Summary: First Order Differential Equations

Given a first order differential equation

\[y' = f(x, y) \]

(*)

There are four types of equations that have solution methods.

1. **Linear differential equations.** Equation (*) is linear if it can be written in the form

\[y' + p(x)y = q(x) \]

(standard form)

Solution method: Multiply the equation by \(e^{\int p(x) \, dx} \) to obtain

\[e^{\int p(x) \, dx} y' + p(x)e^{\int p(x) \, dx} y = q(x)e^{\int p(x) \, dx} \]

which is

\[\left(e^{\int p(x) \, dx} y \right)' = q(x)e^{\int p(x) \, dx} \]

and integrate to find \(y \).

2. **Separable equations.** Equation (*) is separable if the function \(f \) can be factored as

\[f(x, y) = p(x)h(y) \]

Solution method: Write the equation as

\[\frac{dy}{dx} = p(x)h(y) \]

and divide by \(h(y) \) to obtain

\[\frac{1}{h(y)} \, dy = p(x) \, dx \quad \text{or} \quad q(y) \, dy = p(x) \, dx \quad [q(y) = 1/h(y)] \]

Integrate to obtain \(Q(y) = P(x) + C \) and simplify.

3. **Bernoulli equations.** Equation (*) is a Bernoulli equation if it can be written in the form

\[y' + p(x)y = q(x)y^k \]

(\(k \neq 0, 1 \))

Solution method: Divide the equation by \(y^k \) (i.e., multiply by \(y^{-k} \)) to obtain

\[y^{-k}y' + p(x)y^{1-k} = q(x) \]

and change the variable by setting \(v = y^{1-k}, \ v' = (1-k)y^{-k}y' \). The resulting equation will be a linear equation in \(x \) and \(v \). Solve that equation to find \(v \). Finally, reverse the change of variable by replacing \(v \) by \(y^{1-k} \) and simplifying (if possible).

4. **Homogeneous equations.** Equation (*) is homogeneous if the function \(f \) satisfies

\[f(tx, ty) = f(x, y). \]

Solution method: The change of variable \(y = vx, \ y' = v + xv' \) transforms the homogeneous equation (*) into the separable equation

\[\frac{1}{f(1, v)} \, dv = \frac{1}{x} \, dx. \]

Solve this separable equation to obtain \(Q(v) = \ln x + C \), simplify as much as possible, and then replace \(v \) by \(y/x \) to revert to the original variables.
Strategy for identifying a first order equation $y' = f(x, y)$

Step 1. If y appears with power 1 only, then the equation might very well be linear. Write the equation in the standard form

$$y' + p(x)y = q(x)$$

Step 2. If y appears with powers other than 1, or if you cannot use Step 1, then attempt to factor $f(x, y)$ into $p(x)h(y)$. If f does factor, then the equation is separable.

Step 3. If Steps 1 and 2 fail, then the equation is either Bernoulli or homogeneous, or it is "none of the above."

(a) To check for Bernoulli, try to write the equation as $y' + p(x)y = q(x)y^k$.

(b) Signals for homogeneous: If the equation contains a term such as $e^{y/x}$, $\sin(y/x)$, $\cos(y/x)$, etc., then the equation is homogeneous; if f is an algebraic expression (e.g., quotient of powers of x and y), and all the terms have the same degree, then the equation is homogeneous.

Beware that an equation can be more than one type simultaneously, and that a given equation may be "none of the above."