Chapter 6: Systems of Linear Differential Equations

Let $a_{11}(t), a_{12}(t), \ldots, a_{nn}(t),$

$b_1(t), b_2(t), \ldots, b_n(t)$

be continuous functions on the interval I.

The system of n first-order differential equations
\[\begin{align*}
x'_1 &= a_{11}(t)x_1 + a_{12}(t)x_2 + \cdots + a_{1n}(t)x_n + b_1(t) \\
x'_2 &= a_{21}(t)x_1 + a_{22}(t)x_2 + \cdots + a_{2n}(t)x_n + b_2(t) \\
&\quad \vdots \\
x'_n &= a_{n1}(t)x_1 + a_{n2}(t)x_2 + \cdots + a_{nn}(t)x_n + b_n(t)
\end{align*} \]

is called a **first-order linear differential system**.

The system is **homogeneous** if

\[b_1(t) \equiv b_2(t) \equiv \cdots \equiv b_n(t) \equiv 0 \quad \text{on} \quad I. \]

It is **nonhomogeneous** if the functions \(b_i(t) \) are not all identically zero on \(I \).
Set
\[A(t) = \begin{pmatrix}
 a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
 a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix} \]

and
\[x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad b(t) = \begin{pmatrix} b_1(t) \\ b_2(t) \\ \vdots \\ b_n(t) \end{pmatrix}. \]

The system can be written in the vector-matrix form

\[x' = A(t) x + b(t). \quad \text{(S)} \]
The matrix $A(t)$ is called the matrix of coefficients or the coefficient matrix.

The vector $b(t)$ is called the non-homogeneous term, or forcing function.
A **solution** of the linear differential system (S) is a differentiable vector function

\[x(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix} \]

that satisfies (S) on the interval \(I \).
Example 1:

\[x'_1 = x_1 + 2x_2 - 5e^{2t} \]
\[x'_2 = 3x_1 + 2x_2 + 3e^{2t} \]

Vector/matrix form

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} -5e^{2t} \\ 3e^{2t} \end{pmatrix}
\]

or

\[
x' = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}x + \begin{pmatrix} -5e^{2t} \\ 3e^{2t} \end{pmatrix}
\]
\[x(t) = \begin{pmatrix} -e^{2t} \\ 2e^{2t} \end{pmatrix} \] is a solution of

\[x' = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} x + \begin{pmatrix} -5e^{2t} \\ 3e^{2t} \end{pmatrix} \]
In fact,

\[x(t) = C_1 \begin{pmatrix} 2e^{4t} \\ 3e^{4t} \end{pmatrix} + C_2 \begin{pmatrix} e^{-t} \\ -e^{-t} \end{pmatrix} + \begin{pmatrix} -e^{2t} \\ 2e^{2t} \end{pmatrix} \]

is a solution for any numbers \(C_1, C_2, \)
and this is the general solution of
the system.
Example 2:

\[x'_1 = 3x_1 - x_2 - x_3 \]
\[x'_2 = -2x_1 + 3x_2 + 2x_3 \]
\[x'_3 = 4x_1 - x_2 - 2x_3 \]

Vector/matrix form

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}' =
\begin{pmatrix}
 3 & -1 & -1 \\
 -2 & 3 & 2 \\
 -4 & -1 & -2
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
\]

or

\[
x' =
\begin{pmatrix}
 3 & -1 & -1 \\
 -2 & 3 & 2 \\
 -4 & -1 & -2
\end{pmatrix}x
\]
\[x(t) = \begin{pmatrix} e^{3t} \\ -e^{3t} \\ e^{3t} \end{pmatrix} \]

is a solution.
In fact,

\[x(t) = C_1 e^{3t} \begin{pmatrix} e^{3t} \\ -e^{3t} \\ e^{3t} \end{pmatrix} + C_2 \begin{pmatrix} e^{2t} \\ 0 \\ e^{2t} \end{pmatrix} + C_3 \begin{pmatrix} e^{-t} \\ -3e^{-t} \\ 7e^{-t} \end{pmatrix} \]

is a solution for any numbers \(C_1, C_2, C_3 \), and this is the general solution of the system.
THEOREM: The initial-value problem

\[x' = A(t)x + b(t), \quad x(t_0) = c \]

has a unique solution \(x = x(t) \).
II. Homogeneous Systems: General Theory: (see Section 3.2)

\[
\begin{align*}
 x_1' &= a_{11}(t)x_1 + a_{12}(t)x_2 + \cdots + a_{1n}(t)x_n(t) \\
 x_2' &= a_{21}(t)x_1 + a_{22}(t)x_2 + \cdots + a_{2n}(t)x_n(t) \\
 &\vdots \quad \vdots \\
 x_n' &= a_{n1}(t)x_1 + a_{n2}(t)x_2 + \cdots + a_{nn}(t)x_n(t)
\end{align*}
\]

\[x' = A(t)x. \quad (H)\]

Note: The zero vector \(z(t) \equiv 0 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \) is a solution of (H). This solution is called the **trivial solution**.
THEOREM: If v_1 and v_2 are solutions of (H), then $u = v_1 + v_2$ is also a solution of (H); the sum of any two solutions of (H) is a solution of (H).

THEOREM: If v is a solution of (H) and α is any real number, then $u = \alpha v$ is also a solution of (H); any constant multiple of a solution of (H) is a solution of (H).
In general,

THEOREM: If v_1, v_2, \ldots, v_k are solutions of (H), and if c_1, c_2, \ldots, c_k are real numbers, then

$$c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$$

is a solution of (H); any linear combination of solutions of (H) is also a solution of (H).
Linear Dependence/Independence
– in general

Let

\[\mathbf{v}_1(t) = \begin{pmatrix} v_{11} \\ v_{21} \\ \vdots \\ v_{n1} \end{pmatrix}, \quad \mathbf{v}_2(t) = \begin{pmatrix} v_{12} \\ v_{22} \\ \vdots \\ v_{n2} \end{pmatrix}, \]

\[\ldots, \quad \mathbf{v}_k(t) = \begin{pmatrix} v_{1k} \\ v_{2k} \\ \vdots \\ v_{nk} \end{pmatrix} \]

be vector functions defined on some interval \(I \).
The vectors are **linearly dependent** on I if there exist k real numbers c_1, c_2, \ldots, c_k, not all zero, such that

$$c_1v_1(t)+c_2v_2(t)+\cdots+c_kv_k(t) \equiv 0 \quad \text{on } I.$$

Otherwise the vectors are **linearly independent** on I.
THEOREM Let

$$v_1(t), v_2(t), \ldots, v_k(t)$$

be k, k-component vector functions defined on an interval I. If the vectors are linearly dependent, then

$$\begin{vmatrix}
 v_{11} & v_{12} & \cdots & v_{1k} \\
 v_{21} & v_{22} & \cdots & v_{2k} \\
 \vdots & \vdots & \ddots & \vdots \\
 v_{k1} & v_{k2} & \cdots & v_{kk}
\end{vmatrix} \equiv 0 \quad \text{on} \quad I.$$
The determinant

\[
\begin{vmatrix}
 v_{11} & v_{12} & \cdots & v_{1k} \\
v_{21} & v_{22} & \cdots & v_{2k} \\
 \vdots & \vdots & \ddots & \vdots \\
v_{k1} & v_{k2} & \cdots & v_{kk}
\end{vmatrix}
\]

is called the **Wronskian** of the vector functions \(v_1, v_2, \ldots, v_k \).
Special case: \(n \) solutions of (H)

THEOREM Let \(v_1, v_2, \ldots, v_n \) be \(n \) solutions of (H). Exactly one of the following holds:

1. \(W(v_1, v_2, \ldots, v_n)(t) \equiv 0 \) on \(I \) and the solutions are linearly dependent.

2. \(W(v_1, v_2, \ldots, v_n)(t) \neq 0 \) for all \(t \in I \) and the solutions are linearly independent.
THEOREM Let \(v_1, v_2, \ldots, v_n \) be \(n \) linearly independent solutions of (H). Let \(u \) be any solution of (H). Then there exists a unique set of constants \(c_1, c_2, \ldots, c_n \) such that

\[
u = c_1 v_1 + c_2 v_2 + \cdots + c_n v_n.
\]

That is, every solution of (H) can be written as a unique linear combination of \(v_1, v_2, \ldots, v_n \).
A set of \(n \) linearly independent solutions of (H)\\
\[\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \]
is called a fundamental set of solutions. A fundamental set is also called a solution basis for (H).

The matrix whose columns are\\
\[\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \]
is called a fundamental matrix.
Let \(v_1, v_2, \ldots, v_n \) be a fundamental set of solutions of \((H)\). Then

\[x = C_1v_1 + C_2v_2 + \cdots + C_nv_n, \]

\(C_1, C_2, \ldots, C_n \) arbitrary constants, is the general solution of \((H)\).
A \(n^{th} \) linear equation can be converted into a system of \(n \) first order linear equations

Consider the second order equation

\[y'' + p(t)y' + q(t)y \]

Solve for \(y'' \)

\[y'' = -q(t)y - p(t)y' \]
Introduce new dependent variables x_1, x_2, as follows:

\[
x_1 = y
\]

\[
x_2 = x'_1 \quad (= y')
\]
Vector-matrix form:

$$
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}' =
\begin{pmatrix}
 0 & 1 \\
 -q & -p
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
$$

Note that this system is just a very special case of the “general” homogeneous system of two, first-order differential equations:

$$
x_1' = a_{11}(t)x_1 + a_{12}(t)x_2
$$

$$
x_2' = a_{21}(t)x_1 + a_{22}(t)x_2
$$
Vector-matrix form:

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}' = \begin{pmatrix}
 a_{11}(t) & a_{12}(t) \\
 a_{21}(t) & a_{22}(t)
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
\]

or

\[x' = A(t)x\]
Example 1: \[y'' - 5y' + 6y = 0 \]

Characteristic equation:

Fundamental set:

General solution:
In system form:

\[
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -6 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
\]

Corresponding solutions of system????

Solution of equation \(y \)

Corresponding solution of system

\[
x = \begin{pmatrix} y \\ y' \end{pmatrix}
\]

\[
e^{2t} \rightarrow \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix}, \quad e^{3t} \rightarrow \begin{pmatrix} e^{3t} \\ 3e^{3t} \end{pmatrix}
\]
\[x_1 = \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix}, \quad x_2 = \begin{pmatrix} e^{3t} \\ 3e^{3t} \end{pmatrix} \]

is a fundamental set of solutions of the system

\[\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -6 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \]

The matrix

\[X(t) = \begin{pmatrix} e^{2t} & e^{3t} \\ 2e^{2t} & 3e^{3t} \end{pmatrix} \]

is a fundamental matrix.
Example 2: \[y'' - \frac{5}{x} y' + \frac{8}{x^2} y = 0 \]

Look for solutions of the form \(y = t^r \)

\(y_1 = t^2, \ y_2 = t^4 \) are independent solutions
In system form:

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -8/x^2 & 5/x \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
\]

Corresponding solutions of system????

Solution of equation \(y \)

Corresponding solution of system

\[
x = \begin{pmatrix} y \\ y' \end{pmatrix}
\]

\[
t^2 \rightarrow \begin{pmatrix} t^2 \\ 2t \end{pmatrix}, \quad t^4 \rightarrow \begin{pmatrix} t^4 \\ 4t^3 \end{pmatrix}
\]
\[x_1 = \begin{pmatrix} t^2 \\ 2t \end{pmatrix}, \quad x_2 = \begin{pmatrix} t^4 \\ 4t^3 \end{pmatrix} \]

is a fundamental set of solutions of the system

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -8/x^2 & 5/x \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
\]

The matrix

\[X(t) = \begin{pmatrix} t^2 & t^4 \\ 2t & 4t^3 \end{pmatrix} \]

is a fundamental matrix.
Consider the third-order equation

\[y''' + p(t)y'' + q(t)y' + r(t)y = 0 \]

or

\[y''' = -r(t)y - q(t)y' - p(t)y''. \]
Introduce new dependent variables x_1, x_2, x_3, as follows:

\[x_1 = y \]
\[x_2 = x_1' \quad (= y') \]
\[x_3 = x_2' \quad (= y'') \]

Then

\[y''' = x_3' = -r(t)x_1 - q(t)x_2 - p(t)x_3 \]

The third-order equation can be written equivalently as the system of three first-order equations:
\[x'_{1} = x_{2} \]
\[x'_{2} = x_{3} \]
\[x'_{3} = -r(t)x_{1} - q(t)x_{2} - p(t)x_{3} \]

That is

\[x'_{1} = 0x_{1} + 1x_{2} + 0x_{3} \]
\[x'_{2} = 0x_{1} + 0x_{2} + 1x_{3} \]
\[x'_{3} = -r(t)x_{1} - q(t)x_{2} - p(t)x_{3} \]
Vector-matrix form:

\[
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{pmatrix}' = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-r & -q & -p \\
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{pmatrix}
\]
Note that this system is just a very special case of the “general” system of three, first-order differential equations:

\[x'_1 = a_{11}(t)x_1 + a_{12}(t)x_2 + a_{13}(t)x_3(t) \]
\[x'_2 = a_{21}(t)x_1 + a_{22}(t)x_2 + a_{23}(t)x_3(t) \]
\[x'_3 = a_{31}(t)x_1 + a_{32}(t)x_2 + a_{33}(t)x_3(t) \]

or in vector-matrix form:

\[\mathbf{x}' = A(t)\mathbf{x} \]
Example 3:

\[y''' - 3y'' - 4y' + 12y = 0. \]

which can be written

\[y''' = -12y + 4y' + 3y''. \]

Set

\[x_1 = y \]
\[x_2 = x_1' (= y') \]
\[x_3 = x_2' (= y'') \]
Then

\[x_3' = y''' = -12x_1 + 4x_2 + 3x_3 \]

and equivalent system:

\[x_1' = x_2 \]
\[x_2' = x_3 \]
\[x_3' = -12x_1 + 4x_2 + 3x_3 \]

which is

\[x_1' = 0x_1 + 1x_2 + 0x_3 \]
\[x_2' = 0x_1 + 0x_2 + 1x_3 \]
\[x_3' = -12x_1 + 4x_2 + 3x_3 \]
Vector-matrix form:

\[
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{pmatrix}' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & 4 & 3 \\
\end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\
\end{pmatrix}
\]

or

\[x' = Ax\]
\[y''' - 3y'' - 4y' + 12y = 0 \]

Characteristic equation:

\[r^3 - 3r^2 - 4r + 12 = (r - 3)(r - 2)(r + 2) \]

Fundamental set:

\[\{ e^{3t}, e^{2t}, e^{-2t} \} \]

General solution:

\[y = C_1 e^{3t} + C_2 e^{2t} + C_3 e^{-2t} \]
\[y = e^{3t} \] is a solution of the equation.

System:

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}' = \begin{pmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 -12 & 4 & 3
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
\]

Recall:

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} = \begin{pmatrix}
 y \\
 y' \\
 y''
\end{pmatrix}
\]

\[
x = \begin{pmatrix}
 y \\
 y' \\
 y''
\end{pmatrix} = \begin{pmatrix}
 e^{3t} \\
 3e^{3t} \\
 9e^{3t}
\end{pmatrix}
\]

is a corresponding solution of the system.
Equation:

\[y''' - 3y'' - 4y' + 12y = 0 \]

Fundamental set:

\[\{ y_1 = e^{3t}, \quad y_2 = e^{2t}, \quad y_3 = e^{-2t} \} \]

Equivalent vector-matrix system:

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}' =
\begin{pmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 -12 & 4 & 3
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
\]

Solutions:

\[y_1 = e^{3t} \longrightarrow x_1 = \begin{pmatrix}
 e^{3t} \\
 3e^{3t} \\
 9e^{3t}
\end{pmatrix} \]
\[y_2 = e^{2t} \quad \rightarrow \quad x_2 = \begin{pmatrix} e^{2t} \\ 2e^{2t} \\ 4e^{2t} \end{pmatrix} \]

\[y_3 = e^{-2t} \quad \rightarrow \quad x_3 = \begin{pmatrix} e^{-2t} \\ -2e^{-2t} \\ 4e^{-2t} \end{pmatrix} \]
\[
x_1 = \begin{pmatrix} e^{3t} \\ 3e^{3t} \\ 9e^{3t} \end{pmatrix}, \quad x_2 = \begin{pmatrix} e^{2t} \\ 2e^{2t} \\ 4e^{2t} \end{pmatrix}
\]

\[
x_3 = \begin{pmatrix} e^{-2t} \\ -2e^{-2t} \\ 4e^{-2t} \end{pmatrix}
\]

is a fundamental set of solutions of
the corresponding system

\[
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & 4 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}
\]
III. Homogeneous Systems with Constant Coefficients (see Section 3.3)

\[
\begin{align*}
 x_1' &= a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\
 x_2' &= a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\
 \quad &\quad \quad \qa
The system in vector-matrix form is

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}' =
\begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}
\]

or

\[x' = Ax. \]
Solutions of $x' = Ax$:

Example 1. See page 27

$$x_1 = \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix} = e^{2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

is a solution of

$$x' = \begin{pmatrix} 0 & 1 \\ -6 & 5 \end{pmatrix} x$$

How is the number 2 and the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ related to the matrix $\begin{pmatrix} 0 & 1 \\ -6 & 5 \end{pmatrix}$?
\[
\begin{pmatrix}
0 & 1 \\
-6 & 5
\end{pmatrix}
\begin{pmatrix}
1 \\
2
\end{pmatrix}
=
\]
NOTE:

\[y'' - 5y' + 6y = 0 \]

Characteristic equation

\[r^2 - 5r + 6 = (r - 2)(r - 3) = 0 \]

Characteristic roots: \(r_1 = 2, \ r_2 = 3 \)

Fundamental set:

\[\{ y_1 = e^{2t}, \quad y_2 = e^{3t} \} \]
Vector-matrix system

\[
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}' = \begin{pmatrix}
 0 & 1 \\
 -6 & 5
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
\]

\[A = \begin{pmatrix}
 0 & 1 \\
 -6 & 5
\end{pmatrix}\]

Characteristic equation:

\[
\det (A - \lambda I) = \begin{vmatrix}
 -\lambda & 1 \\
 -6 & 5 - \lambda
\end{vmatrix}
\]

\[= \lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3) = 0\]

Eigenvalues: \(\lambda_1 = 2, \lambda_2 = 3\)

Fund set: \(x_1 = e^{2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, x_2 = e^{3t} \begin{pmatrix} 1 \\ 3 \end{pmatrix}\)
Example 2.

\[x_1 = \begin{pmatrix} e^{3t} \\ 3e^{3t} \\ 9e^{3t} \end{pmatrix} = e^{3t} \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix} \]

is a solution of

\[\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & 4 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \]

How is the number 3 and the vector \[\begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix} \] related to the matrix

\[\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & 4 & 3 \end{pmatrix} \]
\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-12 & 4 & 3
\end{pmatrix}
\begin{pmatrix}
1 \\
3 \\
9
\end{pmatrix}
=
\]
THAT IS:

3 is an eigenvalue of A and

$$v = \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}$$

is a corresponding eigenvector.
\[y'''' - 3y'' - 4y' + 12y = 0 \]

Characteristic equation:

\[r^3 - 3r^2 - 4r + 12 = (r-3)(r-2)(r+2) = 0 \]

Characteristic roots:

\[r_1 = 3, \quad r_2 = 2, \quad r_3 = -2 \]

Fundamental set:

\[\{ y_1 = e^{3t}, \quad y_2 = e^{2t}, \quad y_3 = e^{-2t} \} \]
Vector-matrix form

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
\begin{pmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 -12 & 4 & 3
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
\]

Characteristic equation:

\[
\det (A - \lambda I) = \begin{vmatrix}
 -\lambda & 1 & 0 \\
 0 & -\lambda & 1 \\
 -12 & 4 & 3 - \lambda
\end{vmatrix}
\]

\[
= -\lambda^3 + 3\lambda^2 + 4\lambda - 12 = 0
\]

or

\[
\lambda^3 - 3\lambda^2 - 4\lambda + 12 = (\lambda - 3)(\lambda - 2)(\lambda + 2) = 0
\]
Eigenvalues:

\[\lambda_1 = 3, \quad \lambda_2 = 2, \quad \lambda_3 = -2 \]

Eigenveectors:

\[
y_1 = e^{3t} \quad \rightarrow \quad x_1 = \begin{pmatrix} e^{3t} \\ 3e^{3t} \\ 9e^{3t} \end{pmatrix} = e^{3t} \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}
\]

\[
y_2 = e^{2t} \quad \rightarrow \quad x_2 = \begin{pmatrix} e^{2t} \\ 2e^{2t} \\ 4e^{2t} \end{pmatrix} = e^{2t} \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}
\]

\[
y_3 = e^{-2t} \quad \rightarrow \quad x_3 = \begin{pmatrix} e^{-2t} \\ -2e^{-2t} \\ 4e^{-2t} \end{pmatrix} = e^{-2t} \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}
\]
Given the homogeneous system with constant coefficients

\[x' = Ax. \]

THEOREM: If \(\lambda \) is an eigenvalue of \(A \) and \(v \) is a corresponding eigenvector, then

\[x = e^{\lambda t}v \]

is a solution.
Proof:

Let λ be an eigenvalue of A with corresponding eigenvector v.

Set $x = e^{\lambda t}v$
If $\lambda_1, \lambda_2, \cdots, \lambda_k$ are distinct eigenvalues of A with corresponding eigenvectors v_1, v_2, \cdots, v_k, then

$$x_1 = e^{\lambda_1 t}v_1, \ x_2 = e^{\lambda_2 t}v_2, \cdots, x_k = e^{\lambda_k t}v_k$$

are linearly independent solutions of

$$x' = Ax.$$
In particular: If $\lambda_1, \lambda_2, \cdots, \lambda_n$ are distinct eigenvalues of A with corresponding eigenvectors v_1, v_2, \cdots, v_n, then

$$x_1 = e^{\lambda_1 t}v_1, \; x_2 = e^{\lambda_2 t}v_2, \; \cdots, \; x_n = e^{\lambda_k t}v_n$$

form a fundamental set of solutions of

$$x' = Ax.$$

and

$$x = C_1x_1 + C_2x_2 + \cdots + C_nx_n$$

is the general solution.
Example 1. Find the general solution of

\[x' = \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix} x. \]

Step 1. Find the eigenvalues of \(A \):

\[
\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 2 \\ 2 & -1 - \lambda \end{vmatrix} = \lambda^2 - \lambda - 6.
\]

Characteristic equation:

\[
\lambda^2 - \lambda - 6 = (\lambda - 3)(\lambda + 2) = 0.
\]

Eigenvalues: \(\lambda_1 = 3, \lambda_2 = -2 \).
Step 2. Find the eigenvectors:

\[A - \lambda I = \begin{pmatrix} 2 - \lambda & 2 \\ 2 & -1 - \lambda \end{pmatrix} \]

\(\lambda_1 = 3: \)
\[A - \lambda I = \begin{pmatrix} 2 - \lambda & 2 \\ 2 & -1 - \lambda \end{pmatrix} \]

\[\lambda_2 = -2 \]
\[\lambda_1 = 3, \ v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}; \ \lambda_2 = -2, \ v_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}. \]

Solutions:

Fundamental set of solution vectors:

\[\begin{cases} x_1 = e^{3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix}, & x_2 = e^{-2t} \begin{pmatrix} -1 \\ 2 \end{pmatrix} \end{cases} \]

General solution of the system:

\[x = C_1 e^{3t} \begin{pmatrix} 2 \\ 1 \end{pmatrix} + C_2 e^{-2t} \begin{pmatrix} -1 \\ 2 \end{pmatrix}. \]
Example 2. Solve \(x' = \begin{pmatrix} 3 & -1 & -1 \\ -12 & 0 & 5 \\ 4 & -2 & -1 \end{pmatrix} x \).

Step 1. Find the eigenvalues of \(A \):

\[
\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -1 & -1 \\ -12 & -\lambda & 5 \\ 4 & -2 & -1 - \lambda \end{vmatrix} = -\lambda^3 + 2\lambda^2 + \lambda - 2.
\]

Characteristic equation:

\[
\lambda^3 - 2\lambda^2 - \lambda + 2 = (\lambda - 2)(\lambda - 1)(\lambda + 1) = 0.
\]

Eigenvalues:

\[
\lambda_1 = 2, \quad \lambda_2 = 1, \quad \lambda_3 = -1.
\]
Step 2. Find the eigenvectors:

\[A - \lambda I = \begin{pmatrix} 3 - \lambda & -1 & -1 \\ -12 & -\lambda & 5 \\ 4 & -2 & -1 - \lambda \end{pmatrix} \]

\[\lambda_1 = 2: \]
$$\lambda_1 = 2 : \quad v_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix},$$

$$\lambda_2 = 1 : \quad v_2 = \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix},$$

$$\lambda_3 = -1 : \quad v_3 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}.$$

Fundamental set of solutions:

$$x_1 = e^{2t} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \quad x_2 = e^t \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix},$$

$$x_3 = e^{-t} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}.$$
The general solution of the system:

\[x = C_1 e^{2t} \begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix} + C_2 e^{t} \begin{pmatrix} 3 \\ -1 \end{pmatrix} + C_3 e^{-t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}. \]
Example 3. Solve the initial-value problem

\[x' = \begin{pmatrix} 3 & -1 & -1 \\ -12 & 0 & 5 \\ 4 & -2 & -1 \end{pmatrix} x, \quad x(0) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}. \]

To find the solution vector satisfying the initial condition, solve

\[C_1 v_1(0) + C_2 v_2(0) + C_3 v_3(0) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \]

which is:

\[C_1 \begin{pmatrix} -1 \\ 2 \end{pmatrix} + C_2 \begin{pmatrix} 3 \\ 7 \end{pmatrix} + C_3 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \]
or

$$
\begin{pmatrix}
1 & 3 & 1 \\
-1 & -1 & 2 \\
2 & 7 & 2
\end{pmatrix}
\begin{pmatrix}
C_1 \\
C_2 \\
C_3
\end{pmatrix}
= \begin{pmatrix}
1 \\
0 \\
1
\end{pmatrix}.
$$

Augmented matrix:

$$
\begin{pmatrix}
1 & 3 & 1 & 1 \\
-1 & -1 & 2 & 0 \\
2 & 7 & 2 & 1
\end{pmatrix}
$$
Solution:

\[C_1 = 3, \quad C_2 = -1, \quad C_3 = 1. \]

The solution of the initial-value problem is:

\[x = 3e^{2t} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} - e^t \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix} + e^{-t} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}. \]
TWO DIFFICULTIES:

1. A has complex eigenvalues and complex eigenvectors.

2. A has an eigenvalue of multiplicity greater than 1.
1. Complex eigenvalues/eigenvectors

Example 1. Find the general solution of

$$x' = \begin{pmatrix} -3 & -2 \\ 4 & 1 \end{pmatrix} x.$$

$$\text{det}(A-\lambda I) = \begin{vmatrix} -3 - \lambda & -2 \\ 4 & 1 - \lambda \end{vmatrix} = \lambda^2 + 2\lambda + 5.$$

The eigenvalues are:

$$\lambda_1 = -1 + 2i, \; \lambda_2 = -1 - 2i.$$
\[A - \lambda I = \begin{pmatrix} -3 - \lambda & -2 \\
4 & 1 - \lambda \end{pmatrix} \]

For \(\lambda_1 = -1 + 2i \): Solve

\[
\begin{pmatrix} -2 - 2i & -2 \\
4 & 2 - 2i \end{pmatrix} \rightarrow
\]

\[\begin{pmatrix} 0 \\
0 \end{pmatrix} \]
The solution set is:

\[x_2 = -(1 + i)x_1, \quad x_1 \text{ arbitrary} \]

Set \(x_1 = 1 \). Then, for \(\lambda_1 = -1 + 2i \):

\[v_1 = \begin{pmatrix} 1 \\ -1 - i \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + i \begin{pmatrix} 0 \\ -1 \end{pmatrix}. \]

and, for \(\lambda_2 = -1 - 2i \):

\[v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - i \begin{pmatrix} 0 \\ -1 \end{pmatrix}. \]
Solutions

\[u_1 = e^{\lambda_1 t} v_1 = \]

\[= e^{(-1+2i)t} \left[\begin{pmatrix} 1 \\ -1 \end{pmatrix} + i \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right] = \]

\[= e^{-t}(\cos 2t + i \sin 2t) \left[\begin{pmatrix} 1 \\ -1 \end{pmatrix} + i \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right] \]

\[= e^{-t} \left[\cos 2t \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \sin 2t \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right] + \]

\[i e^{-t} \left[\cos 2t \begin{pmatrix} 0 \\ -1 \end{pmatrix} + \sin 2t \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right]. \]
\[u_2 = e^{\lambda_2 t} v_2 \]

\[= e^{(-1-2i)t} \left[\begin{pmatrix} 1 \\ -1 \end{pmatrix} - i \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right] = \]

\[= e^{-t}(\cos 2t + i \sin 2t) \left[\begin{pmatrix} 1 \\ -1 \end{pmatrix} + i \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right] \]

\[= e^{-t} \left[\cos 2t \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \sin 2t \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right] - \]

\[i e^{-t} \left[\cos 2t \begin{pmatrix} 0 \\ -1 \end{pmatrix} + \sin 2t \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] . \]
Fundamental set:

\[x_1 = \frac{u_1 + u_2}{2} = e^{-t} \begin{bmatrix} \cos 2t \left(\begin{array}{c} 1 \\ -1 \end{array} \right) - \sin 2t \left(\begin{array}{c} 0 \\ -1 \end{array} \right) \end{bmatrix} \]

\[x_2 = \frac{u_1 + u_2}{2i} = e^{-t} \begin{bmatrix} \cos 2t \left(\begin{array}{c} 0 \\ -1 \end{array} \right) + \sin 2t \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \end{bmatrix} \]

General solution:

\[x = C_1 e^{-t} \begin{bmatrix} \cos 2t \left(\begin{array}{c} 1 \\ -1 \end{array} \right) - \sin 2t \left(\begin{array}{c} 0 \\ -1 \end{array} \right) \end{bmatrix} + C_2 e^{-t} \begin{bmatrix} \cos 2t \left(\begin{array}{c} 0 \\ -1 \end{array} \right) + \sin 2t \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \end{bmatrix} \]
Graphs
Example 2. Find the general solution of

\[x' = \begin{pmatrix} 1 & -5 \\ 2 & 3 \end{pmatrix} x. \]

\[
\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -5 \\ 2 & 3 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 13.
\]

Characteristic equation:

\[\lambda^2 - 4\lambda + 13 = 0 \]

Eigenvalues:

\[\lambda_1 = 2 + 3i, \quad \lambda_2 = 2 - 3i. \]
\[A - \lambda I = \begin{pmatrix} 1 - \lambda & -5 \\ 2 & 3 - \lambda \end{pmatrix} \]

For \(\lambda_1 = 2 + 3i \): Solve

\[
\begin{pmatrix} -1 - 3i & -5 & 0 \\ 2 & 1 - 3i & 0 \end{pmatrix} \rightarrow
\]
Eigenvectors:

\[\lambda_1 = 2 + 3i, \quad v_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} + i \begin{pmatrix} 3 \\ 0 \end{pmatrix}. \]

\[\lambda_2 = 1 - 3i, \quad v_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix} - i \begin{pmatrix} 3 \\ 0 \end{pmatrix}. \]

General solution:

\[x = C_1 e^t \left[\cos 3t \begin{pmatrix} -1 \\ 2 \end{pmatrix} - \sin 3t \begin{pmatrix} 3 \\ 0 \end{pmatrix} \right] +
C_2 e^t \left[\cos 3t \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \sin 3t \begin{pmatrix} -1 \\ 2 \end{pmatrix} \right] \]
Graphs
Summary: $x' = Ax$, $A \in \mathbb{R}^{n \times n}$ constant.

$a + ib, a - ib$ complex eigenvalues.

$\vec{\alpha} + i \vec{\beta}, \vec{\alpha} - i \vec{\beta}$ corresponding eigenvectors.

Independent (complex-valued) solutions:

$$u_1 = e^{(a+ib)t} \left(\vec{\alpha} + i \vec{\beta} \right)$$

$$u_2 = e^{(a-ib)t} \left(\vec{\alpha} - i \vec{\beta} \right)$$
Corresponding real-valued solutions:

\[x_1 = e^{at} \left[\cos bt \overrightarrow{\alpha} - \sin bt \overrightarrow{\beta} \right] \]

\[x_2 = e^{at} \left[\cos bt \overrightarrow{\beta} + \sin bt \overrightarrow{\alpha} \right] \]

General solution:

\[x = C_1 e^{at} \left[\cos bt \overrightarrow{\alpha} - \sin bt \overrightarrow{\beta} \right] + C_2 e^{at} \left[\cos bt \overrightarrow{\beta} + \sin bt \overrightarrow{\alpha} \right] \]
Example 3. Determine a fundamental set of solution vectors of

$$x' = \begin{pmatrix} 1 & -4 & -1 \\ 3 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix} x.$$

$$\det(A - \lambda I) \equiv \begin{vmatrix} 1 - \lambda & -4 & -1 \\ 3 & 2 - \lambda & 3 \\ 1 & 1 & 3 - \lambda \end{vmatrix} = -\lambda^3 + 6\lambda^2 - 21\lambda + 26 = -(\lambda - 2)(\lambda^2 - 4\lambda + 13).$$

The eigenvalues are:

$$\lambda_1 = 2, \ \lambda_2 = 2 + 3i, \ \lambda_3 = 2 - 3i.$$
\[A - \lambda I = \begin{pmatrix} 1 - \lambda & -4 & -1 \\ 3 & 2 - \lambda & 3 \\ 1 & 1 & 3 - \lambda \end{pmatrix} \]

\[\lambda_1 = 2: \text{ Solve} \]

\[
\begin{pmatrix} -1 & -4 & -1 & 0 \\ 3 & 0 & 3 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \rightarrow
\]

\[v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \]
\[A - \lambda I = \begin{pmatrix}
1 - \lambda & -4 & -1 \\
3 & 2 - \lambda & 3 \\
1 & 1 & 3 - \lambda
\end{pmatrix} \]

For \(\lambda_2 = 2 + 3i \): Solve

\[\begin{pmatrix}
-1 - 3i & -4 & -1 \\
3 & -3i & 3 \\
1 & 1 & 1 - 3i
\end{pmatrix} \rightarrow \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix} \]
The solution set is:

\[x_1 = \left(-\frac{5}{2} + \frac{3}{2}i \right) x_3, \quad x_2 = \left(\frac{3}{2} + \frac{3}{2}i \right) x_3, \]

\[x_3 \text{ arbitrary.} \]

\[v_2 = \begin{pmatrix} -5 + 3i \\ 3 + 3i \\ 2 \end{pmatrix} = \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix} + i \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}. \]

and

\[v_3 = \begin{pmatrix} -5 - 3i \\ 3 - 3i \\ 2 \end{pmatrix} = \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix} - i \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}. \]
Now

\[u_1 = e^{(2+3i)t} \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix} + i \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix} \]

and

\[u_2 = e^{(2-3i)t} \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix} - i \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix} \]

can be converted to:

\[x_1 = e^{2t} \begin{pmatrix} \cos 3t & \cos 3t & \cos 3t \end{pmatrix} \]

\[\begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix} \]

\[- \sin 3t \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix} \]

and

\[x_2 = e^{2t} \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \sin 3t \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix} \]
Fundamental set of solution vectors:

\[x_1 = e^{2t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \]

\[x_2 = e^{2t} \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix} \cos 3t \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix} - \sin 3t \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}, \]

\[x_3 = e^{2t} \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix} \cos 3t \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix} + \sin 3t \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix}. \]

General solution:

\[x = C_1 x_1 + C_2 x_2 + C_3 x_3 \]
2. Repeated eigenvalues

Example 1. Find a fundamental set of solutions of

\[x' = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix} x. \]

\[\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & -3 & 3 \\ 3 & -5 - \lambda & 3 \\ 6 & -6 & 4 - \lambda \end{vmatrix} \]

\[= 16 + 12\lambda - \lambda^3 = -(\lambda - 4)(\lambda + 2)^2. \]

Eigenvalues: \(\lambda_1 = 4, \lambda_2 = \lambda_3 = -2 \)
\[\lambda_1 = 4 : \quad (A - 4I) = \begin{pmatrix} -3 & -3 & 3 \\ 3 & -9 & 3 \\ 6 & -6 & 0 \end{pmatrix} \]

Solve:

\[(A - 4I)x = \begin{pmatrix} -3 & -3 & 3 \\ 3 & -9 & 3 \\ 6 & -6 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \]
\(\lambda_2 = \lambda_3 = -2: \)

\[
A - (-2)I = \begin{pmatrix}
3 & -3 & 3 \\
3 & -3 & 3 \\
6 & -6 & 6
\end{pmatrix}
\]
which row reduces to

\[
\begin{pmatrix}
1 & -1 & 1 & | & 0 \\
0 & 0 & 0 & | & 0 \\
0 & 0 & 0 & | & 0 \\
\end{pmatrix}.
\]

Solution set:

\[
x_1 = a - b, \quad x_2 = a, \quad x_3 = b
\]

\(a, b\) any real numbers.

Set \(a = 1, b = 0\) : \(v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}\);

Set \(a = 0, b = -1\) : \(v_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}\).
Fundamental set:

\[
\left\{ e^{4t} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \quad e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad e^{-2t} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}.
\]
Example 2. Find a fundamental set of solutions of \(x' = \begin{pmatrix} -4 & 1 \\ -4 & 0 \end{pmatrix}x \).

\[
\det(A - \lambda I) = \begin{vmatrix} -4 - \lambda & 1 \\ -4 & -\lambda \end{vmatrix} = \lambda^2 + 4\lambda + 4.
\]

Characteristic equation:

\[
\lambda^2 + 4\lambda + 4 = 0
\]

Eigenvalues:

\[
\lambda_1 = \lambda_2 = -2.
\]
Eigenvectors: \(A - \lambda I = \begin{pmatrix} -4 - \lambda & 1 \\ -4 & -\lambda \end{pmatrix} \)

\(\lambda_1 = \lambda_2 = -2 \): Solve

\[(A - (-2)I)x = \begin{pmatrix} -2 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

\[
\begin{pmatrix} -2 & 1 \\ -4 & 2 \end{pmatrix} \rightarrow
\]

Problem: Only one eigenvector and only one solution! We need another solution.
Graphs
Example 3. Find a fundamental set of solutions of

\[
x' = \begin{pmatrix} 5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{pmatrix} x.
\]

\[
\det(A - \lambda I) = \begin{vmatrix} 5 - \lambda & 6 & 2 \\ 0 & -1 - \lambda & -8 \\ 1 & 0 & -2 - \lambda \end{vmatrix}
= -36 + 15\lambda + 2\lambda^2 - \lambda^3 = -(\lambda + 4)(\lambda - 3)^2.
\]

Eigenvalues: \(\lambda_1 = -4, \lambda_2 = \lambda_3 = 3.\)
\[\lambda_1 = -4: \quad A - (-4)I = \begin{pmatrix} 9 & 6 & 2 \\ 0 & 3 & -8 \\ 1 & 0 & 2 \end{pmatrix} \]

\[
\begin{pmatrix} 9 & 6 & 2 & | & 0 \\ 0 & 3 & -8 & | & 0 \\ 1 & 0 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & | & 0 \\ 0 & 3 & -8 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \rightarrow
\]

\[
x_1 = -2x_3, \quad x_2 = \frac{8}{3}x_3, \quad x_3 \text{ arbitrary}
\]

Set \(x_3 = -3 \) : \quad \mathbf{v}_1 = \begin{pmatrix} 6 \\ -8 \\ -3 \end{pmatrix}

\[
x_1 = e^{-4t} \begin{pmatrix} 6 \\ -8 \\ -3 \end{pmatrix}
\]
$\lambda_2 = \lambda_3 = 3:$

$$A - 3I = \begin{pmatrix} 2 & 6 & 2 \\ 0 & -4 & -8 \\ 1 & 0 & -5 \end{pmatrix}$$

Solve

$$(A - 3I)x = \begin{pmatrix} 2 & 6 & 2 \\ 0 & -4 & -8 \\ 1 & 0 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 6 & 2 & | & 0 \\ 0 & -4 & -8 & | & 0 \\ 1 & 0 & -5 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -5 & | & 0 \\ 0 & -4 & -8 & | & 0 \\ 2 & 6 & 2 & | & 0 \end{pmatrix}$$
\[
\begin{pmatrix}
2 & 6 & 2 & | & 0 \\
0 & -4 & -8 & | & 0 \\
1 & 0 & -5 & | & 0 \\
\end{pmatrix}
\]
which row reduces to
\[
\begin{pmatrix}
1 & 0 & -5 & | & 0 \\
0 & 1 & 2 & | & 0 \\
0 & 0 & 0 & | & 0 \\
\end{pmatrix}
\].

\[x_1 = 5x_3, \ x_2 = -2x_3, \ x_3 \ \text{arbitrary}\]

Set \[x_3 = 1: \ v_2 = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}\]

Problem: Only one eigenvector here!
Solutions:

\[x_1 = e^{-4t} \begin{pmatrix} 6 \\ -8 \\ -3 \end{pmatrix}, \quad x_2 = e^{3t} \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}. \]

Problem: Only two solutions!

We need a third solution \(x_3 \) which is independent of \(x_1, x_2 \).
Consider the linear equation

\[y''' + y'' - 8y' - 12y = 0 \]

Char.eqn.

\[r^3 + r^2 - 8r - 12 = (r - 3)(r + 2)^2 = 0. \]

Fundamental set: \(\{ e^{3t}, e^{-2t}, te^{-2t} \} \)
Equivalent system: \(x' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 12 & 8 & -1 \end{pmatrix} x \)

\[
\text{det}(A - \lambda I) = \begin{vmatrix} -\lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 12 & 8 & -1 - \lambda \end{vmatrix} = -\lambda^3 - \lambda^2 + 8\lambda + 12\lambda
\]

char. eqn.:

\[
\lambda^3 + \lambda^2 - 8\lambda - 12 = (\lambda - 3)(\lambda + 2)^2
\]

Eigenvalues: \(\lambda_1 = 3, \quad \lambda_2 = \lambda_3 = -2 \)
Fundamental set:

\[x_1 = e^{3t} \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix}, \quad x_2 = e^{-2t} \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}, \]

\[x_3 = e^{-2t} \begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix} + te^{-2t} \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix} \]

Question:

What is the vector \(\begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix} \) ???
\[
[A - (-2)I] \begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 12 & 8 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -4 \end{pmatrix} = 109
\]
$A - (-2I)$ “maps” \[
\begin{pmatrix}
0 \\
1 \\
-4
\end{pmatrix}
\] onto the eigenvector \[
\begin{pmatrix}
1 \\
-2 \\
4
\end{pmatrix}
\].

$w = \begin{pmatrix}
0 \\
1 \\
-4
\end{pmatrix}$

is called a generalized eigenvector.

The third solution has the form

$$x_3 = e^{-2t}w + te^{-2t}v$$
Back to Example 3. The third solution has the form

\[x_3 = e^{3t}w + te^{3t}v \]

Solve

\[
(A - 3I)w = \begin{pmatrix} 2 & 6 & 2 \\ 0 & -4 & -8 \\ 1 & 0 & -5 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 2 & 6 & 2 & | & 5 \\ 0 & -4 & -8 & | & -2 \\ 1 & 0 & -5 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -5 & | & 1 \\ 0 & -4 & -8 & | & -2 \\ 2 & 6 & 2 & | & 5 \end{pmatrix} \rightarrow
\]
\[
\begin{pmatrix}
1 & 0 & -5 & 1 \\
0 & 1 & 2 & 1/2 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

Solution set:

\[w_1 = 1 + 5w_3, \ w_2 = \frac{1}{2} - 2w_3, \ w_3 \text{ arbitrary}\]

Set \(w_3 = 0 \):

\[w = \begin{pmatrix} 1 \\ 1/2 \\ 0 \end{pmatrix}\]

\[x_3 = e^{3t} \begin{pmatrix} 1 \\ 1/2 \\ 0 \end{pmatrix} + te^{3t} \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}\]
Fundamental set:

\[x_1 = e^{-4t} \begin{pmatrix} 6 \\ -8 \\ -3 \end{pmatrix}, \quad x_2 = e^{3t} \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix}, \]

\[x_3 = e^{3t} \begin{pmatrix} 1 \\ 1/2 \\ 0 \end{pmatrix} + te^{3t} \begin{pmatrix} 5 \\ -2 \\ 1 \end{pmatrix} \]
Back to Example 2. Solve

\[(A - (-2)I)w = \begin{pmatrix} -2 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}\]
Fundamental set:

\[x_1 = e^{-2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \]

\[x_2 = e^{-2t} \begin{pmatrix} 1 \\ 3 \end{pmatrix} + te^{-2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \]
Eigenvalues of multiplicity 2:

Given \(\mathbf{x}' = A \mathbf{x} \).

Suppose that \(A \) has an eigenvalue \(\lambda \) of multiplicity 2. Then exactly one of the following holds:
1. \(\lambda \) has two linearly independent eigenvectors, \(v_1 \) and \(v_2 \). Corresponding linearly independent solution vectors of the differential system are

\[
x_1(t) = e^{\lambda t}v_1 \quad \text{and} \quad x_2(t) = e^{\lambda t}v_2.
\]

(See Example 1.)
2. λ has only one eigenvector v. (See Examples 2 and 3.) Then a linearly independent pair of solution vectors corresponding to λ is:

$$x_1(t) = e^{\lambda t}v \quad \text{and} \quad x_2(t) = e^{\lambda t}w + te^{\lambda t}v$$

where w is a vector that satisfies

$$(A - \lambda I)w = v.$$

The vector w is called a **generalized eigenvector** corresponding to the eigenvalue λ.
Examples: Find a fundamental set of solutions and the general solution.

1. \[x' = \begin{pmatrix} 2 & 5 \\ -1 & 4 \end{pmatrix} x. \]

\[
\text{det} \left(A - \lambda I \right) = \begin{vmatrix} 2 - \lambda & 5 \\ -1 & 4 - \lambda \end{vmatrix} \\
= \lambda^2 - 6\lambda + 13
\]

Eigenvalues: \(3 + 2i, \quad 3 - 2i \)
\[(A - \lambda I) = \begin{pmatrix} 2 - \lambda & 5 \\ -1 & 4 - \lambda \end{pmatrix}\]

\[\lambda_1 = 3 + 2i, \quad \mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + i \begin{pmatrix} -2 \\ 0 \end{pmatrix}\]
Fundamental set:

\[x_1 = e^{3t} \left[\cos 2t \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \sin 2t \begin{pmatrix} -2 \\ 0 \end{pmatrix} \right] \]

\[x_2 = e^{3t} \left[\cos 2t \begin{pmatrix} -2 \\ 0 \end{pmatrix} - \sin 2t \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right] \]

General solution:

\[x(t) = C_1 x_1 + C_2 x_2 \]
2. \[x' = \begin{pmatrix} -4 & 1 & -2 \\ 2 & -3 & 2 \\ 2 & -1 & 0 \end{pmatrix} x. \]

HINT: \(-3\) is an eigenvalue and \(-2\) is an eigenvalue of multiplicity 2

Characteristic eqn: \((\lambda+3)(\lambda+2)^2=0\)
\[(A - \lambda I) = \begin{pmatrix} -4 - \lambda & 1 & -2 \\ 2 & -3 - \lambda & 2 \\ 2 & -1 & -\lambda \end{pmatrix} \]

\[\lambda_1 = -3: \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}\]
\[(A - \lambda I) = \begin{pmatrix}
-4 - \lambda & 1 & -2 \\
2 & -3 - \lambda & 2 \\
2 & -1 & -\lambda
\end{pmatrix}
\]

\[
\lambda_2 = \lambda_3 = -2 : \quad \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}
\]

\[
\begin{pmatrix}
-2 & 1 & -2 | 0 \\
2 & -1 & 2 | 0 \\
2 & -1 & 2 | 0
\end{pmatrix} \rightarrow
\]
Fundamental set:

\[e^{-3t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \quad e^{-2t} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad e^{-2t} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \]

General solution:

\[x = C_1 e^{-3t} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + C_2 e^{-2t} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + C_3 e^{-2t} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \]
3. \[x' = \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{pmatrix} x. \]

HINT: 4 is an eigenvalue and \(-2\) is an eigenvalue of multiplicity 2

Characteristic eqn: \((\lambda - 4)(\lambda + 2)^2 = 0\)
\[(A - \lambda I) = \begin{pmatrix}
-3 - \lambda & 1 & -1 \\
-7 & 5 - \lambda & -1 \\
-6 & 6 & -2 - \lambda
\end{pmatrix}\]

\[\lambda_1 = 4 : \quad v_1 = \begin{pmatrix}
0 \\
1 \\
1
\end{pmatrix}\]
\[(A - \lambda I) = \begin{pmatrix} -3 - \lambda & 1 & -1 \\ -7 & 5 - \lambda & -1 \\ -6 & 6 & -2 - \lambda \end{pmatrix} \]

\[\lambda_2 = \lambda_3 = -2: \quad v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}\]
\[(A - \lambda I) = \begin{pmatrix}
-3 - \lambda & 1 & -1 \\
-7 & 5 - \lambda & -1 \\
-6 & 6 & -2 - \lambda
\end{pmatrix}\]

\[[A - (-2)I]w = \begin{pmatrix}
1 \\
1 \\
0
\end{pmatrix}\]
Fund. Set: \(e^{4t} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \)

\[e^{-2t} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + te^{-2t} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \]

General solution:

\[\mathbf{x} = C_1 e^{4t} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + C_2 e^{-2t} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \]

\[C_3 \begin{bmatrix} e^{-2t} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + te^{-2t} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix} \]
4. \[x' = \begin{pmatrix} 1 & -2 \\ 2 & 5 \end{pmatrix} x \]

Characteristic polynomial:

\[
\det (A - \lambda I) = \begin{vmatrix} 1 - \lambda & -2 \\ 2 & 5 - \lambda \end{vmatrix} = \lambda^2 - 6\lambda + 9
\]

Characteristic equation:

\[\lambda^2 - 6\lambda + 9 = (\lambda - 3)^2 = 0 \]

Eigenvalues: \[\lambda_1 = \lambda_2 = 3 \]
Eigenvectors:

\[(A - 3I)x = \begin{pmatrix} -2 & -2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\]

\[
\begin{pmatrix} -2 & -2 & | & 0 \\ 2 & 2 & | & 0 \end{pmatrix} \rightarrow
\]
\[\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \]

\[
\begin{pmatrix}
-2 & -2 \\
2 & 2
\end{pmatrix}
\begin{pmatrix}
1 \\
-1
\end{pmatrix} \rightarrow
\]
Fundamental set:

\[x_1 = e^{3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \]

\[x_2 = e^{3t} \begin{pmatrix} -1/2 \\ 0 \end{pmatrix} + te^{3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \]

General solution:

\[x = C_1 e^{3x} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \\
C_2 \left[e^{3t} \begin{pmatrix} -1/2 \\ 0 \end{pmatrix} + te^{3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] \]
Graphs
5. \[x' = \begin{pmatrix} -3 & -2 \\ 4 & 1 \end{pmatrix} x. \]

\[
\det(A - \lambda I) = \begin{vmatrix} -3 - \lambda & -2 \\ 4 & 1 - \lambda \end{vmatrix}
\]

\[= \lambda^2 + 2\lambda + 5.\]

Characteristic equation:

\[\lambda^2 + 2\lambda + 5 = 0\]

Eigenvalues:

\[\lambda_1 = -1 + 2i, \quad \lambda_2 = -1 - 2i.\]
Eigenvectors:

\[\lambda_1 = -1 + 2i, \quad v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} + i \begin{pmatrix} 0 \\ -1 \end{pmatrix}. \]

\[\lambda_2 = -1 - 2i, \quad v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} - i \begin{pmatrix} 0 \\ -1 \end{pmatrix}. \]

General solution:

\[x = C_1 e^{-t} \left[\cos 2t \begin{pmatrix} 1 \\ -1 \end{pmatrix} - \sin 2t \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right] + \]

\[C_2 e^{-t} \left[\cos 2t \begin{pmatrix} 0 \\ -1 \end{pmatrix} + \sin 2t \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] \]
Graphs
Given the differential system

\[x' = Ax. \]

Suppose that \(\lambda \) is an eigenvalue of \(A \) of multiplicity 3. Then exactly one of the following holds:
1. \(\lambda \) has three linearly independent eigenvectors \(v_1, v_2, v_3 \). Then three linearly independent solution vectors of the system corresponding to \(\lambda \) are:

\[
x_1(t) = e^{\lambda t}v_1, \quad x_2(t) = e^{\lambda t}v_2, \quad x_3(t) = e^{\lambda t}v_3.
\]
2. λ has two linearly independent eigenvectors v_1, v_2. Then three linearly independent solutions of the system corresponding to λ are:

$$x_1(t) = e^{\lambda t} v_1, \quad x_2(t) = e^{\lambda t} v_2$$

and

$$x_3(t) = e^{\lambda t} w + t e^{\lambda t} v$$

where v is an eigenvector corresponding to λ and $(A - \lambda I)w = v$. That is: $(A - \lambda I)^2 w = 0$.

141
3. λ has only one (independent) eigenvector v. Then three linearly independent solutions of the system have the form:

$$x_1 = e^{\lambda t}v, \quad x_2 = e^{\lambda t}w + te^{\lambda t}v,$$

$$v_3(t) = e^{\lambda t}z + te^{\lambda t}w + t^2e^{\lambda t}v$$

where

$$(A - \lambda I)z = w \quad \& \quad (A - \lambda I)w = v, \quad i.e.$$

$$(A - \lambda I)^3z = 0 \quad \& \quad (A - \lambda I)^2w = 0$$
Example:

\[y''' - 6y'' + 12y' - 8y = 0 \]

Char. eqn.: \((r - 2)^3 = 0 \)

Char. roots: \(r_1 = r_2 = r_3 = 2 \)

Fundamental set:

\(\{ e^{2t}, \ t e^{2t}, \ t^2 e^{2t} \} \)
Corresponding system:

\[
x' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 8 & -12 & 6 \end{pmatrix} x
\]

Fundamental set:

\[
x_1 = e^{2t} \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \quad x_2 = e^{2t} \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} + te^{2t} \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix},
\]

\[
x_3 = e^{2t} \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} + te^{2t} \begin{pmatrix} 0 \\ 2 \\ 8 \end{pmatrix} + t^2 e^{2t} \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}
\]