(x) \, dx} \, y = \int q(x) e^{\int p(x) \, dx} \, dx + C.
\]

Step 4. Solve for \(y \):

\[
y = e^{-\int p(x) \, dx} \int q(t) e^{\int p(t) \, dt} \, dt \, dx + C e^{-\int p(x) \, dx}.
\]
\[y = e^{-\int p(x) \, dx} \int q(x) e^{\int p(x) \, dx} \, dx + Ce^{-\int p(x) \, dx}. \]

is the general solution of the equation.

Note: \(e^{\int p(x) \, dx} \) is called an **integrating factor**
3. Find the general solution:

\[xy' = \frac{\cos 2x}{x^2} - 3y \]
4. Find the general solution:

\[xy' = \frac{2}{\sqrt{x^2 - 1}} - 2y + 2 \]
5. Solve the initial-value problem:

\[y' + \left(\cot x \right) y = 2 \cos x, \quad y\left(\pi/2\right) = 3 \]
6. Find the general solution:

\[y' + 2xy = 2 \tan x \]
Answers:

1. \(y = C e^{kx} \)

2. \(y = 2 + C e^{-x^2} \)

3. \(y = \frac{\sin 2x}{2x^3} + \frac{C}{x^3} \)

4. \(y = \frac{2 \sqrt{x^2 - 1}}{x^2} + 1 + \frac{C}{x^2} \)

5. \(y = \frac{5 - \cos 2x}{2 \sin x} \)
The term “linear:”

Differentiation:

As you know: for differentiable functions \(f \) and \(g \)

\[
\frac{d}{dx}[f(x) + g(x)] = \frac{df}{dx} + \frac{dg}{dx}
\]

and for any constant \(c \)

\[
\frac{d}{dx}[c f(x)] = c \frac{df}{dx}
\]
Integration:

For integrable functions f and g:

$$\int [f(x) + g(x)] \, dx = \int f(x) \, dx + \int g(x) \, dx$$

and, for any constant c

$$\int c \, f(x) \, dx = c \int f(x) \, dx$$
Any “operation” L which satisfies

$$L[f(x) + g(x)] = L[f(x)] + L[g(x)]$$

and

$$L[c f(x)] = c L[f(x)]$$

is a “linear” operation.

1. **Differentiation** is a linear operation.

2. **Integration** is a linear operation.
Set $L[y] = y' + p(x)y$

$L[y_1 + y_2] = (y_1 + y_2)' + p(y_1 + y_2)$

$= y'_1 + y'_2 + py_1 + py_2$

$= y'_1 + py_1 + y'_2 + py_2 = L[y_1] + L[y_2]$

$L[cy] = (cy)' + p(cy) = cy' + cpy$

$= c(y' + py) = cL[y]$
Thus, if \(L[y] = y' + p(x)y \), then

\[
L[y_1 + y_2] = L[y_1] + L[y_2]
\]

\[
L[cy] = cL[y]
\]

\(L[y] = y' + p(x)y \) is a linear operation; \(L \) is a \textbf{linear operator}.

Hence the term linear differential equation.
2.3. Separable Equations

\[y' = f(x, y) \]

is a **separable equation** if \(f \) has the **factored form**

\[f(x, y) = p(x)h(y) \]

where \(p \) and \(h \) are continuous functions. Thus

\[y' = p(x)h(y) \]

is the "standard form" of a separable equation.
Example 1: Show that

\[y' = xy^2 - x - y^2 + 1 \]

is separable
Solution Method

Step 1. Establish that the equation is separable.

Step 2. Divide both sides by $h(y)$ to “separate” the variables.

$$\frac{1}{h(y)} y' = p(x) \quad \text{or} \quad q(y)y' = p(x)$$

which, in differential form, is:

$$q(y) \, dy = p(x) \, dx.$$

the variables are “separated.”
Step 3. Integrate

\[\int q(y) \, dy = \int p(x) \, dx + C \]

\[Q(y) = P(x) + C \]

where \(Q'(y) = q(y), \ P'(x) = p(x) \)
Note:

\[Q(y) = P(x) + C \] is the general solution. Typically, this is an implicit relation; you may or may not be able to solve it for \(y \).
Examples:

2. Find the general solution:

\[y' = \frac{xy^2 + 4x}{2y} \]
Graphs: $y^2 = Ce^{x^2/2} - 4$
Note: If you solve for y

$$y = \sqrt{Ce^{x^2/2}} - 4$$

Graphs:
3. Find the general solution:

\[
\frac{dy}{dx} = \frac{e^{x-y}}{1 + e^x}
\]
4. Find the general solution:

\[
\frac{dy}{dx} = 4x\sqrt{y - 2}
\]
Singular solutions:
\[\sqrt{y - 2} = x^2 + C \]
\[y = (x^2 + C)^2 + 2 \]
5. Find the general solution:

\[\frac{dy}{dx} - xy^2 = -x \]
6. The equation

\[y' = x(y + 2) \quad \text{or} \quad y' - xy = 2x \]

is both linear and separable. Find the general solution both ways.
Answers

1. \(y = \tan(x^2 + C') \)

2. \(y^2 = C e^{x^2/2} - 4 \)

3. \(y = \ln [\ln(1 + e^x) + C] \)

4. \(\sqrt{y - 2} = x^2 + C \)

5. \(y = \frac{1 + C e^{x^2}}{1 - C e^{x^2}} \)

6. \(y = C e^{x^2/2} - 2 \)
2.4. Related Equations & Transformations

A. Bernoulli equations

An equation of the form

\[y' + p(x)y = q(x)y^k, \quad k \neq 0, 1 \]

is called a Bernoulli equation.
Examples: \(y' + p(x)y = q(x)y^k \)

1. Find the general solution:

\[y' - 4y = 2e^x \sqrt{y} \]
2. Find the general solution:

\[xy' + y = 3x^3 y^2 \]
The change of variable

\[v = y^{1-k}, \quad v' = (1 - k)y^{-k}y' \]

transforms a Bernoulli equation into

\[v' + (1 - k)p(x)v = (1 - k)q(x). \]

which has the form

\[v' + P(x)v = Q(x), \]

a linear equation.
3. Find the general solution:

\[xyy' = x^2 + 2y^2 \]
Answers

1. \[y = (Ce^{2x} - e^x)^2 \]

2. \[y = \frac{2}{C'x - 3x^3} \]

3. \[y^2 = Cx^4 - x^2 \]
B. Homogeneous equations

\[y' = f(x, y) \] \hspace{1cm} (1)

is a **homogeneous equation** if

\[f(tx, ty) = f(x, y) \]
If (1) is homogeneous, then the change of dependent variable

\[y = vx, \quad y' = v + xv' \]

transforms (1) into a separable equation:

\[y' = f(x, y) \rightarrow v + xv' = f(x, vx) = f(1, v) \]

which can be written

\[\frac{1}{f(1, v) - v} \, dv = \frac{1}{x} \, dx; \]

the variables are separated.
Examples:

1. Find the general solution:

\[y' = \frac{x^2 + y^2}{2xy} \]
2. Find the general solution:

\[
\frac{dy}{dx} = \frac{x^2 e^{y/x} + y^2}{xy}
\]
3. Find the general solution:

\[xyy' = x^2 + 2y^2 \]
Answers

1. \(y^2 = x^2 - Cx \)

2. \(y + x = e^{y/x} [Cx - x \ln x] \)

3. \(y^2 = Cx^4 - x^2 \)