Summary: First Order Differential Equations

Given a first order differential equation

$$
\begin{equation*}
y^{\prime}=f(x, y) \tag{*}
\end{equation*}
$$

We have considered four types of first-order differential equarions equations that have solution methods:

1. Linear differential equations. Equation $(*)$ is linear if it can be written in the form

$$
y^{\prime}+p(x) y=q(x) \quad(\text { standard form })
$$

Solution method: Multiply the equation by $e^{\int p(x) d x}$ to obtain

$$
e^{\int p(x) d x} y^{\prime}+p(x) e^{\int p(x) d x} y=q(x) e^{\int p(x) d x}
$$

which is

$$
\left(e^{\int p(x) d x} y\right)^{\prime}=q(x) e^{\int p(x) d x}
$$

and integrate to find y.
2. Separable equations. Equation $(*)$ is separable if the function f can be factored as

$$
f(x, y)=p(x) h(y)
$$

Solution method: Write the equation as

$$
\frac{d y}{d x}=p(x) h(y)
$$

and divide by $h(y)$ to obtain

$$
\frac{1}{h(y)} d y=p(x) d x \quad \text { or } \quad q(y) d y=p(x) d x \quad[q(y)=1 / h(y)]
$$

Integrate to obtain $Q(y)=P(x)+C$ and simplify.
3. Bernoulli equations. Equation $(*)$ is a Bernoulli equation if it can be written in the form

$$
y^{\prime}+p(x) y=q(x) y^{k} \quad((k \neq 0,1)
$$

Solution method: Divide the equation by y^{k} (i.e., multiply by y^{-k}) to obtain

$$
y^{-k} y^{\prime}+p(x) y^{1-k}=q(x)
$$

and change the variable by setting $v=y^{1-k}, v^{\prime}=(1-k) y^{-k} y^{\prime}$. The resulting equation will be a linear equation in x and v. Solve that equation to find v. Finally, reverse the change of variable by replacing v by y^{1-k} and simplifying (if possible).
4. Homogeneous equations. Equation (*) is homogeneous if the function f satisfies

$$
f(t x, t y)=f(x, y)
$$

Solution method: The change of variable $y=v x, y^{\prime}=v+x v^{\prime}$ transforms the homogeneous equation (*) into the separable equation

$$
\frac{1}{f(1, v)-v} d v=\frac{1}{x} d x
$$

Solve this separable equation to obtain $Q(v)=\ln x+C$, simplify as much as possible, and then replace v by y / x to revert to the original variables.

Strategy for identifying a first order equation $y^{\prime}=f(x, y)$

Step 1. If y appears with power 1 only, then the equation might be linear. It is if you can write the equation in the standard form

$$
y^{\prime}+p(x) y=q(x)
$$

Step 2. If y appears with powers other than 1, or if you cannot use Step 1, then attempt to factor $f(x, y)$ into $p(x) h(y)$. If f does factor, then the equation is separable.

Step 3. If Steps 1 and 2 fail, then the equation is either Bernoulli or homogeneous, or it is "none of the above."
(a) To check for Bernoulli, try to write the equation as $y^{\prime}+p(x) y=q(x) y^{k}$.
(b) Signals for homogeneous: If the equation contains a term such as $e^{y / x}, \sin (y / x), \cos (y / x)$, etc., then the equation is homogeneous; if f is an algebraic expression (e.g., quotient of powers of x and y), and all the terms have the same degree, then the equation is homogeneous.

Beware that an equation can be more than one type simultaneously, and that a given equation may be "none of the above."

