POLYNOMIALS

(Polynomials with Real Coefficients)

Definition 1: A real polynomial is an expression of the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where n is a nonnegative integer and $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}$ are real numbers with $a_{n} \neq 0$. The nonnegative integer n is called the degree of P. The numbers $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}$ are called the coefficients of $P ; a_{n}$ is called the leading coefficient.

Examples:

- Polynomials of degree 0 : The non-zero constants $P(x) \equiv a$. Note: $P(x) \equiv 0$ (the zero polynomial) is a polynomial but no degree is assigned to it.
- Polynomials of degree 1: Linear polynomials $P(x)=a x+b$. The graph of a linear polynomial is a straight line.
- Polynomials of degree 2: Quadratic polynomials $\quad P(x)=a x^{2}+b x+c$. The graph of a quadratic polynomial is a parabola which opens up if $a>0$, down if $a<0$.
- Polynomials of degree 3: Cubic polynomials $\quad P(x)=a x^{3}+b x^{2}+c x+d$.
- Polynomials of degree 4: Quartic polynomials $\quad P(x)=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$.
- Polynomials of degree 5: Quintic polynomials

$$
P(x)=a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} .
$$

- And so on.

Definition 2: Let P be a polynomial of degree $n \geq 1$. A number r such that $P(r)=0$ is called a root or zero of P.

Examples:

- $r=-\frac{b}{a}$ is a root of the linear polynomial $P(x)=a x+b$.
- $r_{1}, r_{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ (the quadratic formula) are the roots of the quadratic polynomial

$$
P(x)=a x^{2}+b x+c .
$$

- There is a cubic formula and a quartic formula. There are no formulas for the roots of a polynomial of degree $n \geq 5$.

THEOREM 1. (Factor Theorem) A number r is a root of the polynomial P (of degree n) if and only if $(x-r)$ is a factor of P. That is, r is a root of P if and only if

$$
P(x)=(x-r) Q(x)
$$

where Q is a polynomial of degree $n-1$.

Definition 3: Suppose P is a polynomial of degree n. A number r is a root of P of multiplicity k if and only if $(x-r)^{k}$ is a factor of P and $(x-r)^{k+1}$ is not a factor of P. That is, r is a root of P of multiplicity k if and only if

$$
P(x)=(x-r)^{k} Q(x)
$$

where Q is a polynomial of degree $m=n-k$ and r is not a root of Q.

NOTE: A polynomial with real coefficients may have roots that are complex numbers. For example, the roots of the quadratic polynomial

$$
P(x)=x^{2}-2 x+5
$$

are $r_{1}=1+2 i$ and $r_{2}=1-2 i$.

THEOREM 2. (Complex Root Theorem) If $r_{1}=\alpha+\beta i$ is a root of the polynomial P, then $r_{2}=\alpha-\beta i$ (the conjugate of r_{1}) is also a root of P; the complex roots of P occur in conjugate pairs.

COROLLARY: A polynomial of odd degree must have at least one real root.

THEOREM 3. A polynomial of degree $n \geq 1$ has exactly n roots, counting multiplicities. The roots may be either real numbers or complex numbers, with any complex roots occurring in conjugate pairs.

