Final Exam Review Questions

1. \(y^2 = Cx^3 - 3x\) is the general solution of a differential equation. Find the equation.
 \[
 y' = \frac{3y^2 + 6x}{2xy}
 \]

2. \(y = C_1x^3 + C_2 - 2x\) is the general solution of a differential equation. Find the equation.
 \[
 xy'' - 2y' = 4
 \]

3. Identify and find the general solution of each of the following first order differential equations.
 (a) \(xy' = 5x^3y^{1/2} - 4y\)
 \[
 \text{Answer: Bernoulli, } y^{1/2} = \frac{1}{2} x^3 + \frac{C}{x^2}
 \]
 (b) \(x y' + 3y = \cos \frac{2x}{x^2}\)
 \[
 \text{Answer: linear, } y = \frac{\sin 2x}{2x^3} + \frac{C}{x^3}
 \]
 (c) \(x^2 \frac{dy}{dx} = x^2 + xy + y^2\)
 \[
 \text{Answer: homogeneous, } y = x \tan(\ln x + C)
 \]
 (d) \(2y' = \frac{y^2 + 3}{4y + xy}\)
 \[
 \text{Answer: separable, } y^2 = C(4 + x) - 3
 \]
 (e) \(x^2y' = 4x^3y^3 + xy\)
 \[
 \text{Answer: Bernoulli, } y^2 = \frac{x^2}{C - 2x^4}
 \]
 (f) \(x^3y' = x^2y + 2x^3e^{y/x}\)
 \[
 \text{Answer: homogeneous, } y = x \ln \left(\frac{1}{C - \ln x^2}\right)
 \]

4. Given the one-parameter family \(y^3 = Cx^2 + 4\).
 (a) Find the differential equation for the family.
 (b) Find the differential equation for the family of orthogonal trajectories.
 (c) Find the family of orthogonal trajectories.
 \[
 \text{Answer: (a) } y' = \frac{2y^3 - 8}{3xy^2} \quad \text{(b) } y' = \frac{-3xy^2}{2y^3 - 8} \quad \text{(c) } 3x^2 + 2y^2 + \frac{16}{y} = C
 \]

5. A certain radioactive material is decaying at a rate proportional to the amount present. If a sample of 100 grams of the material was present initially and after 3 hours the sample lost 30\% of its mass, find:
 (a) An expression for the mass \(A(t)\) of the material remaining at any time \(t\).
(b) The mass of the material after 8 hours.
(c) The half-life of the material.

Answer: (a) \(A(t) = 100 \left(\frac{7}{10} \right)^{t/3} \), (b) \(A(8) = 100 \left(\frac{7}{10} \right)^{8/3} \approx 30.63 \), (c) \(T = \frac{-3 \ln 2}{\ln(7/10)} \)

6. Scientists observed that a colony of penguins on a remote Antarctic island obeys the population growth law. There were 1000 penguins in the initial population and there were 3000 penguins 4 years later.

(a) Give an expression for the number \(P(t) \) of penguins at any time \(t \).
(b) How many penguins will there be after 6 years (to the nearest penguin)?
(c) How long will it take for the number of penguins to quadruple?

Answer: (a) \(P(t) = 1000(3)^{t/4} \), (b) \(P(6) = 1000(3)^{3/2} \approx 5,196 \), (c) \(t = \frac{4 \ln 4}{\ln 3} \) years

7. A disease is infecting a herd of 1000 cows. Let \(P(t) \) be the number of sick cows \(t \) days after the outbreak. Suppose that 50 cows had the disease initially, and suppose that the disease is spreading at a rate proportional to the product of the time elapsed and the number of cows who do not have the disease.

(a) Give the mathematical model (initial-value problem) for \(P \).
(b) Find the solution of the initial-value problem in (a).

Answer: (a) \(\frac{dP}{dt} = kt(1000 - P), P(0) = 50 \), (b) \(P(t) = 1000 - 950e^{-kt^2/2} \)

8. Determine a fundamental set of solutions of \(y'' - 2y' - 15y = 0 \).

Answer: \(\{y_1 = e^{5x}, y_2 = e^{-3x}\} \)

9. Find the general solution of \(y'' + 6y' + 9y = 0 \).

Answer: \(y = C_1 e^{-3x} + C_2 xe^{-3x} \)

10. Find the general solution of \(y'' + 4y' + 20y = 0 \)

Answer: \(y = C_1 e^{-2x} \cos 4x + C_2 e^{-2x} \sin 4x \)

11. Find the solution of the initial-value problem \(y'' - 7y' + 12y = 0, y(0) = 3, y'(0) = 0 \).

Answer: \(y = 12e^{3x} - 9e^{4x} \).

12. The function \(y = -2 e^{-3x} \sin 2x \) is a solution of a second order, linear, homogeneous differential equation with constant coefficients. What is the equation?

Answer: \(y'' + 6y' + 13y = 0 \)
13. The function

\[y = 4xe^{-4x} \]

is a solution of a second order, linear, homogeneous differential equation with constant coefficients. What is the equation?

Answer: \[y'' + 8y' + 16y = 0 \]

14. Find a particular solution of \(y'' - 6y' + 8y = 4e^{4x} \).

Answer: \(z = 2xe^{4x} \)

15. Give the form of a particular solution of the nonhomogeneous differential equation

\[y'' - 8y' + 16y = 2e^{4x} + 3\cos 4x - 2x + 1. \]

Answer: \(z = Ax^2e^{4x} + B\cos 4x + C\sin 4x + Dx + E \)

16. Given the differential equation

\[y'' - 4y' + 4y = \frac{e^{2x}}{x} \]

(a) Give the general solution of the reduced equation.

(b) Find a particular solution of the nonhomogeneous equation.

Answer: (a) \(y = C_1e^{2x} + C_2xe^{2x} \) (b) \(z = xe^{2x}\ln x \)

17. Find the general solution of \(y'' - \frac{4}{x}y' + \frac{6}{x^2}y = 4x \). HINT: The reduced equation has solutions of the form \(y = x^r \).

Answer: \(y = c_1x^2 + c_2x^3 + 4x^3\ln x \)

18. Find a particular solution of \(y'' + 4y = 2\tan 2x \).

Answer: \(z = -\frac{1}{2}\cos 2x\ln|\sec 2x + \tan 2x| \)

19. The general solution of

\[y^{(4)} - 6y''' + 17y'' - 28y' + 20y = 0 \]

is: (HINT: 2 is a root of the characteristic polynomial)

Answer: \(y = C_1e^{2x} + C_2xe^{2x} + C_3e^x\cos 2x + C_4e^x\sin 2x \)

20. Find the linear homogeneous equation of least order that has \(y = 2xe^{-3x} + 4\cos 2x + 9x \) as a solution.

Answer: \(y^{(6)} + 6y^{(5)} + 13y^{(4)} + 24y''' + 36y'' = 0 \)

21. Find the Laplace transform of the solution of the initial-value problem

\[y'' - 3y' - 6y = 2e^{2x} + 4; \ y(0) = 5, \ y'(0) = -2 \]

Answer: \(Y(s) = \frac{2}{(s - 2)(s^2 - 3s - 6)} + \frac{4}{s(s^2 - 3s - 6)} + \frac{5s - 17}{s^2 - 3s - 6} \)
22. Find \(f(x) = \mathcal{L}^{-1}[F(s)] \) if \(F(s) = \frac{3}{s^2} + \frac{4s + 3}{s^2 + 4} \).

Answer: \(f(x) = 3x + 4\cos 2x + \frac{1}{2}\sin 2x \)

23. Find \(f(x) = \mathcal{L}^{-1}[F(s)] \) if \(F(s) = \frac{s^2 - 3s - 1}{(s - 2)^2(s + 4)} \)

Answer: \(f(x) = \frac{1}{4}e^{2x} - \frac{1}{2}xe^{2x} + \frac{3}{4}e^{-4x} \)

24. Find \(L[f(x)] \) if

\[
f(x) = \begin{cases}
 x^2 + 2x & 0 \leq x < 4 \\
 x & x \geq 4
\end{cases}
\]

Answer: \(F(s) = \frac{2}{s^3} + \frac{2}{s^2} - e^{-4s}\frac{2}{s^3} - 9e^{-4s}\frac{1}{s} - 20e^{-4s}\frac{1}{s} \)

25. \(F(s) = \frac{5}{s^3} - \frac{3}{s} - 2e^{-3s}\frac{1}{s^3} + 3e^{-3s}\frac{1}{s} + 2e^{-3s}\frac{s + 1}{s^2 + \pi^2} \). Find \(\mathcal{L}^{-1}[F(s)] = f(x) \).

Answer: \(f(x) = \begin{cases}
 5x - 3, & 0 \leq x < 3 \\
 3x + 6 - 2\cos \pi x - \frac{2}{\pi}\sin \pi x, & x \geq 3
\end{cases} \)

26. Given the initial-value problem

\[y' - 4y = 2e^{-2x}, \quad y(0) = 3. \]

(a) Find the Laplace transform of the solution.

(b) Find the solution by finding the inverse Laplace transform of your answer to (a).

Answer: (a) \(Y(s) = \frac{2}{(s + 2)(s - 4)} + \frac{3}{s - 4} \)

(b) \(y = \frac{10}{3}e^{4x} - \frac{4}{3}e^{-2x} \)

27. Given the system of equations

\[
\begin{align*}
x + 2y - z &= 1 \\
2x + 5y - 4z &= 3 \\
-2x - 2y - 2z &= 0
\end{align*}
\]

(a) Write the augmented matrix for the system.

(b) Reduce the augmented matrix to row-echelon form.

(c) Give the solution set of the system.

Answer: (a) \[
\begin{pmatrix}
1 & 2 & -1 & 1 \\
2 & 5 & -4 & 3 \\
-2 & -2 & -2 & 0
\end{pmatrix}
\] (b) \[
\begin{pmatrix}
1 & 2 & -1 & 1 \\
0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

(c) \(x = -1 - 3a, \ y = 1 + 2a, \ z = a \) a any real number
28. Determine the values of \(k \) so that the system of equations

\[
\begin{align*}
 x + y - z &= 1 \\
 2x + 3y + kz &= 3 \\
 x + ky + 3z &= 2
\end{align*}
\]

has: (a) a unique solution, (b) no solutions, (c) infinitely many solutions

\textbf{Answer:} \((a) \ k \neq -3, 2 \quad (b) \ k = -3 \quad (c) \ k = 2 \)

29. Find the values of \(\lambda \), (if any) such that \(A = \begin{pmatrix} \lambda & 0 & 3 \\ 0 & 1 & \lambda \\ -2 & -1 & -5 \end{pmatrix} \) is nonsingular.

\textbf{Answer:} \(\lambda \neq 2, 3 \)

30. The matrix \(A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 5 & -3 \\ -2 & -4 & 1 \end{pmatrix} \) is nonsingular. Find \(A^{-1} \).

\textbf{Answer:} \(A^{-1} = \begin{pmatrix} -7 & -2 & -6 \\ 4 & 1 & 3 \\ 2 & 0 & 1 \end{pmatrix} \)

31. The system of equations

\[
\begin{align*}
 2x - y + 3z &= 4 \\
 y + 2z &= -2 \\
 x + z &= 1
\end{align*}
\]

has a unique solution. Find \(y \).

\textbf{Answer:} \(y = -2 \)

32. Determine whether the vectors

\[
\begin{align*}
 \mathbf{v}_1 &= (1, -3, 2), \quad \mathbf{v}_2 = (0, -2, -2), \\
 \mathbf{v}_3 &= (1, -5, 0), \quad \mathbf{v}_4 = (0, 4, 4)
\end{align*}
\]

are linearly dependent or linearly independent. If they are linearly dependent, find the maximal number of independent vectors.

\textbf{Answer:} The vectors are linearly dependent. The maximum number of independent vectors is 2.
33. For what values of a are the vectors

\[v_1 = (1, 3, a), \quad v_2 = (-a, -2, -2), \quad \]

\[v_3 = (1, -1, 0) \]

linearly dependent?

Answer: $a = -4, 2$

34. Find the eigenvalues and eigenvectors of \(\begin{pmatrix} 3 & 2 & -2 \\ -3 & -1 & 3 \\ 1 & 2 & 0 \end{pmatrix} \). Hint: 2 is an eigenvalue.

Answer: \(\lambda_1 = 2, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \); \(\lambda_2 = -1, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \); \(\lambda_3 = 1, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \)

35. Find the eigenvalues and eigenvectors of \(\begin{pmatrix} 2 & 2 & -6 \\ 2 & -1 & -3 \\ -2 & -1 & 1 \end{pmatrix} \). Hint: 6 is an eigenvalue.

Answer: \(\lambda_1 = 6, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \); \(\lambda_2 = -2, \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} \); \(\lambda_3 = -2, \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \)

36. Find the eigenvalues and eigenvectors of \(\begin{pmatrix} -2 & 1 & -1 \\ 3 & -3 & 4 \\ 3 & -1 & 2 \end{pmatrix} \). Hint: 1 is an eigenvalue.

Answer: \(\lambda_1 = 1, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \); \(\lambda_2 = \lambda_3 = -2, \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \)

37. Find the solution of the initial-value problem \(x' = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ -1 & 1 & 3 \end{pmatrix} x, \quad x(0) = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \). HINT: 1 is an eigenvalue.

Answer: \(x(t) = 2e^{2t} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - e^t \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \)

38. Find a fundamental set of solutions of \(x' = \begin{pmatrix} 2 & 1 \\ -5 & 4 \end{pmatrix} x. \)

Answer: \(\left\{ e^{3t} \begin{pmatrix} \cos 2t & 1 \\ -\sin 2t & 0 \end{pmatrix}, e^{3t} \begin{pmatrix} \cos 2t & 0 \\ \sin 2t & 1 \end{pmatrix} \right\} \)
39. The system \(x' = \begin{pmatrix} 0 & 1 \\ -8 & 6 \end{pmatrix} x \) is equivalent to a second order linear equation. (a) What is the equation? (b) Find the general solution of the system.

Answer: (a) \(y'' - 6y' + 8y = 0 \) (b) \(x(t) = C_1 e^{2t} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + C_2 e^{4t} \begin{pmatrix} 1 \\ 4 \end{pmatrix} \)

40. Find the general solution of \(x' = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix} x \).

Answer: \(x(t) = C_1 e^{3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} + C_2 \left[e^{3t} \begin{pmatrix} -2 \\ 1 \end{pmatrix} + te^{3t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right] \)

41. Find the general solution of \(x' = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} x \). HINT: 2 is a root of the characteristic polynomial.

Answer: \(x(t) = C_1 e^{-t} \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + C_3 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + te^{2t} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \)

42. Find a fundamental set of solutions of \(x' = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix} x \). HINT: 10 is a root of the characteristic polynomial.

Answer: \[\left\{ e^t \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}, \ e^t \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, \ e^{10t} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \right\} \]