Summary: First Order Differential Equations

Given a first order differential equation

\[y' = f(x, y) \] \hspace{1cm} (*)

There are four types of equations that have solution methods.

1. **Linear differential equations.** Equation (*) is linear if it can be written in the form

 \[y' + p(x)y = q(x) \] \hspace{1cm} (standard form)

 Solution method: Multiply the equation by \(e^{\int p(x) \, dx} \) to obtain

 \[e^{\int p(x) \, dx} y' + p(x)e^{\int p(x) \, dx} y = q(x)e^{\int p(x) \, dx} \]

 which is

 \[\left(e^{\int p(x) \, dx} y\right)' = q(x)e^{\int p(x) \, dx} \]

 and integrate to find \(y \).

2. **Separable equations.** Equation (*) is separable if the function \(f \) can be factored as

 \[f(x, y) = p(x)h(y) \]

 Solution method: Write the equation as

 \[\frac{dy}{dx} = p(x)h(y) \]

 and divide by \(h(y) \) to obtain

 \[\frac{1}{h(y)} \frac{dy}{dx} = p(x) \]

 or \[q(y) \, dy = p(x) \, dx \] \quad \{q(y) = 1/h(y)\}

 Integrate to obtain \(Q(y) = P(x) + C \) and simplify.

3. **Bernoulli equations.** Equation (*) is a Bernoulli equation if it can be written in the form

 \[y' + p(x)y = q(x)y^k \] \hspace{1cm} (\(k \neq 0,1 \))

 Solution method: Divide the equation by \(y^k \) (i.e., multiply by \(y^{-k} \)) to obtain

 \[y^{-k}y' + p(x)y^{1-k} = q(x) \]

 and change the variable by setting \(v = y^{1-k}, \ v' = (1-k)y^{-k}y' \). The resulting equation will be a linear equation in \(x \) and \(v \). Solve that equation to find \(v \). Finally, reverse the change of variable by replacing \(v \) by \(y^{1-k} \) and simplifying (if possible).

4. **Homogeneous equations.** Equation (*) is homogeneous if the function \(f \) satisfies

 \[f(tx, ty) = f(x, y). \]

 Solution method: The change of variable \(y = vx, \ y' = v+vx' \) transforms the homogeneous equation (*) into the separable equation

 \[\frac{1}{f(1,v)} - v \, dv = \frac{1}{x} \, dx. \]

 Solve this separable equation to obtain \(Q(v) = \ln x + C \), simplify as much as possible, and then replace \(v \) by \(y/x \) to revert to the original variables.
Strategy for identifying a first order equation \(y' = f(x, y) \)

Step 1. If \(y \) appears with power 1 only, then the equation might very well be linear. Write the equation in the standard form
\[
y' + p(x)y = q(x)
\]

Step 2. If \(y \) appears with powers other than 1, or if you cannot use Step 1, then attempt to factor \(f(x, y) \) into \(p(x)h(y) \). If \(f \) does factor, then the equation is separable.

Step 3. If Steps 1 and 2 fail, then the equation is either Bernoulli or homogeneous, or it is "none of the above."

(a) To check for Bernoulli, try to write the equation as \(y' + p(x)y = q(x)y^k \).

(b) Signals for homogeneous: If the equation contains a term such as \(e^{y/x} \), \(\sin(y/x) \), \(\cos(y/x) \), etc., then the equation is homogeneous; if \(f \) is an algebraic expression (e.g., quotient of powers of \(x \) and \(y \)), and all the terms have the same degree, then the equation is homogeneous.

Beware that an equation can be more than one type simultaneously, and that a given equation may be "none of the above."

2