1. **Introduction to Differential Equations**
 1.1 Basic Terminology
 1.2 \(n \)-Parameter Family of Solutions; Initial-Value Problems

2. **First Order Differential Equations**
 2.1 Linear Differential Equations
 2.2 Separable Differential Equations
 2.3 Extensions to Other First Order Equations
 2.4 Some Applications of First Order Differential Equations
 2.5 Direction Fields; Existence and Uniqueness
 2.6 Some Numerical Methods

3. **Second Order Linear Differential Equations**
 3.1 Introduction; Basic Terminology and Results
 3.2 Second Order Linear Homogeneous Equations
 3.3 Homogeneous Equations with Constant Coefficients
 3.4 Nonhomogeneous Equations
 3.5 Nonhomogeneous Equations with Constant Coefficients; Undetermined Coefficients
 3.6 Vibrating Mechanical Systems
 3.7 Higher-Order Linear Differential Equations

Exam 1

4. **Laplace Transforms**
 4.1 Introduction
 4.2 Basic Properties of Laplace Transforms
 4.3 Inverse Laplace Transforms and Initial-Value Problems
 4.4 Piecewise Continuous Functions, Part I: Laplace Transforms
 4.5 Piecewise Continuous Functions, Part II: Inverse Laplace Transforms
 4.6 Initial-Value Problems with Piecewise Continuous Nonhomogeneous Terms

5. **Systems of Linear Differential Equations**
 5.1 Systems of Linear Differential Equations
 5.2 Homogeneous Systems
 5.3 Homogeneous Systems with Constant Coefficients, Part I
 5.4 Homogeneous Systems with Constant Coefficients, Part II
 5.5 Nonhomogeneous systems
 5.6 *Direction Fields and Phase Planes

6. **Series Solutions of Differential Equations**
 6.1 The Taylor Series Method
 6.2 The Power Series Method

Exam 2

* Optional Section